CSI 30 : Computer Graphics Curves

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Design considerations

-local control of shape -design each segment independently
-smoothness and continuity -ability to evaluate derivatives -stability
-small change in input leads to small change in output
-ease of rendering

Design considerations

-local control of shape -design each segment independently
-smoothness and continuity -ability to evaluate derivatives -stability
-small change in input leads to small change in output
-ease of rendering

Design considerations

-local control of shape -design each segment independently
-smoothness and continuity -ability to evaluate derivatives -stability
-small change in input leads to small change in output -ease of rendering $p(v)$

What is a curve?

intuitive idea:
draw with a pen set of points the pen traces
may be 2D, like on paper or 3D, space curve

What is a curve?

may have endpoints

extend
infinitely

How do we specify a curve?

How do we specify a curve?

Implicit

(2D) $f(x, y)=0$
test if (x, y) is on the curve

How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if (x, y) is on the curve

How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if (x, y) is on the curve

How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if (x, y) is on the curve
Parametric
(2D) $(x, y)=f(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve

How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if (x, y) is on the curve
Parametric
(2D) $(x, y)=f(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve

How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if (x, y) is on the curve
Parametric
(2D) $(x, y)=f(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve

Procedural
e.g., fractals, subdivision schemes

Fractal: Koch Curve

How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if (x, y) is on the curve
Parametric
(2D) $(x, y)=f(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve

Procedural
e.g., fractals, subdivision schemes

A curve may have multiple representations

A curve may have multiple representations

Implicit

$$
f(x, y)=x^{2}+y^{2}-1=0
$$

A curve may have multiple representations

Parametric

$$
(x, y)=f(t)=(\cos t, \sin t)
$$

A curve may have multiple representations

Parametric

$$
\begin{aligned}
(x, y)=f(t)= & (\cos t, \sin t), \\
& t \text { in }[0,2 p i)
\end{aligned}
$$

Same curve (set of points), but different mathematical representation!

A curve may have multiple representations

Parametric

$$
\begin{aligned}
(x, y)=f(t)= & (\cos t, \sin t), \\
& t \text { in }[0,2 p i)
\end{aligned}
$$

We will focus on parametric representations

Parametric Form

$$
\mathbf{c}^{\prime}(t)=\binom{x(t)}{y(t)}
$$

Parameterization, re-parameterization

Parameterization, re-parameterization

Parameterization, re-parameterization

relationship:
$t=10^{*} s$
$\mathbf{f}_{\mathbf{1}}(\mathrm{t})=\mathbf{f}_{\mathbf{1}}\left(10^{*} \mathrm{~s}\right)$
$=\mathbf{f}_{\mathbf{1}}(\mathrm{f}(\mathrm{s}))$
$=f_{2}(s)$

$$
\begin{aligned}
& s=0.5 \\
& t=5
\end{aligned}
$$

$$
\begin{aligned}
& s=1 \\
& t=10
\end{aligned}
$$

Parameterization, re-parameterization

$$
S=S_{0}
$$

$$
S=S_{1}
$$

$\mathbf{f}_{\mathbf{2}}(\mathrm{s})=\mathbf{f}_{\mathbf{1}}(\mathrm{f}(\mathrm{s}))$

Parameterization, re-parameterization

Natural parameterization

Natural parameterization

pen moves at a constant velocity: evenly spaced points

$s=5$

Natural parameterization

pen moves at a constant velocity: evenly spaced points

$$
s=5
$$

Natural parameterization

pen moves at a constant velocity: evenly spaced points

piecewise parametric representation

sometimes easy
to find a parametric
representation

e.g., circle, line segment

piecewise parametric representation

in other cases, not obvious

piecewise parametric representation

strategy: break into simpler pieces

piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

$$
\mathbf{f}(u)= \begin{cases}\mathbf{f}_{1}(2 u) & u \leq 0.5 \\ \mathbf{f}_{2}(2 u-1) & u>0.5\end{cases}
$$

piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

$$
\mathbf{f}(u)= \begin{cases}\mathbf{f}_{1}(2 u) & u \leq 0.5 \\ \mathbf{f}_{2}(2 u-1) & u>0.5\end{cases}
$$

map the inputs to \mathbf{f}_{1} and \mathbf{f}_{2}
to be from 0 to 1

Curve Properties

Local properties: continuity position
direction
curvature

Global properties (examples):
closed curve
curve crosses itself
Interpolating vs. non-interpolating

