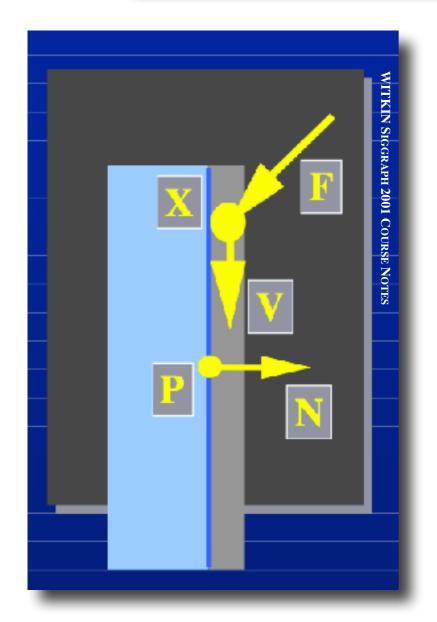
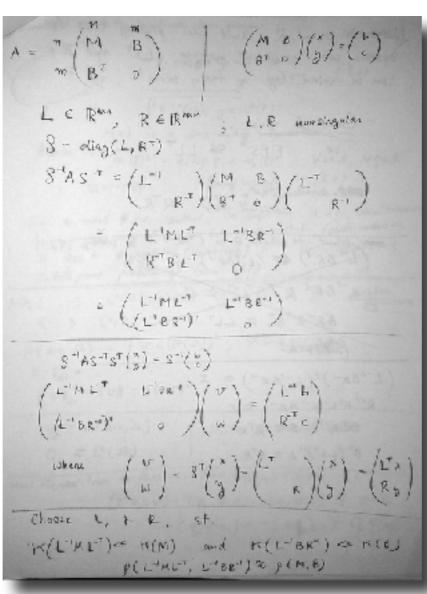
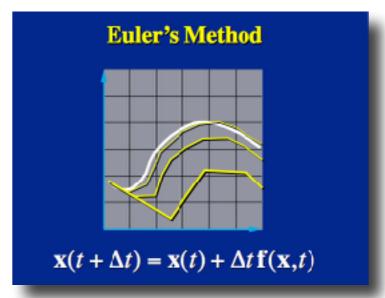
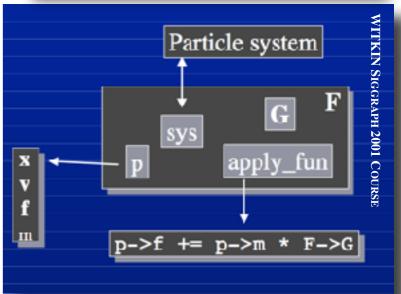
physics-based animation

