Piecewise Polynomial Curves



Cubics

f(u) = ag + aju + ayu® + agu’
2 . .
® Allow up to C“ continuity at knots

® need 4 control points

® may be 4 points on the curve, combination of points
and derivatives, ...

® good smoothness and computational properties



Advantages of Cubics

e allow for C2 continuity (C1 often not
enough, more than C2 unnecessary)

e N piecewise cubics for n+3 points give
minimum curvature curve

* symmetry: position and derivatives can be
specified at beginning and end

e good tradeoff between numerical issues
and smoothness



We can get any 3 of 4 properties

I .piecewise cubic
2.curve interpolates control points
3 .curve has local control

4.curves has C2 continuity at knots



Cubics

Natural cubics

e (2 continuity

® n points -> n-| cubic segments
control is non-local :(
ill-conditioned x(

(properties [, 2, 4)



Cubic Hermite Curves

e C| continuity
® specify both positions and derivatives

® (properties |, 2, 3)



Cubic Hermite Curves

construct
curve with
C' continuity

Specify endpoints
and derivatives
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Hermite blending functions

02 -
[Wikimedia Commons]



Example: keynote curve tool



Cubic Bezier Curves



Cubic Bezier Curves

PO \:’(1)=3(p3-p2)



Cubic Bezier Curve Examples




Cubic Bezier blending functions

<whiteboard>



Cubic Bezier blending functions
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Bezier Curves Degrees 2-6

)
RN
)
N
=

~
D
D
D
)




Bernstein Polynomials

* The blending functions are a special
case of the Bernstein polynomials

d' k d-k
u) = ] -
bya (u) k!_(d—k)!u (I-u) |
* These polynomials give the blending

polynomials for any degree Bezier form
All roots at 0 and 1
For any degree they all sum to 1
They are all between 0 and 1 inside (0,1)
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Bezier Curve Properties
e,

p
curve lies in the convex hull P
of the data

variation diminishing

symmetry Po

P; '
affine invariant 7&74 M

efficient evaluation and

subdivision
Pgl




Joining Cubic Bezier Curves




Joining Cubic Bezier Curves

e for Cl continuity, the

vectors must line up and
@ - be the same length
. * for G| continuity, the

vectors need only line up




Evaluating p(u) geometrically




Evaluating p(u) geometrically

De Casteljau algorithm



Bezier subdivision

AB(




Bezier subdivision

AB




Bezier subdivision

AB CD

A @0
divid and conquer approach can be
used for efficient rendering



Recursive Subdivision

e work with convex hull, does not require evaluating the
polynomial

® Bezier curves most convenient -- other curves can be
transformed to Bezier

® same approach for surfaces

® New points created by subdivision
O Old points discarded after subdivision
@ Old points retained after subdivision
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Cubic B-Splines



B-spline properties

epolynomials of degree d with (d-1) continuity
epreferred method for very smooth curves (C2
or higher)



B-spline properties

*C(d-1) continuity

*|local control - any point on curve depends on
d+| control points

*bounded by convex hull

evariation diminishing property



Cubic B-Splines




Spline blending functions

1

bo(w) = <(1—w)?

1
bi(u) = 6(4 — 6u® + 3u°)

by (u) b,(u)

1
bo(u) = 6(1 + 3u + 3u® — 3u’)

1
bs(u) = 6“3




General Splines

® Defined recursively by Cox-de Boor recursion formula

1 if t <t
bjo(t) = {O otherwise
t—1; tizme1 — 1
bjn(t) == b (t) + bjt1,n—1(1)
tj+n —1; tj+nt+1 — tj41

Uk +1

B

Uk s Uk+2 U+ 3




Spline properties

P,

Basis functions Po

bfu+1)  byfu) convexity




Surfaces



Parametric Surface

x(u,v) 4
(w0 b, -
z(u, v =0 opiu,v)
v=1
u=0 — = X



Parametric Surface -
tangent plane




Bicubic Surface Patch
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Bezier Surface Patch

> > ) V)Pij
P30
Patch lies in /
convex hull
Poo

Po3



