
CS130 : Computer Graphics
Lecture 5: Rasterizing Triangles

Tamar Shinar
Computer Science & Engineering

UC Riverside

What is rasterization?

• input: primitives, output: fragments

• enumerate the pixels covered by a primitive

• interpolate attributes across the primitive

- output 1 fragment per pixel covered by the primitive

Triangles

barycentric coordinates

barycentric coordinates

What are ?

<whiteboard>

Triangle rasterization

Which pixels should be used
to approximate a triangle?

Triangle rasterization issues

Who should fill in shared edge?

Which pixels should be used
to approximate a triangle?

but who should fill in pixels for a shared edge?

Who should fill in shared edge?

Which pixels should be used
to approximate a triangle?

give to triangle that contains pixel center
- but we have some ties
why can’t neither/both triangles draw the pixel?
 neither: gaps
 both: indeterminacy (due to indeterminate drawing order), incorrect, e.g., if both triangles
are partially transparent
we want a unique assignment

Use Midpoint Algorithm for edges and fill in?

Which pixels should be used
to approximate a triangle?

That could be one possibility but we use a different approach based on barycentric
coordinates

Use an approach based on
barycentric coordinates

Which pixels should be used
to approximate a triangle?

For each pixel, we compute its barycentric coordinates
If the coordinates are all >= 0, then the pixel is covered by the triangle

We can interpolate attributes
using barycentric coordinates

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Gouraud shading
(Gouraud, 1971)

Using barycentric coordinates also has the advantage that we can easily interpolate colors or
other attributes from triangle vertices

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

the rest of the algorithm is to make the steps in red more efficient

Triangle rasterization algorithm

for x in [x_min, x_max]
 for y in [y_min, y_max]
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

use a bounding rectangle

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

<whiteboard>

<whiteboard> : computing alpha, beta, and gamma

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
Optimizations?

1. can make computation of bary. coords. incremental
- f(x,y) = Ax+By+C
- f(x+1,y) = f(x,y) + A
2. color computation can also be made incremental
3. alpha > 0 and beta > 0 and gamma > 0 (if true => they are also less than one)

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
dealing with shared triangle edges

- compute f_12(r), f_20(r) and f_01(r) and make sure r doesn’t hit a line

