CSI 30 : Computer Graphics Rasterizing Triangles and Graphics Pipeline (cont.)

Tamar Shinar
Computer Science \& Engineering UC Riverside

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates----

,
barycentric coordinates---'

barycentric coordinates

$$
\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

What are (α, β, γ) ?
<whiteboard>

Triangle rasterization

Which pixels should be used to approximate a triangle?

Triangle rasterization issues

Which pixels should be used to approximate a triangle?

Which should fill in shared edge?

Which pixels should be used to approximate a triangle?

Which should fill in shared edge?

- triangle that contains pixel center
- still have some ties!
- neither? both?
- want a unique assignment

Which pixels should be used to approximate a triangle?

Use Midpoint Algorithm for edges and fill in?

Which pixels should be used to approximate a triangle?

Use an approach based on barycentric coordinates

Advantage: we can easily interpolate attributes using barycentric coordinates

Triangle rasterization algorithm

for all x do
for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel(x, y) with color c

Triangle rasterization algorithm

$$
\begin{aligned}
& \text { for all } \mathbf{x} \text { do } \\
& \text { for all } \mathbf{y} \text { do } \\
& \quad \text { compute }(\alpha, \beta, \gamma) \text { for }(\mathbf{x}, \mathbf{y}) \\
& \text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then } \\
& \quad \mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2} \\
& \quad \text { drawpixel }(\mathbf{x}, \mathrm{y}) \text { with color } \mathbf{c}
\end{aligned}
$$

the rest of the algorithm is to make the steps in red more efficient

Triangle rasterization algorithm

 use a bounding rectanglefor x in [x_min, $x _m a x$] for y in [y_min, $y _m a x$]
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$ drawpixel (x, y) with color c

Triangle rasterization algorithm

for x in [x_min, $x _m a x$]
for y in $\left[\mathrm{y} _\mathrm{min}, \mathrm{y} _\mathrm{max}\right]$

$$
\begin{aligned}
\alpha & =f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right) \\
\beta & =f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right) \\
\gamma & =f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
\end{aligned}
$$

$$
\text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

drawpixel (x, y) with color c
<whiteboard>

Triangle rasterization algorithm

 Optimizations?for x in [x_min, $x _m a x$]
for y in $\left[\mathrm{y} _\mathrm{min}, \mathrm{y} _\mathrm{max}\right]$

$$
\begin{aligned}
\alpha & =f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right) \\
\beta & =f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right) \\
\gamma & =f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
\end{aligned}
$$

$$
\text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

$$
\text { drawpixel }(x, y) \text { with color } c
$$

Triangle rasterization algorithm

Optimizations? don't need to check upper bound
for x in [x_min, $x _m a x$]
for y in $\left[\mathrm{y} _\mathrm{min}, \mathrm{y} _\mathrm{max}\right]$

$$
\alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right)
$$

$$
\beta=f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right)
$$

$$
\gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
$$

$$
\text { if }(\alpha \geq 0 \text { and } \beta \geq 0 \text { and } \gamma \geq 0) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

$$
\text { drawpixel(} x, y \text {) with color } \mathrm{c}
$$

Triangle rasterization algorithm

Optimizations? compute bary. coord. and colors incrementally
for x in [x_min, $x _m a x$]
for y in $\left[\mathrm{y} _\mathrm{min}, \mathrm{y} _\mathrm{max}\right]$

$$
\left.\alpha=f_{b c} \bar{c}, y\right) / f_{b c}\left(x_{a}, y_{a}\right)
$$

$$
\beta=f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right)
$$

$$
\gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
$$

$$
\text { if }(\alpha \geq 0 \text { and } \beta \geq 0 \text { and } \gamma \geq 0) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

drawpixel (x, y) with color c

Triangle rasterization algorithm

 dealing with shared triangle edgesfor x in [$x _m i n, x _m a x$] for y in [y_min, $\left.y _m a x\right]$

$$
\begin{aligned}
& \alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right) \\
& \beta=f_{a c}(x, y) / f_{a c}\left(x_{b}, y_{b}\right) \\
& \gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right) \\
& \text { if }(\alpha \geq 0 \text { and } \beta \geq 0 \text { and } \gamma \geq 0) \text { then }
\end{aligned}
$$

$$
\text { if } \begin{aligned}
& \left.\left(\alpha>0 \text { or } f_{f_{c}(\mathbf{a})}\right) f_{f_{c}(\mathbf{r})}>0\right) \text { and } \\
& \left(\beta>0 \text { or } f_{c u}\left(\mathbf{b} f_{c u}(\mathbf{r})>0\right)\right. \text { and } \\
& \left(\gamma>\operatorname{or} f_{c u}(\mathbf{c}) f_{a b}(\mathbf{r})>0\right) \\
& \mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2} \\
& \text { drawpixel }(\mathbf{x}, \mathbf{y}) \text { with color } \mathbf{c}
\end{aligned}
$$

Graphics Pipeline (cont.)

Graphics Pipeline

Transform

"Modelview" Transformation

Project

Projection: map 3D scene to 2D image

OpenGL Super Bible, 5th Ed.

Orthographic projection

Orthographic projection

OpenGL Orthogonal Viewing

glOrtho (left, right, bottom, top, near, far)

Perspective projection

OpenGL Perspective Viewing

glFrustum (xmin,xmax,ymin,ymax, near,far)

Clip

Clip against view volume

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

$$
f(\mathbf{p})=?=0
$$

- q
<whiteboard>

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

$$
f(\mathbf{p})=\mathbf{N} \cdot(\mathbf{p}-\mathbf{q})=0
$$

Intersection of line and plane

Intersection of line and plane

$$
f(\mathbf{a}) f(\mathbf{b}) \geq 0
$$

$$
f(\mathbf{a}) f(\mathbf{b})<0
$$

Intersection of line and plane

How can we find the intersection point?

<whiteboard>

Clip against view volume

$$
\begin{aligned}
& s=\frac{\mathbf{N} \cdot(\mathbf{q}-\mathbf{c})}{\mathbf{N} \cdot(\mathbf{b}-\mathbf{c})} \\
& t=\frac{\mathbf{N} \cdot(\mathbf{q}-\mathbf{a})}{\mathbf{N} \cdot(\mathbf{b}-\mathbf{a})}
\end{aligned}
$$

need to generate new triangles

