Raster Devices and Images

virtually all graphics system are raster based

scanner

linear array of pixels swept across page to create grid of pixels
display
shows images as a rectangular array of pixels

printer image is made by depositing ink at points on a grid
digital camera image sensors made of grid of light-sensitive pixels

Displays are either transmissive or emissive

Raster Display

$60 \times$ Magnification

$60 \times$ Magnification
get different colors by combining red, green, and blue subpixels

What is an image?

Continuous image

$I: R \rightarrow V$
$R \subset \mathbb{R}^{2}$
$V=\mathbb{R}^{+} \quad$ (grayscale)
$V=\left(\mathbb{R}^{+}\right)^{3} \quad$ (color)

Raster Image

A raster image is 2D array storing pixel values at each pixel

What is an image?

Raster image

$$
\begin{aligned}
& I: R \rightarrow V \\
& R \subset \mathbb{Z}^{2} \\
& V=\mathbb{R}^{+} \quad \text { (grayscale) } \\
& \left.V=\left(\mathbb{R}^{+}\right)^{3} \quad \text { (color }\right)
\end{aligned}
$$

Each pixel value represents the average color of the image over that pixel's area.

$\left[-0.5, n_{x}-0.5\right] \times\left[-0.5, n_{y}-0.5\right]$
$n_{x}=$ number of columns
$n_{y}=$ number of rows

What is an image?

Raster image

$$
\begin{aligned}
& I: R \rightarrow V \\
& R \subset \mathbb{Z}^{2} \\
& V=[0,1] \quad \text { (grayscale) } \\
& V=[0,1]^{3} \quad(\text { color })
\end{aligned}
$$

Each pixel value represents the average color of the image over that pixel's area.

$\left[-0.5, n_{x}-0.5\right] \times\left[-0.5, n_{y}-0.5\right]$
$n_{x}=$ number of columns
$n_{y}=$ number of rows

Color Representation

additive RGB

subtractive
CMYK

Color Representation

sRGB color triangle

comparison of color gamuts

Bit depth - defined by device standards

Bit-Depth	Number of Colors	
1	$\begin{gathered} 2 \\ \text { (monoctrome) } \end{gathered}$	
2	$\begin{gathered} 4 \\ (\mathrm{CGA}) \end{gathered}$	
4	$\begin{gathered} 16 \\ \text { (EGA) } \end{gathered}$	
8	$\begin{gathered} 256 \\ \text { (VGA) } \end{gathered}$	
16	65,536 (HighColor, XGA)	
24	$\begin{gathered} 16,777,216 \\ \text { (Tyue Coloy, SVGA) } \end{gathered}$	
32	$\begin{gathered} 16,777,216 \\ \text { (True Color + Alpha Channel) } \end{gathered}$	(Note alpha)

(Humans can perceive $\sim 10,000,000$ colors)

Alpha Channel

$$
\mathbf{c}=\alpha \mathbf{c}_{f}+(1-\alpha) \mathbf{c}_{b}
$$