Physics-Based Animation





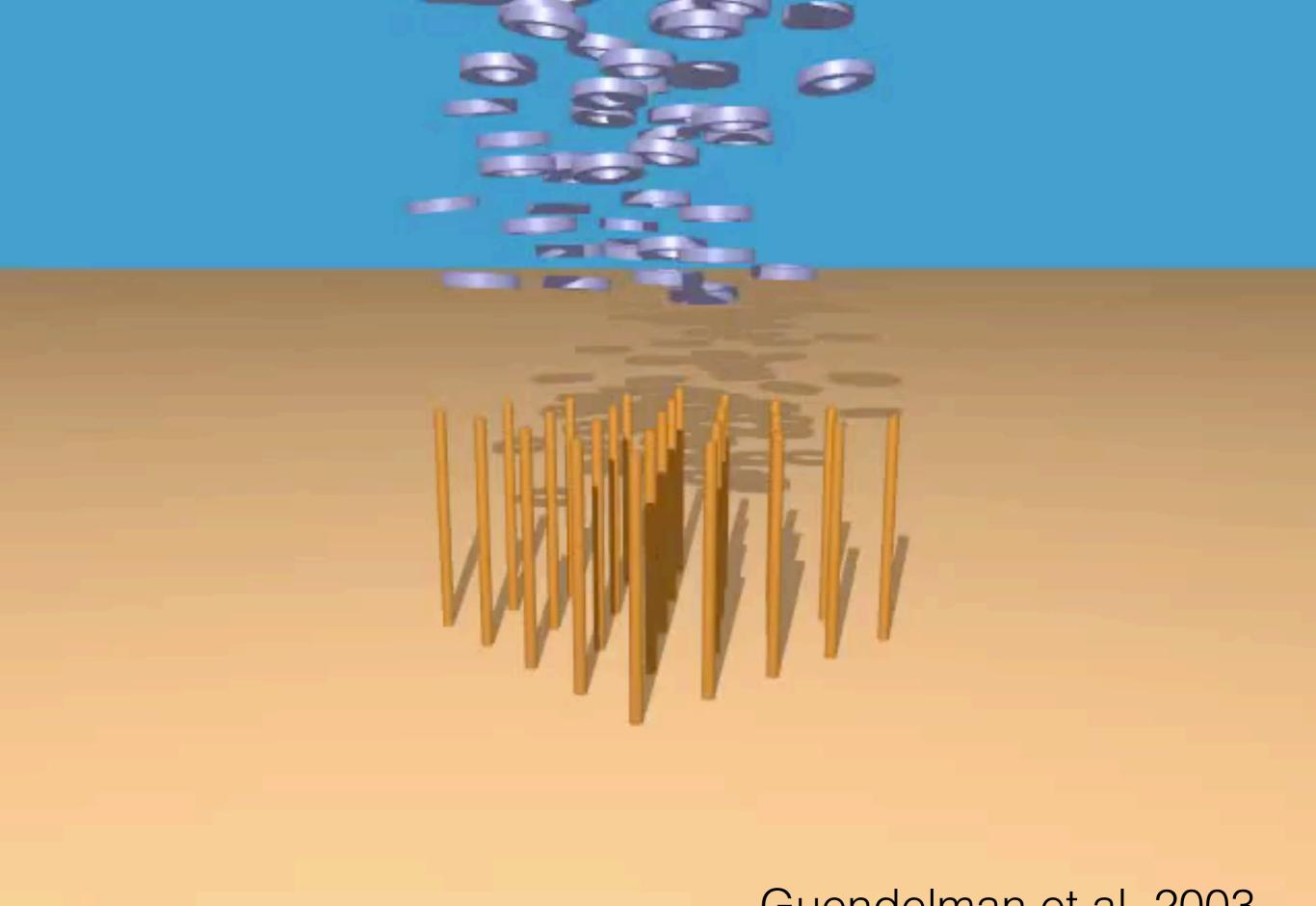




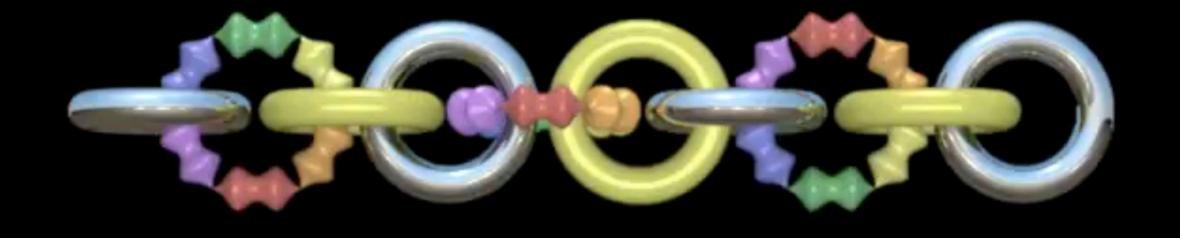
Physics

Mathematics

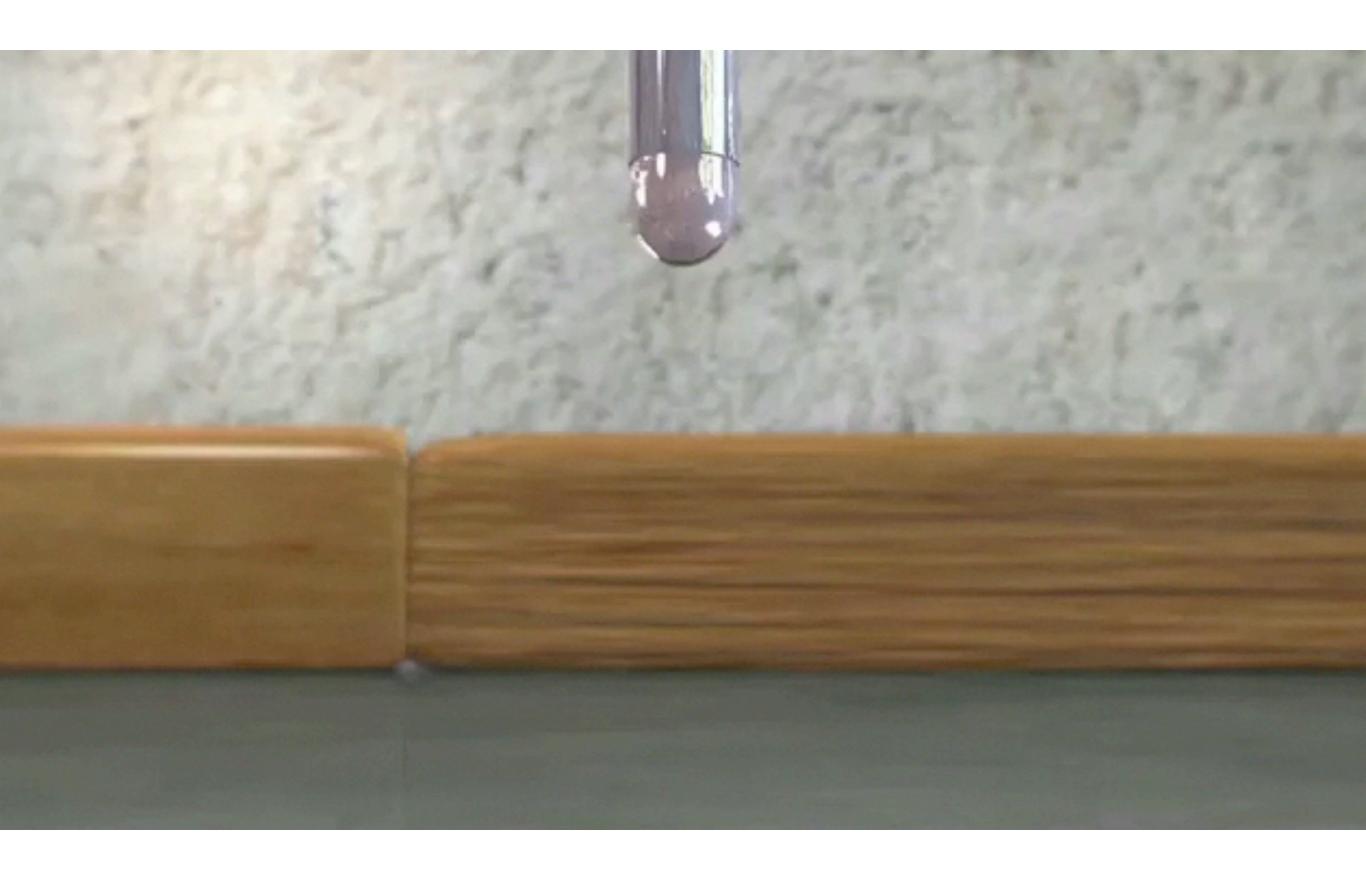
Numerical Methods and Algorithms



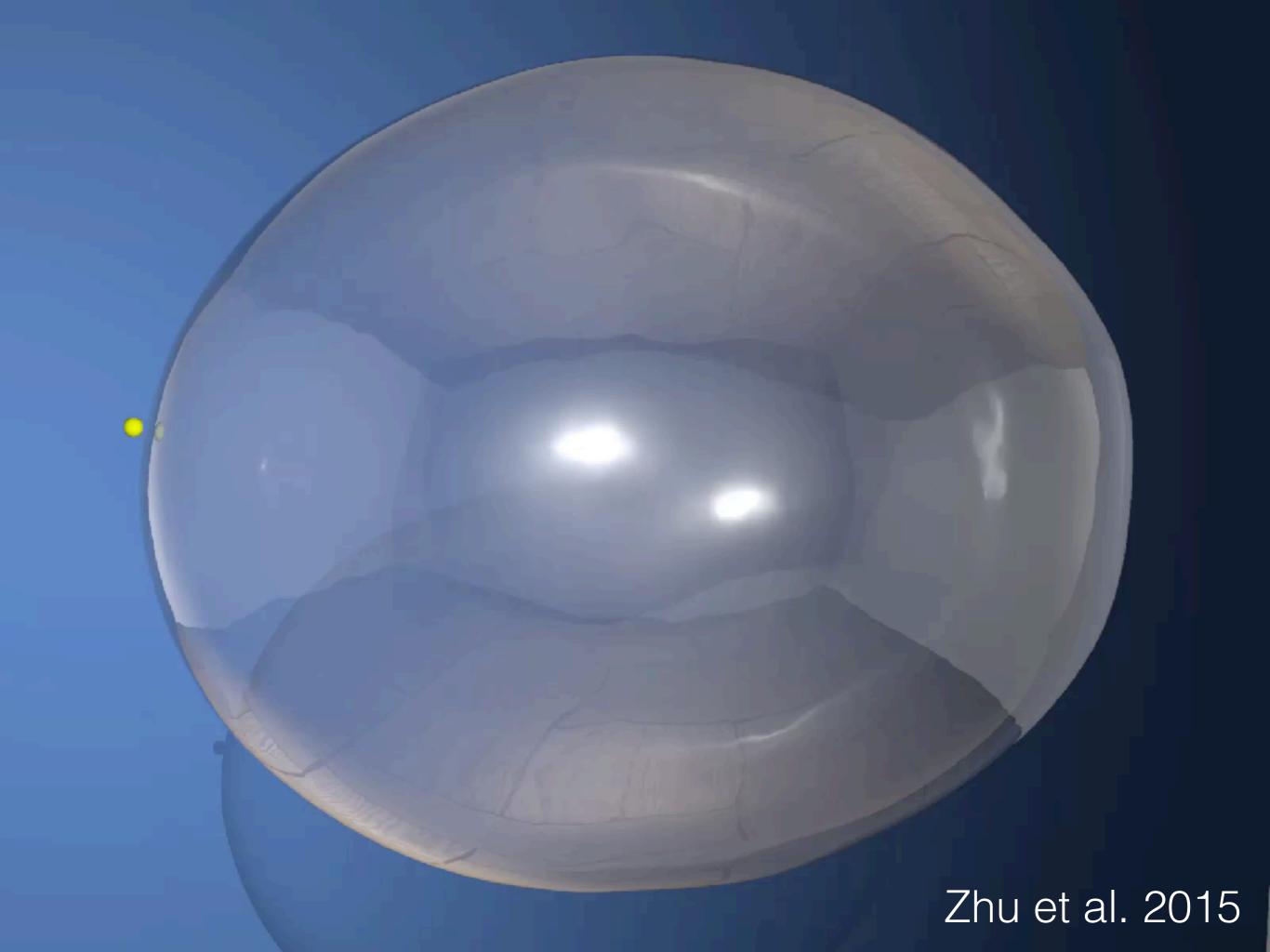
Guendelman et al. 2003

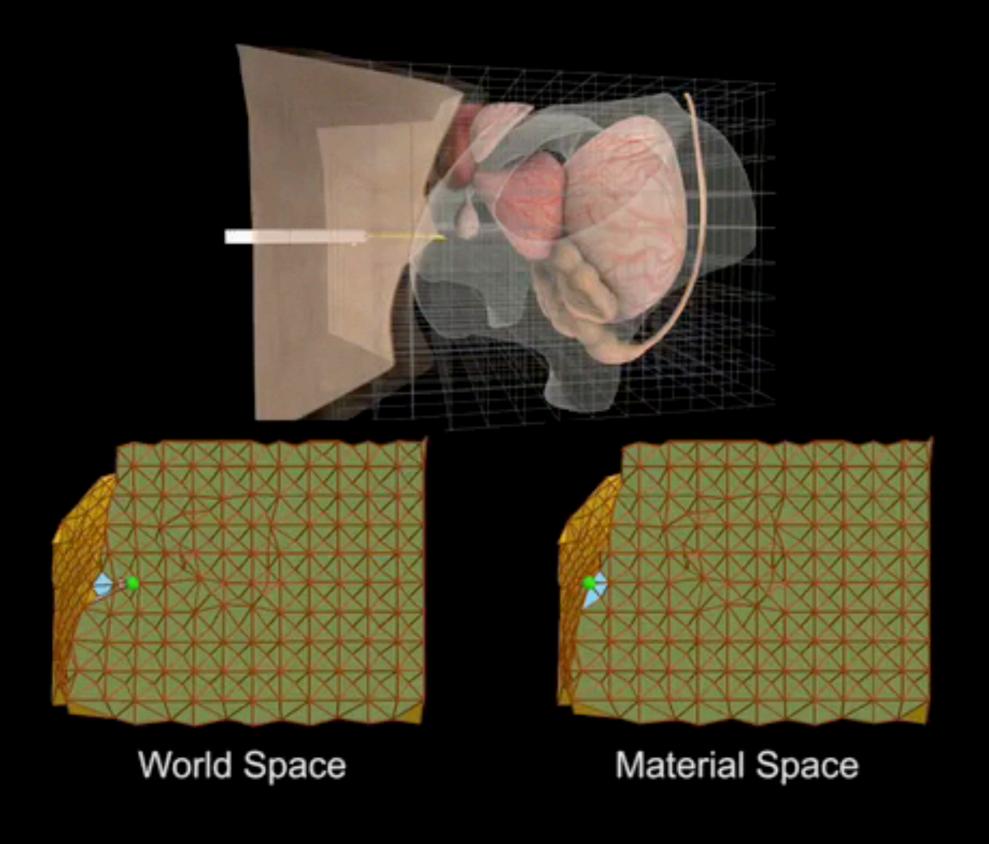


Shinar et al. 2008



Clausen et al. 2013





Chentanez et al., 2009

Physics of Natural Phenomena

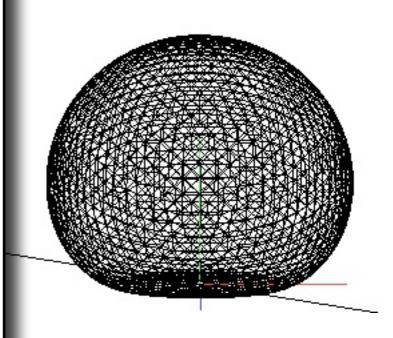
Newton's Second Law (F = ma)

The acceleration **a** of a body is parallel and directly proportional to the net force **F** acting on the body, is in the direction of the net force, and is inversely proportional to the mass **m** of the body.

