Piecewise Polynomial Curves

Cubics

$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- Allow up to C^{2} continuity at knots
- need 4 control points
- may be 4 points on the curve, combination of points and derivatives, ...
- good smoothness and computational properties

Advantages of Cubics

- allow for C2 continuity (C1 often not enough, more than C2 unnecessary)
- n piecewise cubics for $n+3$ points give minimum curvature curve
- symmetry: position and derivatives can be specified at beginning and end
- good tradeoff between numerical issues and smoothness

We can get any 3 of 4 properties

|.piecewise cubic
2. curve interpolates control points
3. curve has local control

4 . curves has C 2 continuity at knots

Cubics

- Natural cubics
- C2 continuity
- n points -> n -I cubic segments
- control is non-local :(
- ill-conditioned x (
- (properties I, 2,4)

Cubic Hermite Curves

- Cl continuity
- specify both positions and derivatives
- (properties I, 2, 3)

Cubic Hermite Curves

Specify endpoints and derivatives
construct curve with
C^{1} continuity

Hermite blending functions

Example: keynote curve tool

Cubic Bezier Curves

Cubic Bezier Curves

Cubic Bezier Curve Examples

Cubic Bezier blending functions

<whiteboard>

Cubic Bezier blending functions

Bezier Curves Degrees 2-6

Bernstein Polynomials

- The blending functions are a special case of the Bernstein polynomials

$$
b_{\mathrm{kd}}(u)=\frac{d!}{k!(d-k)!} u^{k}(1-u)^{d-k}
$$

-These polynomials give the blending polynomials for any degree Bezier form
All roots at 0 and 1
For any degree they all sum to 1
They are all between 0 and 1 inside $(0,1)$

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

po

Joining Cubic Bezier Curves

Joining Cubic Bezier Curves

- for Cl continuity, the vectors must line up and be the same length
- for GI continuity, the vectors need only line up

Evaluating P(u) geometrically

Evaluating P(u) geometrically

Bezier subdivision

Bezier subdivision

Bezier subdivision

divid and conquer approach can be used for efficient rendering

Recursive Subdivision

- work with convex hull, does not require evaluating the polynomial
- Bezier curves most convenient -- other curves can be transformed to Bezier
- same approach for surfaces

- New points created by subdivision
- Old points discarded after subdivision
- Old points retained after subdivision

Recursive Subdivision for Rendering

Cubic B-Splines

B-spline properties

- polynomials of degree d with ($\mathrm{d}-\mathrm{I}$) continuity - preferred method for very smooth curves (C2 or higher)

B-spline properties

- C(d-I) continuity
-local control - any point on curve depends on $\mathrm{d}+\mathrm{I}$ control points
-bounded by convex hull
\bullet-variation diminishing property

Cubic B-Splines

Spline blending functions

$$
\begin{gathered}
b_{0}(u)=\frac{1}{6}(1-u)^{3} \\
b_{1}(u)=\frac{1}{6}\left(4-6 u^{2}+3 u^{3}\right) \\
b_{2}(u)=\frac{1}{6}\left(1+3 u+3 u^{2}-3 u^{3}\right) \\
b_{3}(u)=\frac{1}{6} u^{3}
\end{gathered}
$$

General Splines

- Defined recursively by Cox-de Boor recursion formula

$$
\begin{gathered}
b_{j, 0}(t)= \begin{cases}1 & \text { if } \quad t_{j} \leq t \\
0 & \text { otherwise }\end{cases} \\
b_{j, n}(t):=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t)
\end{gathered}
$$

Spline properties

Basis functions

convexity

Surfaces

Parametric Surface

$$
\begin{aligned}
x & =x(u, v) \\
y & =y(u, v) \\
z & =z(u, v)
\end{aligned}
$$

Parametric Surface tangent plane

Bicubic Surface Patch

Bezier Surface Patch

$$
\mathbf{f}(u, v)=\sum_{i} \sum_{j} b_{i}(u) b_{j}(v) \mathbf{p}_{i j}
$$

Patch lies in convex hull

