CSI30 : Computer Graphics Lecture 5: Rasterizing Triangles

Tamar Shinar Computer Science & Engineering UC Riverside

What is rasterization?

- input: primitives, output: fragments
- enumerate the pixels covered by a primitive
- interpolate attributes across the primitive

- **output** 1 fragment per pixel covered by the primitive

Triangles

barycentric coordinates

barycentric coordinates

$$\mathbf{p} = f(\mathbf{a}, \mathbf{b}, \mathbf{c})$$

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
What are (α, β, γ) ?
whiteboard>

Triangle rasterization

Triangle rasterization issues

Who should fill in shared edge?

but who should fill in pixels for a shared edge?

Who should fill in shared edge?

give to triangle that contains pixel center - but we have some **ties** why can't neither/both triangles draw the pixel? neither: gaps both: indeterminacy (due to indeterminate drawing order), incorrect, e.g., if both triangles are partially transparent we want a **unique** assignment

Use Midpoint Algorithm for edges and fill in?

That could be one possibility but we use a different approach based on barycentric coordinates

Use an approach based on barycentric coordinates

For each pixel, we compute its barycentric coordinates If the coordinates are all >= 0, then the pixel is covered by the triangle

We can interpolate attributes using barycentric coordinates

Using barycentric coordinates also has the advantage that we can easily interpolate colors or other attributes from triangle vertices

for all x do for all y do compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

for all x do for all y do compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

the rest of the algorithm is to make the steps in **red** more **efficient**

use a bounding rectangle

for x in [x_min, x_max] for y in [y_min, y_max] compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

for x in [x_min, x_max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y)/f_{bc}(x_a, y_a)$ $\beta = f_{ac}(x, y)/f_{ac}(x_b, y_b)$ $\gamma = f_{ab}(x, y)/f_{ab}(x_c, y_c)$ if $(\alpha \in [0, 1]$ and $\beta \in [0, 1]$ and $\gamma \in [0, 1]$) then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

<whiteboard>

<whiteboard> : computing alpha, beta, and gamma

Optimizations?

for x in [x_min, x_max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y)/f_{bc}(x_a, y_a)$ $\beta = f_{ac}(x, y)/f_{ac}(x_b, y_b)$ $\gamma = f_{ab}(x, y)/f_{ab}(x_c, y_c)$ if $(\alpha \in [0, 1]$ and $\beta \in [0, 1]$ and $\gamma \in [0, 1]$) then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

- 1. can make computation of bary. coords. incremental
- f(x,y) = Ax + By + C
- f(x+1,y) = f(x,y) + A
- 2. color computation can also be made incremental
- 3. alpha > 0 and beta > 0 and gamma > 0 (if true => they are also less than one)

- compute f_12(r), f_20(r) and f_01(r) and make sure r doesn't hit a line