CSI30: Computer Graphics Lecture 8: Viewing Transformations

Tamar Shinar Computer Science & Engineering UC Riverside

2D Transformations

Translation

$$\left(\begin{array}{ccc}1&0&t_x\\0&1&t_y\end{array}\right)\left(\begin{array}{c}x\\y\\1\end{array}\right)=\left(\begin{array}{c}x+t_x\\y+t_y\end{array}\right)$$

Noncommutativity

3D Transformations whiteboard

Viewing Transformations

Viewing transformations

 Move objects from their 3D locations to their positions in a 2D view

The viewing transformation also projects any point along the pixel's view ray back to the pixel's position in **image space**

Decomposition of viewing transforms

Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution

there are several names for these spaces: "camera space" = "eye space", "canonical view volume" = "clip space" = "normalized device coordinates", "screen space = pixel coordinates" and for the transforms: "camera transformation" = "viewing transformation"

Viewport transform

$$(x, y, z) \rightarrow (x', y', z')$$

$$(x, y, z) \in [-1, 1]^3 \qquad \begin{aligned} x' \in [-.5, n_x - .5] \\ y' \in [-.5, n_y - .5] \end{aligned}$$

y						L
(0	,4)	0	0	0	0	
(0) (3)	0	0	0	0	
(0,	2)	0	0	0	0	
(0)	0	0	0	0	
(0	,0)	0 (1,0)	O (2,0)	O (3,0)	O (4,0)	
						┢╸

Viewport transform