Newton's Third Law (Action/Reaction)

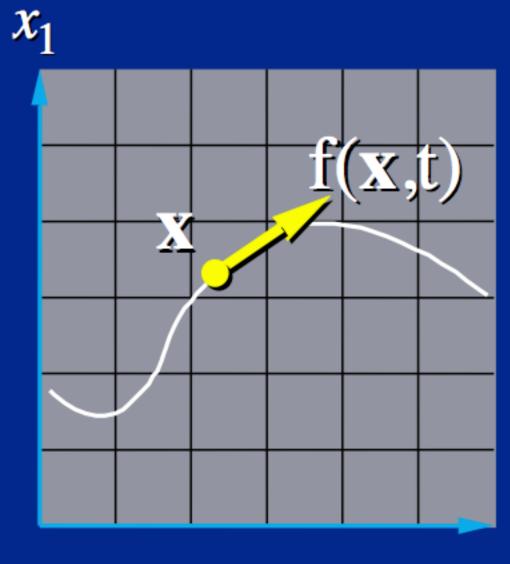
When a body exerts a force F_1 on a second body, the second body simultaneously exerts a force $F_2 = -F_1$ on the first body. This means that F_1 and F_2 are equal in magnitude and opposite in direction.

[Wikipedia]



Math of Natural Phenomena

Ordinary Differential Equations



$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

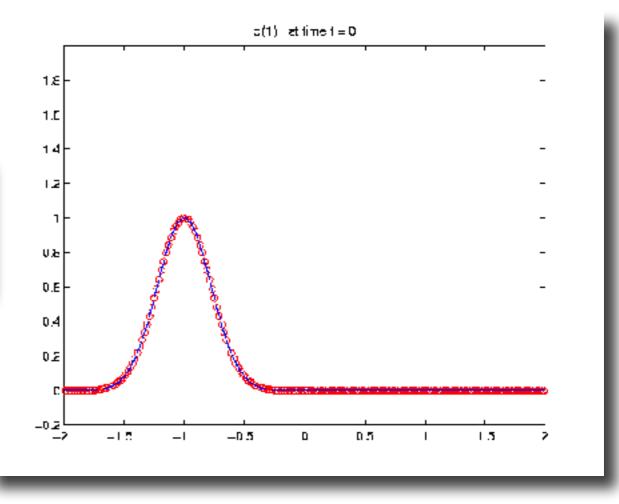
- x(t): a moving point.
- f(x,t): x's velocity.

 x_2

Math of Natural Phenomena

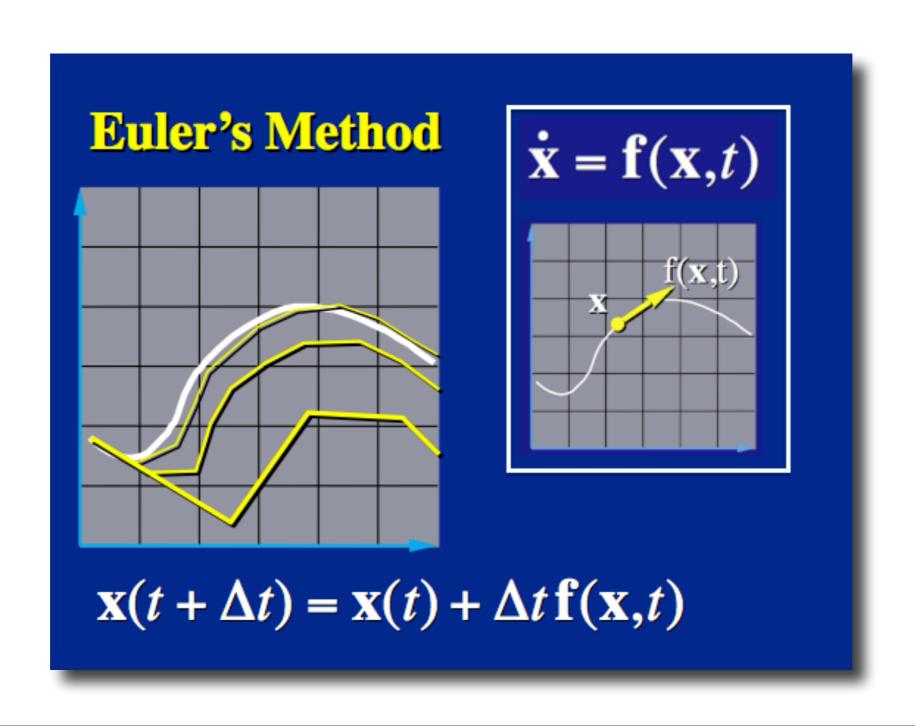
Partial Differential Equations

$$c_t + \vec{v} \cdot \nabla c = f(t)$$

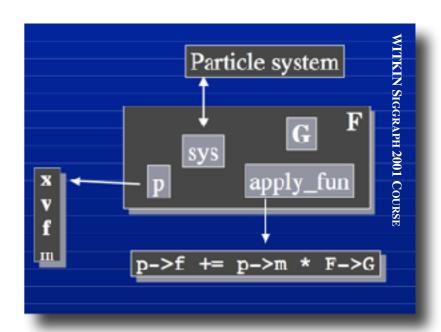


CLAWPACK

Numerical Solution of Diff. Eq.



