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What is a curve!?

intuitive idea:
draw with a pen
set of points the pen traces

may be 2D, like on paper
or 3D, space curve



What is a curve!?

or be
closed

may have
endpoints

extend
infinitely



How do we specify a curve!
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Implicit
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test if (x,y) is on the curve
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Implicit
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. Xy)=0
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How do we specify a curve!

Implicit
(2D) (xy) =0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = (1)
(3D) (x,y,z) = (1)
map free parameter t
to points on the curve



How do we specify a curve!
t=10

Implicit
(2D) 1(x,y) =0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = (1)
(3D) (x,y,z) = (1)
map free parameter t
to points on the curve



How do we specify a curve!

Implicit
(2D) (xy) =0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = 1(1)
(3D) (x,y,z) = (1)
map free parameter t
to points on the curve

Procedural

e.qg., fractals,
subdivision schemes Fractal: Koch Curve

[George Reese]



How do we specify a curve!

Implicit
(2D) (xy) =0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = (1) ’
(3D) (x,y,z) = (1)
map free parameter t
to points on the curve

Procedural
e.qg., fractals,
subdivision schemes Bezier Curve



A curve may have multiple
representations



A curve may have multiple
representations

Implicit
f(x,y)=x2+y2-1=0



A curve may have multiple
representations

t = pi/2

Parametric
(x,y) = f(t) = (cos t, sin t)



A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin 1),
tin [0,2pi)

Same curve (set of points),
but different mathematical representation!



A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin 1),
tin [0,2pi)

We will focus on parametric representations



Parametric Form




Parametric Form
Tangent Vector




Parameterization, re-parameterization



Parameterization, re-parameterization

fa(s)

trace out
the curve
more quickly

s =0.5



Parameterization, re-parameterization

{
S

relationship:
t=10%s
f1(t) = f1(10™s)

= H1(1(s))
VS >0



Parameterization, re-parameterization




Parameterization, re-parameterization




Natural parameterization

note: points

uneven (’\
t=10




Natural parameterization

pen moves at a constant velocity:
evenly spaced points
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Natural parameterization

pen moves at a constant velocity:
evenly spaced points

sS=0

f(s)

also callea
arc-length
parameterization

df (s)
ds

10



piecewise parametric representation

sometimes easy
to find a parametric
representation

e.qg., circle, line segment

\



piecewise parametric representation

IN other cases, not obvious



piecewise parametric representation

strategy: break into simpler pieces
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switch between functions that represent pieces:

f1(2u) u < 0.5
fu) = { f,(2u—1) u>0.5



piecewise parametric representation

strategy: break into simpler pieces

O

switch between functions that represent pieces:

f1(2u) u < 0.5 map the inputs to
fu) = fo(2u—1) uw>0.5 f1 and fo
to be from O to 1



Curve Properties

Local properties:
continuity
position
direction
curvature

Global properties (examples):
closed curve
curve crosses itself

Interpolating vs. non-interpolating



Continuity: stitching curve segments together

parametric
continuity

geometric
continuity



Interpolating vs. Approximating Curves

® P,
Py P P3 P, '/\/ P;
P, *P
Interpolating Approximating

(non-interpolating)



Finding a Parametric
Representation



Polynomial Pieces

flu) = ag + a1u + asu® + - - + apu”



Polynomial Pieces

coefficients n = degree

N 7
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Polynomial Pieces

coefficients n = degree

N/

f(u) — ag + aju + asu® + - - - + a,u”

“canonical form” (monomial basis)



Blending functions are more convenient
basis than monomial basis

Po P, Ps
P>

® “canonical form” (monomial basis)

f(u) = ag + aju + asu® + agu’

® “geometric form” (blending functions)

f(u) = bo(u)po + b1 (u)p1 + b2(u)p2 + b3(u)pP3



Blending functions are more convenient
basis than monomial basis

Po P, Ps
P>

® “canonical form” (monomial basis)

f(u) = ag + aju + asu® + agu’

® “geometric form” (blending functions)

f(u) = bo(u)po + b1 (u)p1 + b2(u)p2 + b3(u)pP3



Blending functions are more convenient
basis than monomial basis

f(u) = ag + a1u + agu® + azu’
(1) (@0
U al
u2 a9
\v’/ \as




Blending functions are more convenient
basis than monomial basis

e
a=C 'p=Bp | p2
\ps/
f(u) =u'a=u'(Bp) /ZO(U)\
= (u'B)p b(u) = b;gzg
(u)




Blending functions are more convenient
basis than monomial basis

Ca=p
a=C 'p=Bp

( 513\

s/

Some
examples
<whiteboard>

\bs(u)/




Interpolating Polynomials



Interpolating polynomials

® Given nt| data points, can find a unique interpolating
polynomial of degree n

® Different methods:
® Vandermonde matrix
® |agrange interpolation

® Newton interpolation



higher order interpolating
polynomials are rarely used

overshoots

4

non-local effects
3 5 4th order (gray) to 5th order (black)



