
Graphics Pipeline

Rendering approaches

1. object-oriented

foreach object ...

2. image-oriented

foreach pixel ...

vertices image
3D rendering

pipeline

Modern graphics system
[A

ngel and Shreiner]

4

Z-buffer Rendering

•Z-buffering is very common approach,
also often accelerated with hardware

•OpenGL is based on this approach

3D Polygons Image Pixels
GRAPHICS PIPELINE

Choice of primitives

• Which primitives should an API contain?

• small set - supported by hardware, or

• lots of primitives - convenient for user

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

Performance is in 10s millions polygons/sec
portability, hardware support key

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Choice of primitives

Other geometric shapes will be built out of these

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Two classes of primitives
 [A

ngel and Shreiner]

Geometric : points, lines, polygons
Image : arrays of pixels

ff

Point and line segment types
 [A

ngel and Shreiner]

Polygons
• Multi-sided planar element composed of edges and

vertices.
• Vertices (singular: vertex) are represented by points
• Edges connect vertices as line segments

E1

E3 E2

(x1,y1)

(x2,y2)

(x3,y3)

Valid polygons

• Simple

• Convex

• Flat

Valid polygons

• Simple

• Convex

• Flat

OpenGL polygons

• Only triangles are supported (in latest versions)

GL_POINTS GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

Other polygons

triangulation

Graphics Pipeline
[A

ngel and Shreiner]

ff

Pipelining operations

* +b
a

c

An arithmetic pipeline that computes c+(a*b)

3D graphics pipeline

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Geometry: primitives - made of vertices
Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

Graphics Pipeline
(slides courtesy K. Fatahalian)

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

EACH VERTEX IS
TRANSFORMED

INDEPENDENTLY

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Primitive processing

v0

v1

v2

v3

v4

v5

Vertices

v0

v1

v2

v3

v4

v5

Primitives
(triangles)

Then organized into primitives that are clipped
and culled…

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Rasterization

Primitives are rasterized into “pixel fragments”

Fragments

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Rasterization

Primitives are rasterized into “pixel fragments”

EACH PRIMITIVE IS RASTERIZED
INDEPENDENTLY

Fragment processing

Shaded fragments

Fragments are shaded to compute a color at each pixel

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Fragment processing

EACH FRAGMENT IS PROCESSED
INDEPENDENTLY

Fragments are shaded to compute a color at each pixel

Pixel operations

Pixels

Fragments are blended into the frame buffer at
their pixel locations (z-buffer determines visibility)

Pipeline entities

v0

v1

v2

v3

v4

v5
v0

v1

v2

v3

v4

v5

Vertices Primitives Fragments

Pixels Fragments (shaded)

Graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation

Fragment Processing

Pixel Operations

Fixed-function

Programmable

Memory Buffers
Vertex Data Buffers

Textures

Output image (pixels)

Textures

Textures

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