Data Structures and Algorithms



- I. Advance velocity $\mathbf{v}^n \to \tilde{\mathbf{v}}^{n+\frac{1}{2}}$
- II. Apply collisions $\mathbf{v}^n \to \hat{\mathbf{v}}^n$, $\tilde{\mathbf{v}}^{n+\frac{1}{2}} \to \hat{\mathbf{v}}^{n+\frac{1}{2}}$
- III. Apply contact and constraint forces $\hat{\mathbf{v}}^{n+\frac{1}{2}} \to \mathbf{v}^{n+\frac{1}{2}}$
- IV. Advance positions $\mathbf{x}^n \to \mathbf{x}^{n+1}$ using $\mathbf{v}^{n+\frac{1}{2}}$, $\hat{\mathbf{v}}^n \to \overline{\mathbf{v}}^n$
- V. Advance velocity $\overline{\mathbf{v}}^n \to \mathbf{v}^{n+1}$

Particles

mass

m

mass

m

3 dof

$$\vec{X} = (x, y, z)$$

mass

m

3 dof

$$\vec{X} = (x, y, z)$$

forces: e.g., gravity

$$\vec{F} = -m\vec{g}$$

Equations of motion: Newton's 2nd Law

$$\vec{F} = m\vec{a}$$

Equations of motion: Newton's 2nd Law

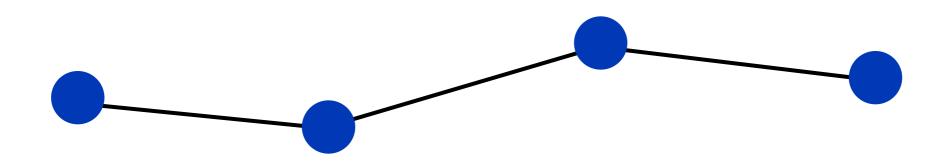
$$\vec{F} = m\vec{a}$$

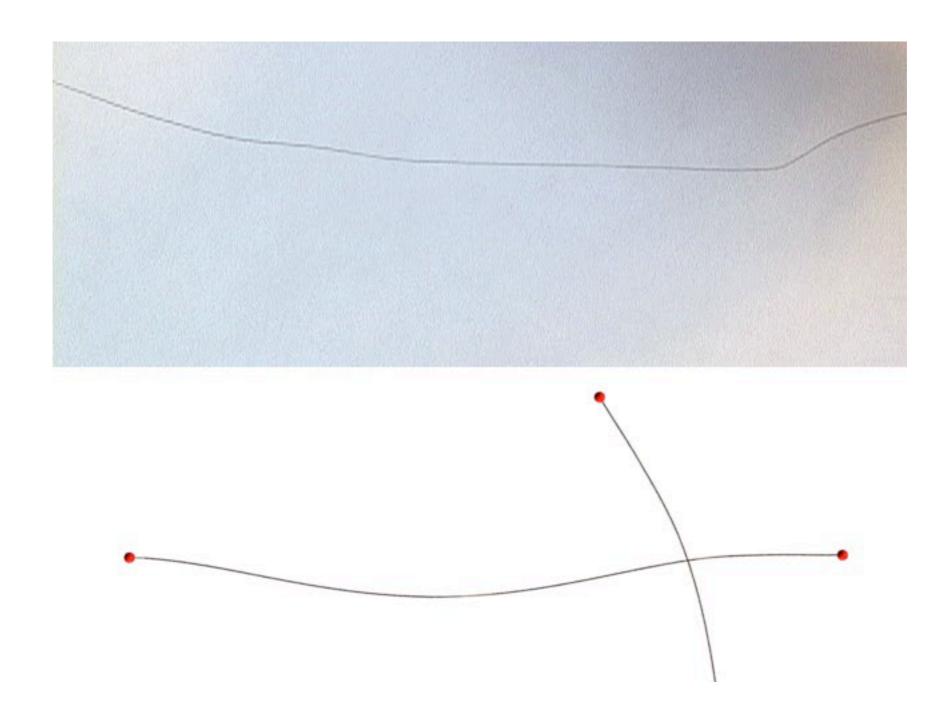
$$egin{aligned} rac{dec{x}}{dt} &= ec{v} \ mrac{dec{v}}{dt} &= ec{F} \end{aligned}$$

