Part 1: vectors, dot and cross product

1. Solve the given vector equation for x :
$3 *[1,2,-1]+4 *[2,0, x]=[11,6,17]$
2. Solve the given vector equation for the scalar x. Is there a solution? x * $[1,2,-1]+4$ * $[3,4,2]=[-1,0,4]$
3. Calculate the cosine of the angle between the vectors $[2,4,4]$ and $[4,3,0]$.
4. Given 2 vectors, a and b, explain the geometrical relationship between a and b for the following cases:
a) $a \cdot b=0$:
b) $a \cdot b>0$:
c) $a \cdot b<0$:
5. Calculate the cross product: $[1,2,3] x[4,5,6]$.
6. Given the triangle with vertices $[0,2,-1],[2,0,-1]$ and [1, 0, 0], calculate the normal of the plane that contains the triangle.

7. Calculate the vector that bisects the angle between the vectors a and b in the figure above.
8. Calculate a vector in the form $\propto a+\beta b=u$ where \propto and β are scalars and u is a vector orthogonal to b. Suppose \propto is 1, draw the three vectors $\propto a, \beta b$ and u in the figure above (draw $\propto a$ from βb to u).

CS130 - LAB 1 - Section:
Name: SID:

Part 2: Matrices

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
3 & 7 & 19
\end{array}\right], B=\left[\begin{array}{cc}
5 & 2 \\
1 & -3 \\
-1 & 1
\end{array}\right]
$$

You don't have to do the divisions, just keep the values in division format.

1. Calculate:
a) $A+B^{T}$
b) $A B$
C) $(A B)^{-1}$
2. Solve $(A B) x=c$, where c is the vector $[1,2]$ and x is $\left[x_{1}, x_{2}\right]$. Show the following steps:
a) Isolate x in the left-hand side of the equation.
b) Compute $(A B)^{-1} C$ to find the values of x.

Part 3: Ray/plane intersection

1. Calculate the endpoint and direction of the ray r in the figure below.

- u and e are unitary vectors that define the shaded plane.
- u and e originate at b.
- The ray pass through the plane at the intersection point i.
- The 2D vector p is on the plane. p goes from b (origin) to i.

ray endpoint:
ray direction (don't forget to normalize):

2. Consider a ray with endpoint e and (unitary) direction u. Consider a plane with (unitary) normal vector n and with a point $x 0$ located anywhere on the plane. The equations for the ray and the plane are:

- ray: $R(t)=e+u t$
- plane: $P(x)=(x-x 0) \cdot n=0$

Any point r on the ray can be found using the real value $t>=0$. Any point x that satisfies the plane equation is on the plane.
a) In the ray equation, what does t represent geometrically?
b) Follow the steps below and calculate t* such that the point in the ray intersects the plane.

Step 1: Combine the ray and plane equations to find t* that solves both equations by expanding $P(R(t *))=0$.

Step 2: Group terms with t* together.

Step 3: Fill out below by leaving t* alone on the left side.
$t^{*}=$
c) What are the cases that will make t* undefined (e.g. division by 0), and what does it mean geometrically?
d) Explain the geometric meaning of two cases:

```
t* > 0:
```

 \(t^{*}<0\) :
 e) Write a code in C++ that receives e, u, n and $x 0$, and returns true if the ray intersects the plane. Assume all vectors have the same size.
// you can use vec_f as a shortcut for a vector of floats typedef vector<float> vec_f;

\}
// computes dot product between the vectors a and b
float dot(vec_f \&a, vec_f \&b) \{
float $d=0$;
return d;
\}
// compute the difference between vectors a and b vec_t sub(vec_f \&a, vec_f \&b) \{ vec t result(a.size());

```
    return result;
```

\}

Home Exercise (Optional. Try to solve before next lab)

Consider a ray with endpoint e and (unitary) direction u. Consider a sphere with center c and radius r. The equations for the ray and the sphere are:

- ray: $R(t)=e+u t$
- sphere: $S(x)=(x-c) \cdot(x-c)=r^{2}$

Any point r on the ray can be found using the real value $t>=0$. Any point x that satisfies the sphere equation is on the sphere.

Calculate $t^{*}(s)$ such that the point in the ray intersects the sphere.

Hint: You can use steps and the reasoning that we used for ray-plane intersections.

