CS130: Computer Graphics

Rasterizing Triangles and Graphics Pipeline (cont.)

Tamar Shinar
Computer Science & Engineering
UC Riverside

Triangles

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

What are (α, β, γ) ?

<whiteboard>

Triangle rasterization

Triangle rasterization issues

Which should fill in shared edge?

Which should fill in shared edge?

- triangle that contains pixel center
- still have some ties!
- neither? both?
- want a <u>unique</u> assignment

Use Midpoint Algorithm for edges and fill in?

Use an approach based on barycentric coordinates

Advantage: we can easily interpolate attributes using barycentric coordinates

the rest of the algorithm is to make the steps in red more efficient

use a bounding rectangle

```
for x in [x_min, x_max] for y in [y_min, y_max] compute (\alpha, \beta, \gamma) for (x,y) if (\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])then \mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2 drawpixel(x,y) with color c
```

```
for x in [x_min, x_max]
    for y in [y_min, y_max]
         \alpha = f_{bc}(x,y)/f_{bc}(x_a,y_a)
         \beta = f_{ca}(x,y)/f_{ca}(x_b,y_b)
         \gamma = f_{ab}(x,y)/f_{ab}(x_c,y_c)
         if (\alpha \in [0,1] \text{ and } \beta \in [0,1] \text{ and } \gamma \in [0,1]) then
              \mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2
              drawpixel(x,y) with color c
```

<whiteboard>

Optimizations?

```
for x in [x_min, x_max]
    for y in [y_min, y_max]
         \alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)
         \beta = f_{ca}(x,y)/f_{ca}(x_b,y_b)
         \gamma = f_{ab}(x,y)/f_{ab}(x_c,y_c)
         if (\alpha \in [0,1] \text{ and } \beta \in [0,1] \text{ and } \gamma \in [0,1]) then
              \mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2
              drawpixel(x,y) with color c
```

Optimizations? don't need to check upper bound

for x in [x_min, x_max] for y in [y_min, y_max]
$$\alpha = f_{bc}(x,y)/f_{bc}(x_a,y_a)$$

$$\beta = f_{ca}(x,y)/f_{ca}(x_b,y_b)$$

$$\gamma = f_{ab}(x,y)/f_{ab}(x_c,y_c)$$
 if $(\alpha \ge 0 \text{ and } \beta \ge 0 \text{ and } \gamma \ge 0)$ then
$$\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$$
 drawpixel(x,y) with color c

Optimizations? compute bary. coord. and colors

<u>incrementally</u>

for x in [x_min, x_max] for y in [y_min, y_max]
$$\alpha = f_{bc}(x,y)/f_{bc}(x_a,y_a)$$
 $\beta = f_{ca}(x,y)/f_{ca}(x_b,y_b)$ $\gamma = f_{ab}(x,y)/f_{ab}(x_c,y_c)$ if $(\alpha \geq 0 \text{ and } \beta \geq 0 \text{ and } \gamma \geq 0)$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

dealing with shared triangle edges

```
for x in [x_min, x_max]
      for y in [y_min, y_max]
           \alpha = f_{bc}(x,y)/f_{bc}(x_a,y_a)
           \beta = f_{ac}(x,y)/f_{ac}(x_b,y_b)
            \gamma = f_{ab}(x,y)/f_{ab}(x_c,y_c)
            if (\alpha \ge 0 \text{ and } \beta \ge 0 \text{ and } \gamma \ge 0) then
                  if (\alpha > 0 \text{ or } f_{bc}(\mathbf{a}) f_{bc}(\mathbf{r}) > 0) and then
                       (\beta > 0 \text{ or } f_{ca}(\mathbf{b}) f_{ca}(\mathbf{r}) > 0) \text{ and }
                       (\gamma > 0 \text{ or } f_{ab}(\mathbf{c}) f_{ab}(\mathbf{r}) > 0)
                        \mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2
                        drawpixel(x,y) with color c
```

Graphics Pipeline (cont.)

Graphics Pipeline

Transform

"Modelview" Transformation

Project

Projection: map 3D scene to 2D image

OpenGL Super Bible, 5th Ed.

Orthographic projection

Orthographic projection

OpenGL Orthogonal Viewing

glOrtho(left, right, bottom, top, near, far)

Perspective projection

OpenGL Perspective Viewing

glFrustum(xmin,xmax,ymin,ymax,near,far)

Clip

Clip against view volume

Clipping against a plane

What's the equation for the plane through **q** with normal **N**?

implicit line equation:

$$f(\mathbf{X}) = \mathbf{N} \cdot (\mathbf{X} - \mathbf{X}_0) = 0$$

Clipping against a plane

What's the equation for the plane through **q** with normal **N**?

$$f(\mathbf{p}) = ? = 0$$

<whiteboard>

Clipping against a plane

What's the equation for the plane through **q** with normal **N**?

$$f(\mathbf{p}) = \mathbf{N} \cdot (\mathbf{p} - \mathbf{q}) = 0$$

Intersection of line and plane

How can we distinguish between these cases?

Intersection of line and plane

$$f(\mathbf{a})f(\mathbf{b}) \ge 0$$

$$f(\mathbf{a})f(\mathbf{b}) < 0$$

Intersection of line and plane

How can we find the intersection point?

<whiteboard>

Clip against view volume

$$s = \frac{\mathbf{N} \cdot (\mathbf{q} - \mathbf{c})}{\mathbf{N} \cdot (\mathbf{b} - \mathbf{c})}$$

$$t = \frac{\mathbf{N} \cdot (\mathbf{q} - \mathbf{a})}{\mathbf{N} \cdot (\mathbf{b} - \mathbf{a})}$$

need to generate new triangles