System of ODEs

Deformable bodies

Connect a bunch of particles into a <u>ID line</u> segment with springs

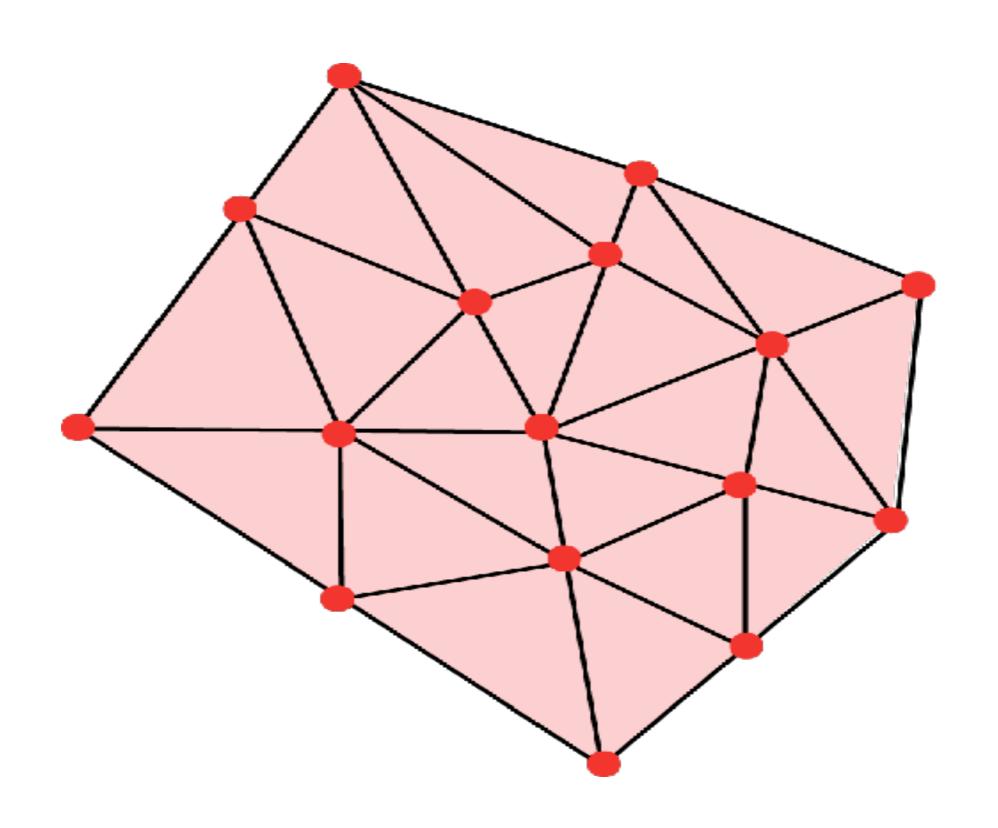




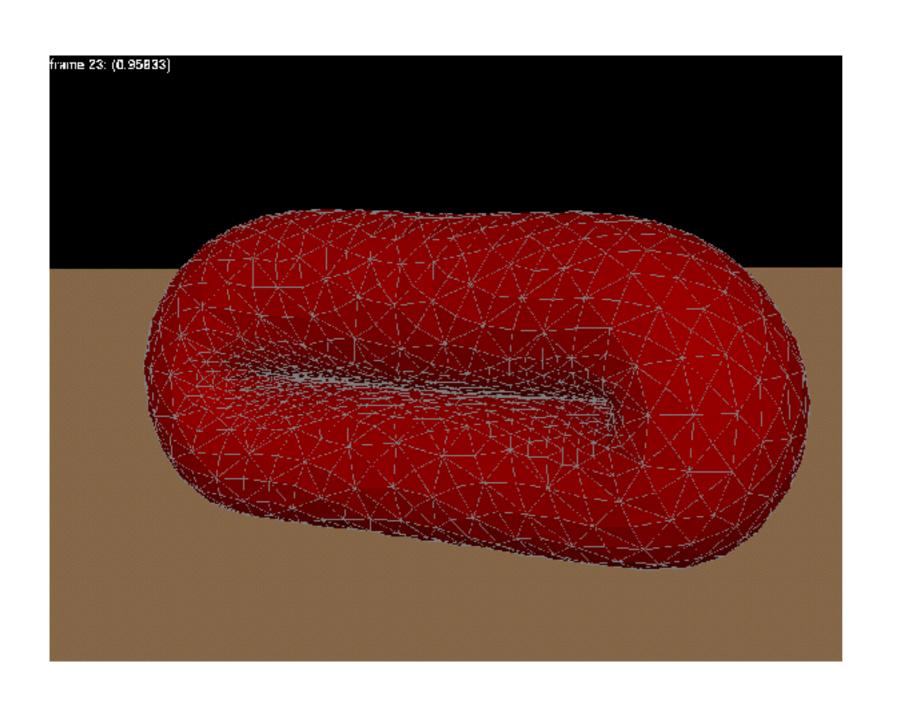
A Mass Spring Model for Hair Simulation

Selle, A., Lentine, M., G., and Fedkiw, R. ACM Transactions on Graphics SIGGRAPH 2008, ACM TOG 27, 64.1-64.11 (2008)

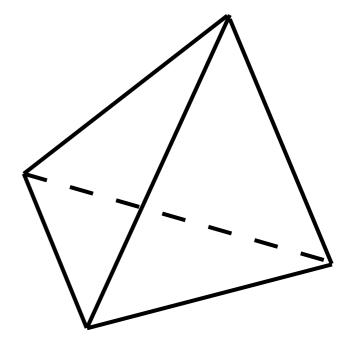
Connect a bunch of particles into a 2D mesh

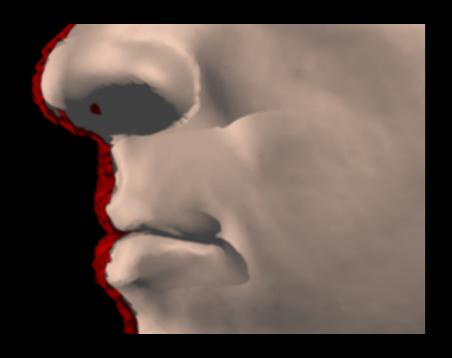


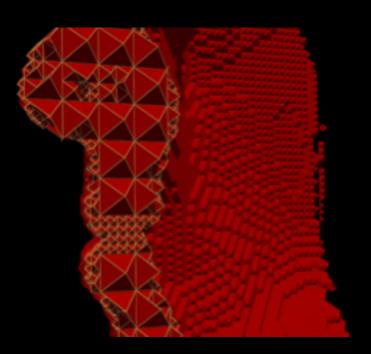
Connect a bunch of particles into a 3D mesh



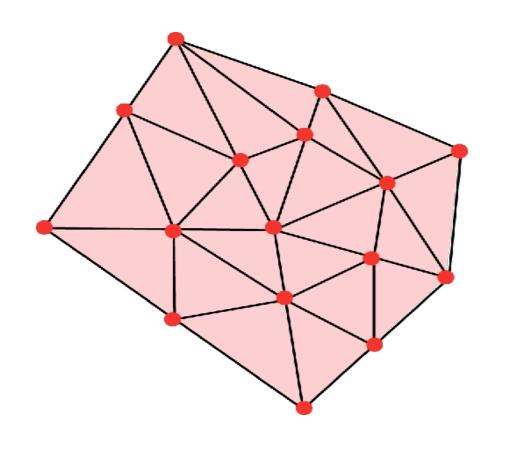
tetrahedron







Deformable bodies: equations of motion



Equations of motion: Newton's 2nd Law

$$\vec{F} = m\vec{a}$$

$$\frac{d\vec{x}}{dt} = \vec{v}$$

$$m\frac{d\vec{v}}{dt} = \vec{F}$$

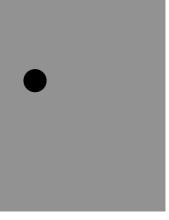
System of PDEs

contains spatial derivatives

Rigid bodies

Rigid bodies

6 dofsforces and torqueselastic collisionsODEs



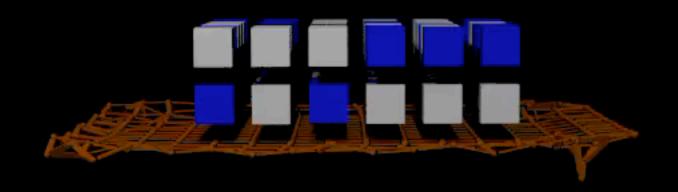
$$(\vec{X}, \vec{\Omega})$$

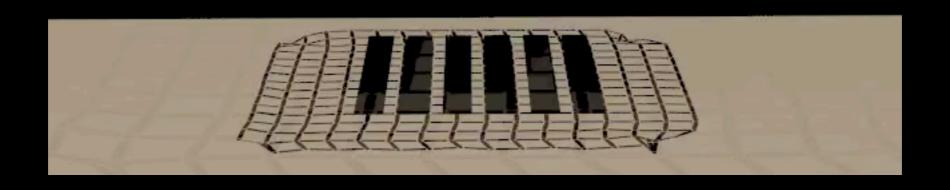
$$(\vec{F}, \vec{\tau})$$

Rigid body phenomena

stacking collisions, conta friction articulation, control

Articulated rigid bodies





Rachel Weinstein, Joey Teran and Ron Fedkiw

Rigid body simulation

[Weinstein et al 2006]