Continuity: stitching curve segments together

C^{0}

Interpolating vs.Approximating Curves

Interpolating
Approximating
(non-interpolating)

Finding a Parametric Representation

Polynomial Pieces

$$
f(u)=a_{0}+a_{1} u+a_{2} u^{2}+\cdots+a_{n} u^{n}
$$

Polynomial Pieces

Polynomial Pieces

"canonical form" (monomial basis)

Blending functions are more convenient basis than monomial basis

- "canonical form" (monomial basis)

$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- "geometric form" (blending functions)

$$
\mathbf{f}(u)=b_{0}(u) \mathbf{p}_{0}+b_{1}(u) \mathbf{p}_{1}+b_{2}(u) \mathbf{p}_{2}+b_{3}(u) \mathbf{p}_{3}
$$

Blending functions are more convenient basis than monomial basis

- "canonical form" (monomial basis)

$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- "geometric form" (blending functions)

$$
\mathbf{f}(u)=b_{0}(u) \mathbf{p}_{0}+b_{1}(u) \mathbf{p}_{1}+b_{2}(u) \mathbf{p}_{2}+b_{3}(u) \mathbf{p}_{3}
$$

Blending functions are more convenient basis than monomial basis

$$
f(u)=a_{0}+a_{1} u+a_{2} u^{2}+a_{3} u^{3}
$$

$$
\mathbf{u}=\left(\begin{array}{c}
1 \\
u \\
u^{2} \\
u^{3}
\end{array}\right) \quad \mathbf{a}=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

$$
f(u)=\mathbf{u} \cdot \mathbf{a}=\mathbf{u}^{T} \mathbf{a}
$$

Blending functions are more convenient basis than monomial basis

$$
\begin{aligned}
C \mathbf{a} & =\mathbf{p} \\
\mathbf{a} & =C^{-1} \mathbf{p}=B \mathbf{p}
\end{aligned}
$$

$$
\mathbf{p}=\left(\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

$$
\begin{aligned}
f(u)=\mathbf{u}^{T} \mathbf{a} & =\mathbf{u}^{T}(B \mathbf{p}) \\
& =\left(\mathbf{u}^{T} B\right) \mathbf{p} \\
& =\mathbf{b}(u)^{T} \mathbf{p}
\end{aligned}
$$

$$
\mathbf{b}(u)=\left(\begin{array}{l}
b_{0}(u) \\
b_{1}(u) \\
b_{2}(u) \\
b_{3}(u)
\end{array}\right)
$$

Blending functions are more convenient basis than monomial basis

$$
\begin{aligned}
C \mathbf{a} & =\mathbf{p} \\
\mathbf{a} & =C^{-1} \mathbf{p}=B \mathbf{p}
\end{aligned}
$$

$$
\mathbf{p}=\left(\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

$$
\begin{aligned}
f(u)=\mathbf{u}^{T} \mathbf{a} & =\mathbf{u}^{T}(B \mathbf{p}) \\
& =\left(\mathbf{u}^{T} B\right) \mathbf{p} \\
& =\mathbf{b}(u)^{T} \mathbf{p}
\end{aligned}
$$

Interpolating Polynomials

Interpolating polynomials

- Given $n+1$ data points, can find a unique interpolating polynomial of degree n
- Different methods:
- Vandermonde matrix
- Lagrange interpolation
- Newton interpolation
higher order interpolating polynomials are rarely used

non-local effects
4th order (gray) to 5th order (black)

