CS130 - LAB 1 - Section:

Name: SID:

Part 1: vectors, dot and cross product

- 1. Solve the given vector equation for x:
- 3 * [1, 2, -1] + 4 * [2, 0, x] = [11, 6, 17]

2. Solve the given vector equation for the scalar x. Is there a solution? x * [1, 2, -1] + 4 * [3, 4, 2] = [-1, 0, 4]

3. Calculate the cosine of the angle between the vectors [2, 4, 4] and [4, 3, 0].

4 .	Giv	<i>r</i> en	2	vecto	ors,	a	and	b,	explain	the	geometrical	relationship	between
а	and	b	for	the	foli	lov	ving	cas	ses:				

- a) $a \cdot b = 0$:
- b) $a \cdot b > 0$:
- c) $a \cdot b < 0$:
- 5. Calculate the cross product: $[1, 2, 3] \times [4, 5, 6]$.

^{6.} Given the triangle with vertices [0, 2, -1], [2, 0, -1] and [1, 0, 0], calculate the normal of the plane that contains the triangle.

7. Calculate the vector that bisects the angle between the vectors a and b in the figure above.

^{8.} Calculate a vector in the form $\infty a + \beta b = u$ where ∞ and β are scalars and u is a vector orthogonal to b. Suppose ∞ is 1, draw the three vectors ∞a , βb and u in the figure above (draw ∞a from βb to u).

CS130 - LAB 1 - Section:

Name: SID:

Part 2: Matrices

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 7 & 19 \end{bmatrix}, B = \begin{bmatrix} 5 & 2 \\ 1 & -3 \\ -1 & 1 \end{bmatrix}$$

You don't have to do the divisions, just keep the values in division format.

- 1. Calculate:
 - a) $A + B^{T}$

b) AB

c) $(AB)^{-1}$

- 2. Solve (AB)x = c, where c is the vector [1, 2] and x is $[x_1, x_2]$. Show the following steps:
- a) Isolate ${\bf x}$ in the left-hand side of the equation.

b) Compute $(AB)^{-1}c$ to find the values of x.

CS130 - LAB 1 - Section:

Name: SID:

Part 3: Ray/plane intersection

- 1. Calculate the endpoint and direction of the ray r in the figure below.
 - u and e are unitary vectors that define the shaded plane.
 - u and e originate at b.
 - The ray pass through the plane at the intersection point i.
 - The 2D vector p is on the plane. p goes from b (origin) to i.

ray endpoint:

ray direction (don't forget to normalize):

2.	Con	sider	а	ray	with	endpo	oint	e ar	nd (ı	ınita	ary)	direct	cion	u.	Cons	ider	a
pla	ane	with	(ur	nitar	ry) no	ormal	vect	or r	n and	d wit	ch a	point	x0 2	loca	ted	anywh	nere
on	the	plane	е.	The	equat	cions	for	the	ray	and	the	plane	are	:			

```
• ray: R(t) = e + ut
```

• plane: $P(x) = (x - x0) \cdot n = 0$

Any point r on the ray can be found using the real value $t \ge 0$. Any point x that satisfies the plane equation is on the plane.

- a) In the ray equation, what does t represent geometrically?
- b) Follow the steps below and calculate t^* such that the point in the ray intersects the plane.

Step 1: Combine the ray and plane equations to find t^* that solves both equations by expanding $P(R(t^*)) = 0$.

Step 2: Group terms with t* together.

Step 3: Fill out below by leaving t^* alone on the left side.

t* =

c) What are the cases that will make t^* undefined (e.g. division by 0), and what does it mean geometrically?

d) Explain the geometric meaning of two cases:

t* > 0:

t* < 0:

```
e) Write a code in C++ that receives e, u, n and x0, and returns true if
the ray intersects the plane. Assume all vectors have the same size.
// you can use vec_f as a shortcut for a vector of floats
typedef vector<float> vec f;
bool intersects(vec_f &e, vec_f &u, vec_f &n, vec_f &x0){
}
\ensuremath{//} computes dot product between the vectors a and b
float dot(vec_f &a, vec_f &b) {
     float d = 0;
     return d;
}
// compute the difference between vectors a and b
vec_t sub(vec_f &a, vec_f &b) {
     vec t result(a.size());
     return result;
```

}

Home Exercise (Optional. Try to solve before next lab)

Consider a ray with endpoint e and (unitary) direction u. Consider a sphere with center c and radius r. The equations for the ray and the sphere are:

- ray: R(t) = e + ut
- sphere: $S(x) = (x c) \cdot (x c) = r^2$

Any point r on the ray can be found using the real value $t \ge 0$. Any point x that satisfies the sphere equation is on the sphere.

Calculate $t^*(s)$ such that the point in the ray intersects the sphere.

Hint: You can use steps and the reasoning that we used for ray-plane intersections.