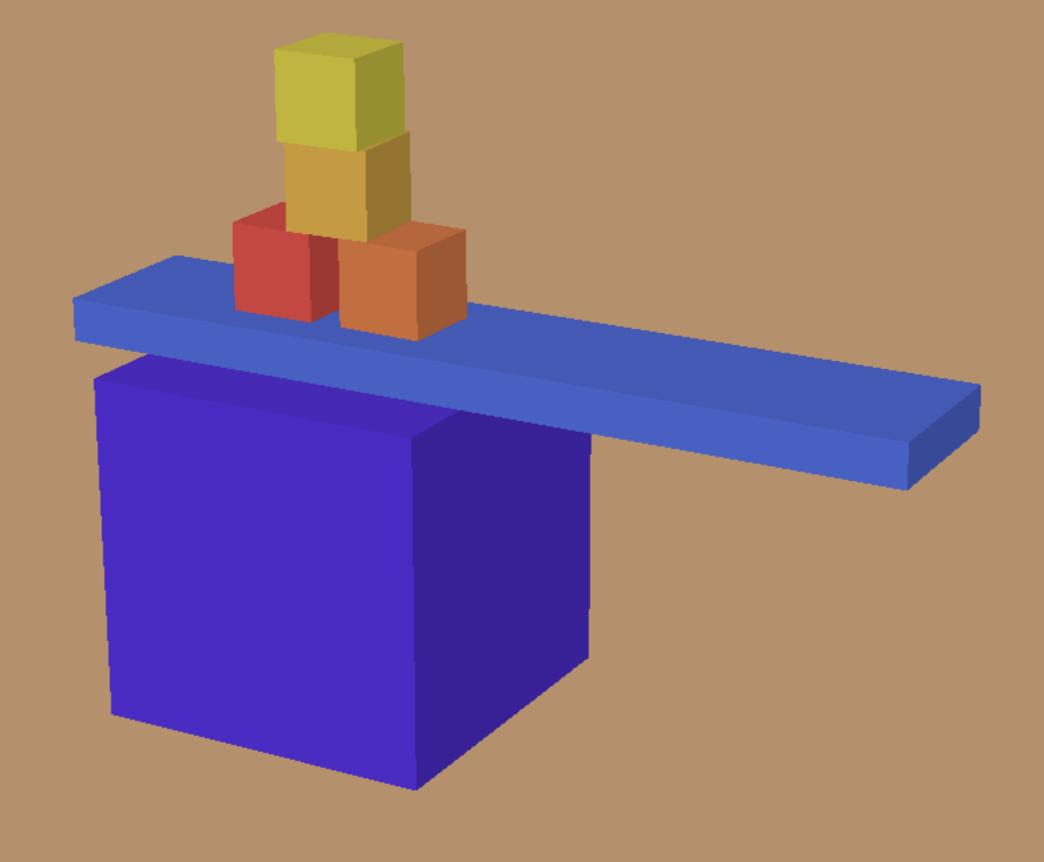
Rigid and deformable solids coupled together...

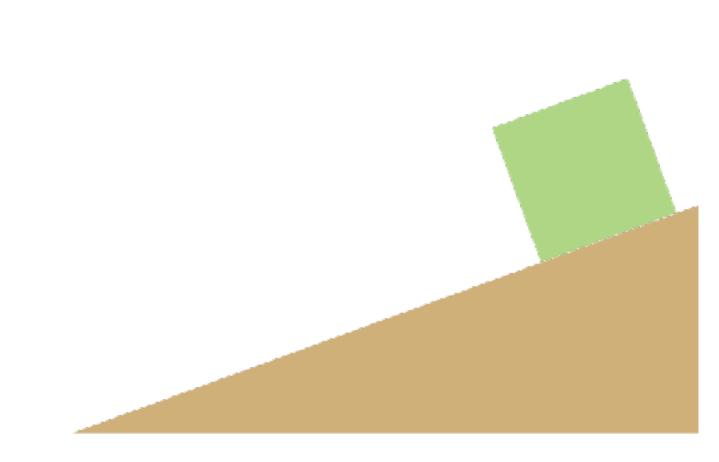
Fracture

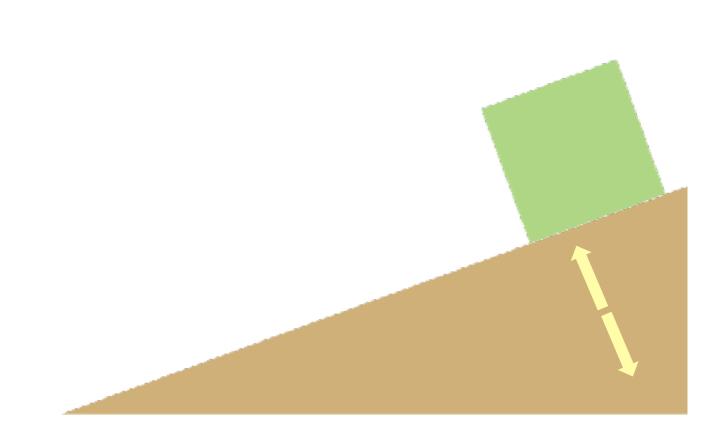
[Molino et al. 2004]

Contact and collision

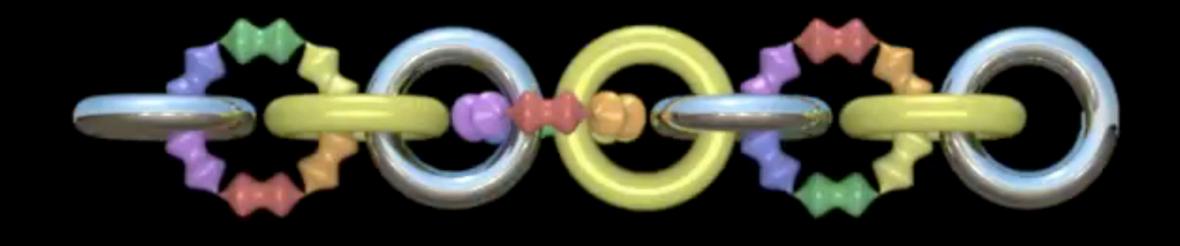
frame 25: (1.04167)



