Raster Devices and Images

virtually all graphics system are raster based

scanner

linear array of pixels swept across page to create grid of pixels

printer
image is made by
depositing ink at
points on a grid

display shows images as a rectangular array of pixels

digital camera image sensors made of grid of light-sensitive pixels

Displays are either transmissive or emissive

one pixel of an **LCD** display

on state liquid crystal rotates the polarization of the light so it can pass through the front polarizer off state front polarizer blocks light that passes the back polarizer

LED display

each pixel is composed of one or more **LEDs**, semiconductor devices that emit light with intensity dependent on current

Raster Display

get different colors by combining red, green, and blue subpixels

What is an image?

Continuous image

$$I: R \to V$$
 $R \subset \mathbb{R}^2$
 $V = \mathbb{R}^+ \text{ (grayscale)}$
 $V = (\mathbb{R}^+)^3 \text{ (color)}$

Raster Image

A raster image is 2D array storing pixel values at each pixel

What is an image?

Raster image

$$I:R\to V$$

$$R \subset \mathbb{Z}^2$$

$$V = \mathbb{R}^+$$
 (grayscale)

$$V = (\mathbb{R}^+)^3 \quad \text{(color)}$$

Each pixel value represents the **average color** of the image over that pixel's area.

$$[-0.5, n_x - 0.5] \times [-0.5, n_y - 0.5]$$

 n_x = number of columns

 n_y = number of rows

What is an image?

Raster image

$$I:R\to V$$

$$R \subset \mathbb{Z}^2$$

$$V = [0, 1]$$
 (grayscale)

$$V = [0, 1]^3 \quad \text{(color)}$$

Each pixel value represents the **average color** of the image over that pixel's area.

$$[-0.5, n_x - 0.5] \times [-0.5, n_y - 0.5]$$

 n_x = number of columns

 n_y = number of rows

Color Representation

Color Representation

sRGB color triangle

comparison of color gamuts

Bit depth - defined by device standards

Bit-Depth	Number of Colors
1	2 (monochrome)
2	4 (CGA)
4	16 (EGA)
8	256 (VGA)
16	65,536 (High Color, XGA)
24	16,777,216 (True Color, SVGA)
32	16,777,216 (True Color + Alpha Channel)

(Note alpha)

(Humans can perceive ~10,000,000 colors)

Alpha Channel

$$\mathbf{c} = \alpha \mathbf{c}_f + (1 - \alpha) \mathbf{c}_b$$

