CSI 30 : Computer Graphics Lecture 5: Rasterizing Triangles

Tamar Shinar
Computer Science \& Engineering UC Riverside

What is rasterization?

- input: primitives, output: fragments
- enumerate the pixels covered by a primitive
- interpolate attributes across the primitive

Triangles

barycentric coordinates

barycentric coordinates

$$
\begin{aligned}
& \mathbf{p}=f(\mathbf{a}, \mathbf{b}, \mathbf{c}) \\
& \mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
\end{aligned}
$$

What are (α, β, γ) ?
<whiteboard>

Triangle rasterization

Which pixels should be used to approximate a triangle?

Triangle rasterization issues

Which pixels should be used to approximate a triangle?

Who should fill in shared edge?

Which pixels should be used to approximate a triangle?

Who should fill in shared edge?

give to triangle that contains pixel center

- but we have some ties

why can't neither/both triangles draw the pixel?
neither: gaps
both: indeterminacy (due to indeterminate drawing order), incorrect, e.g., if both triangles are partially transparent we want a unique assignment

Which pixels should be used to approximate a triangle?

Use Midpoint Algorithm for edges and fill in?

That could be one possibility but we use a different approach based on barycentric coordinates

Which pixels should be used to approximate a triangle?

Use an approach based on barycentric coordinates

We can interpolate attributes using barycentric coordinates

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

Gouraud shading
(Gouraud, 1971)
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html other attributes from triangle vertices

Triangle rasterization algorithm

for all x do for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$ drawpixel(x, y) with color c

Triangle rasterization algorithm

for all x do
for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$ drawpixel (x, y) with color c
the rest of the algorithm is to make the steps in red more efficient

Triangle rasterization algorithm

 use a bounding rectanglefor x in [x_min, $x _m a x$]
for y in [y_min, $\left.y _m a x\right]$

compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel(x, y) with color c

Triangle rasterization algorithm

for x in [x_min, $x _m a x$] for y in [y_min, $\left.y _m a x\right]$

$$
\begin{aligned}
\alpha & \left.=f_{b c} \bar{x}, y\right) / f_{b c}\left(x_{a}, y_{a}\right) \\
\beta & =f_{a c}(x, y) / f_{a c}\left(x_{b}, y_{b}\right) \\
\gamma & =f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
\end{aligned}
$$

$$
\text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

$$
\text { drawpixel(} x, y \text {) with color c }
$$

<whiteboard>

Triangle rasterization algorithm

 Optimizations?for x in [$x _m i n, x_{-} \max$] for y in [y_min, $y_{_} \max$]

$$
\alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right)
$$

$$
\beta=f_{a c}(x, y) / f_{a c}\left(x_{b}, y_{b}\right)
$$

$$
\gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
$$

$$
\text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$ drawpixel(x, y) with color c

1. can make computation of bary. coords. incremental
$-f(x, y)=A x+B y+C$
$-f(x+1, y)=f(x, y)+A$
2. color computation can also be made incremental
3. alpha >0 and beta >0 and gamma >0 (if true $=>$ they are also less than one)

Triangle rasterization algorithm

 dealing with shared triangle edges
for x in [$\left.x _m i n, x _m a x\right]$

 for y in [y_min, $\mathrm{y} _\mathrm{max}$]$$
\begin{aligned}
& \alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right) \\
& \beta=f_{a c}(x, y) / f_{a c}\left(x_{b}, y_{b}\right) \\
& \gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right) \\
& \text { if }(\alpha \geq 0 \text { and } \beta \geq 0 \text { and } \gamma \geq 0) \text { then } \\
& \text { if }\left(\alpha>0 \text { or } f_{12}\left(\mathbf{p}_{0}\right) f_{12}(\mathbf{r})>0\right) \text { and } \text { then } \\
& \left(\beta>0 \text { or } f_{22}\left(\mathbf{p}_{1}\right) f_{20}(\mathbf{r})>0\right) \text { and } \\
& \left(\gamma>0 \text { or } f_{01}\left(\mathbf{p}_{2}\right) f_{01}(\mathbf{r})>0\right) \\
& \mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2} \\
& \quad \text { drawpixel }(\mathbf{x}, \mathbf{y}) \text { with color } \mathbf{c}
\end{aligned}
$$

- compute f_12(r), f_20(r) and f_01(r) and make sure r doesn't hit a line