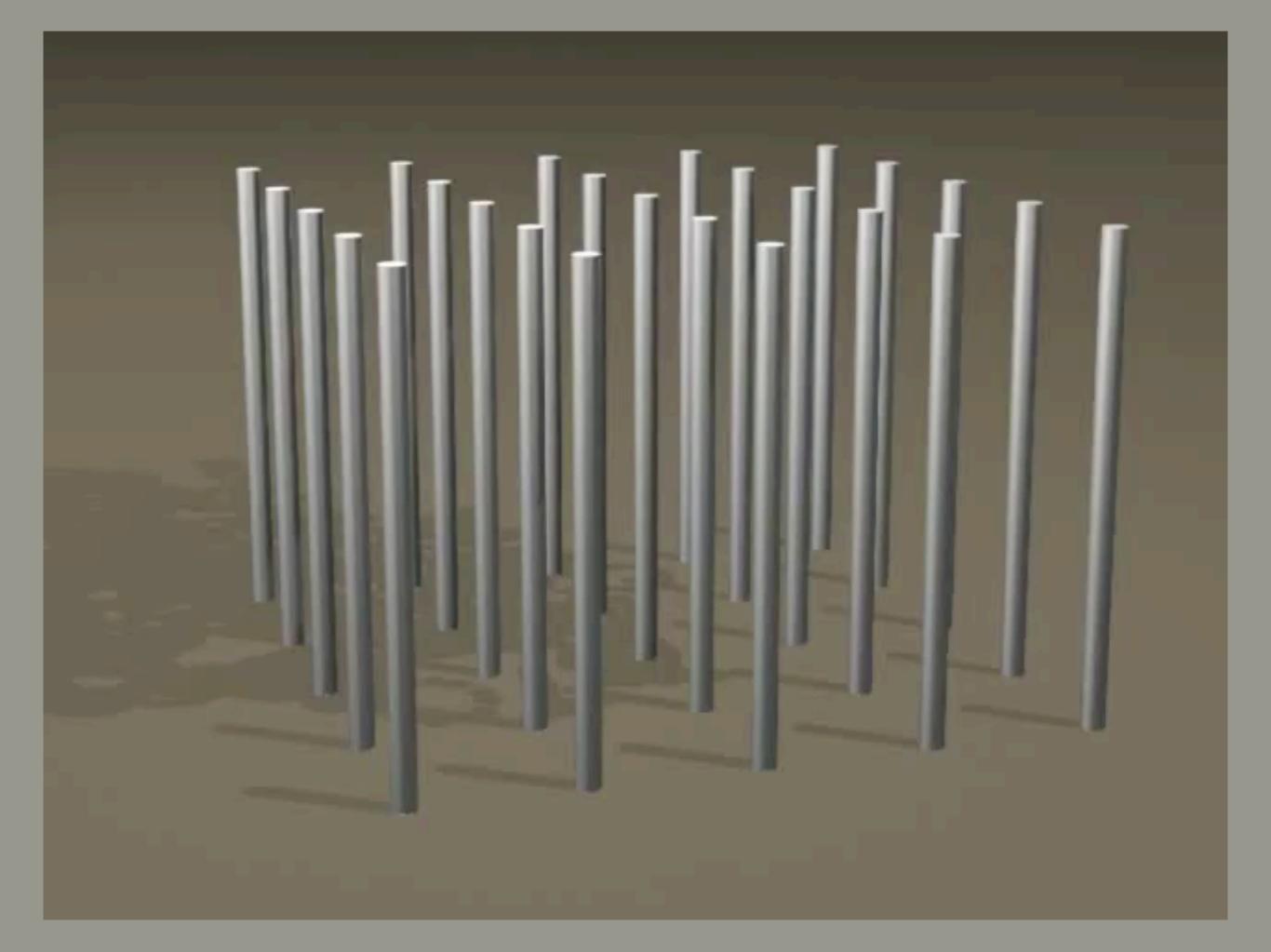


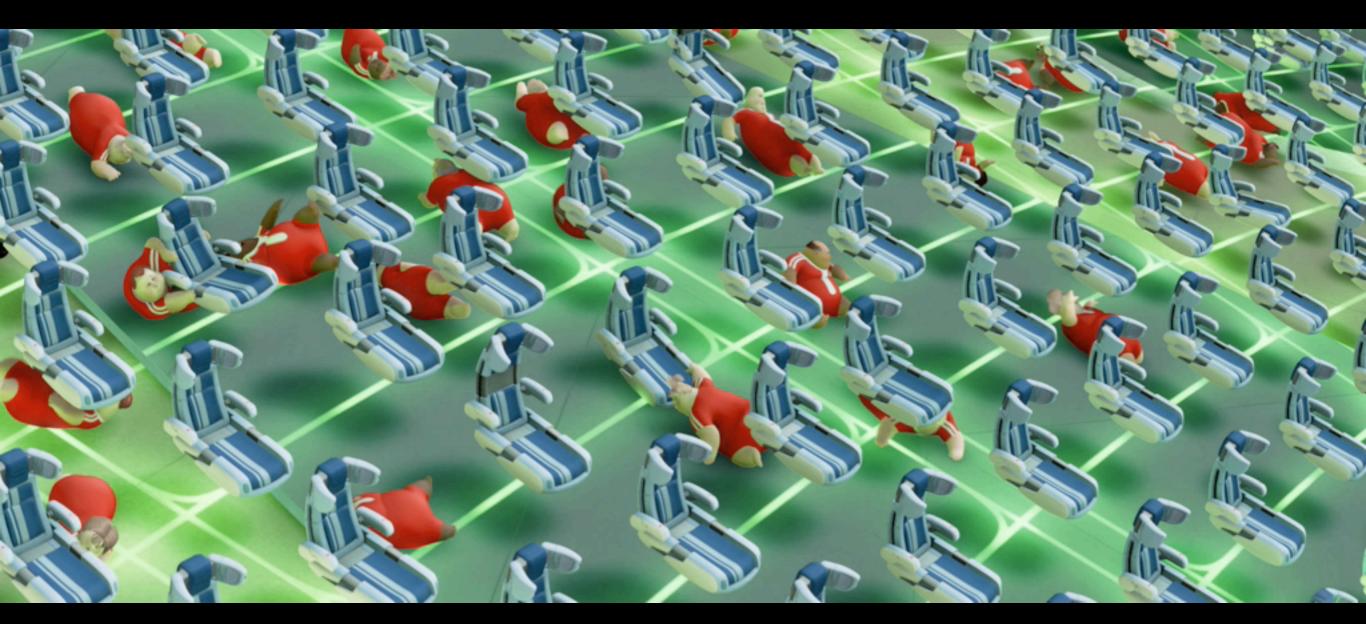


Simultaneous resolution of contact, elastic deformation, articulation constraints



Shinar et al. 2008

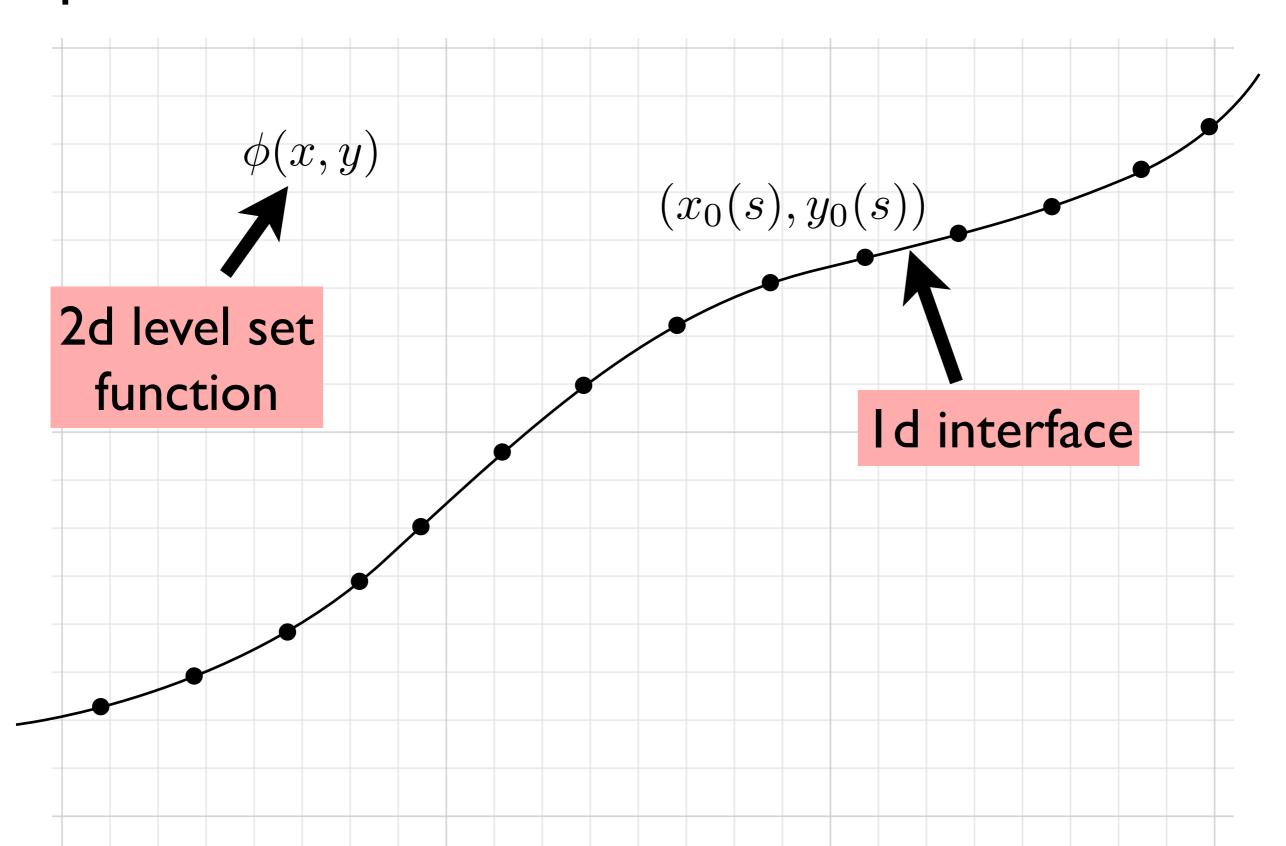




our rigid/deformable simulator in Pixar's WALL-E

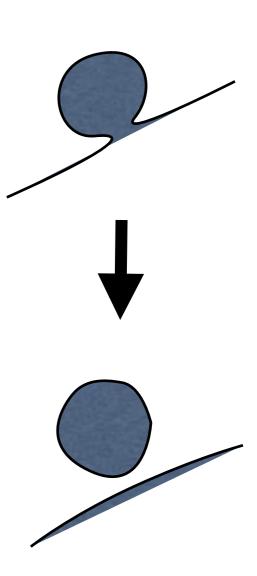
Fluid simulation

In fluid simulation, we often use a grid-based representation



An implicit representation has certain advantages over an explicit representation

