CSI 30 : Computer Graphics Lecture 8:Viewing Transformations

Tamar Shinar
Computer Science \& Engineering UC Riverside

2D Transformations

Uniform Scale

$$
\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right)\binom{x}{y}=\binom{s x}{s y}
$$

$$
\left(\begin{array}{ll}
.5 & 0 \\
0 & .5
\end{array}\right)
$$

Nonuniform Scale

$$
\left(\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right)\binom{x}{y}=\binom{s_{x} x}{s_{y} y}
$$

$$
\left(\begin{array}{ll}
.5 & 0 \\
0 & 1
\end{array}\right)
$$

Rotation

$\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x}{y}=\binom{x \cos \theta-y \sin \theta}{x \sin \theta+y \cos \theta}$

Reflection

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

cs30

Shear

$$
\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x+a y}{y}
$$

Translation

$$
\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\binom{x+t_{x}}{y+t_{y}}
$$

Noncommutativity

translate, rotate

rotate, translate

3D Transformations <whiteboard>

Viewing Transformations

Viewing transformations

World space

Viewing transformations

Image
space

- Move objects from their 3D locations to their positions in a 2D view

The viewing transformation also projects any point along the pixel's view ray back to the pixel's position in image space

Decomposition of viewing transforms

Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution volume" = "clip space" = "normalized device coordinates", "screen space=pixel coordinates" and for the transforms: "camera transformation" = "viewing transformation"

Viewport transform

$$
\begin{gathered}
(x, y, z) \rightarrow\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
(x, y, z) \in[-1,1]^{3} \quad \begin{array}{l}
x^{\prime} \in\left[-.5, n_{x}-.5\right] \\
y^{\prime} \in\left[-.5, n_{y}-.5\right]
\end{array}
\end{gathered}
$$

Viewport transform