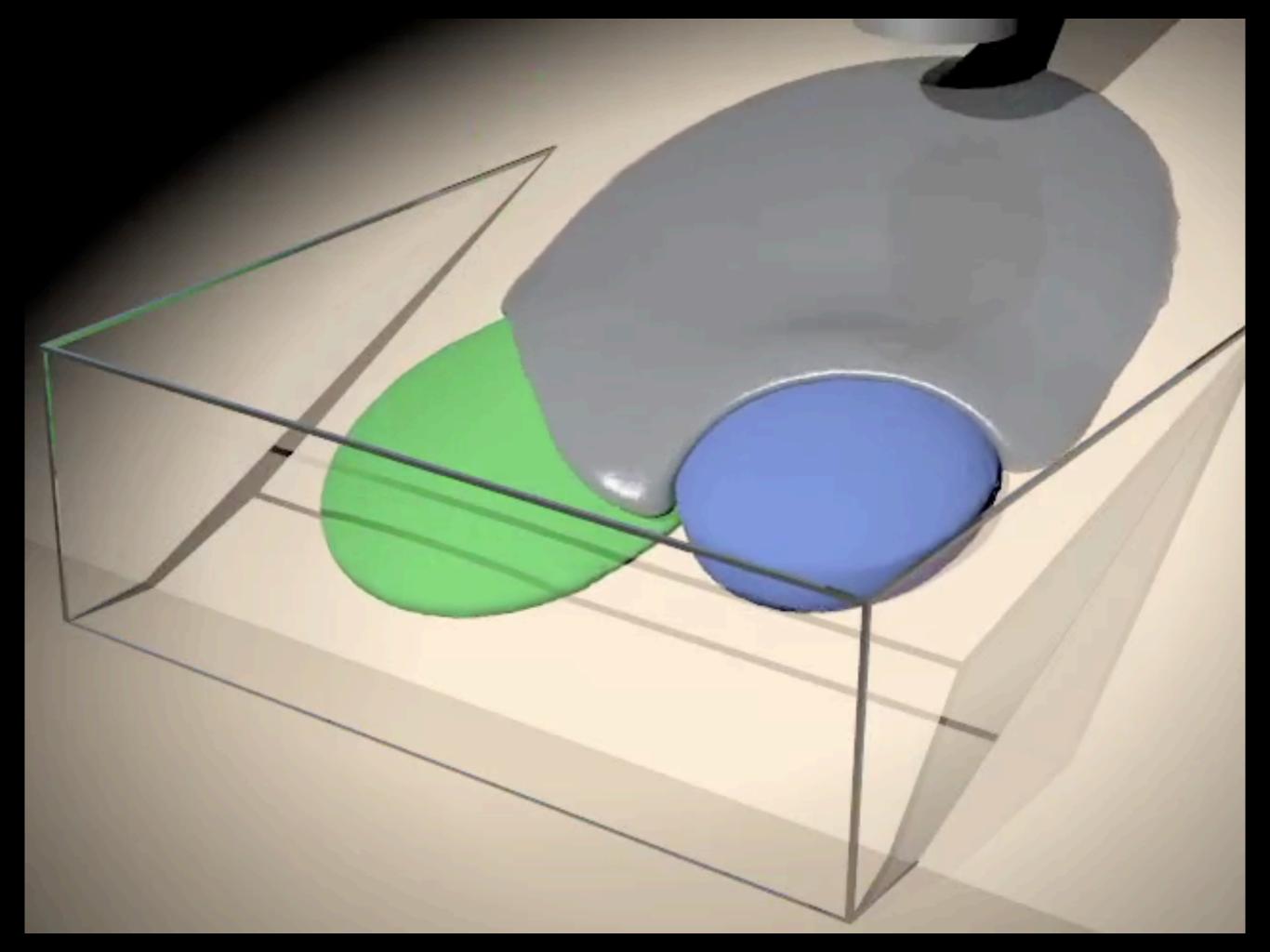
- naturally handles topological changes
- very easy to extend from 2D to 3D

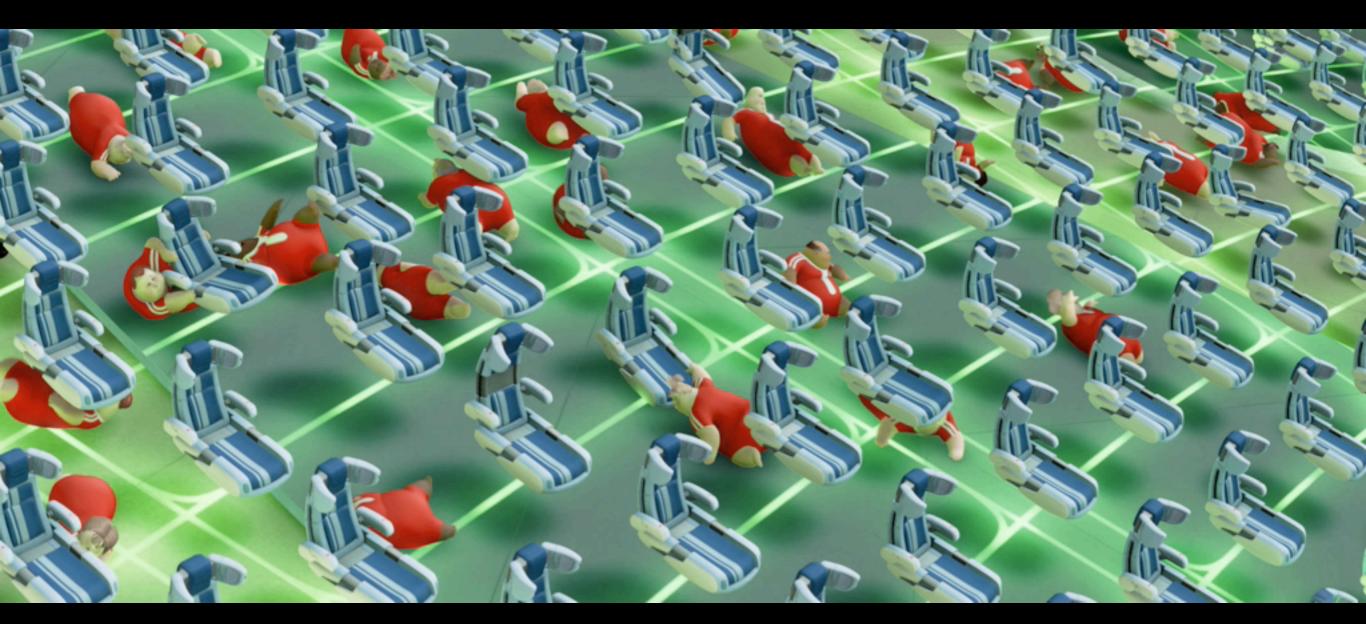


Fluid equations of motion: Navier-Stokes equations

$$\vec{F} = m\vec{a}$$

$$\rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) = \mu \triangle \mathbf{u} - \nabla p + \mathbf{f}$$





rigid/deformable simulator in Pixar's WALL-E