CS130 : Computer Graphics

Lecture 5: Rasterizing Triangles

Tamar Shinar
Computer Science & Engineering

UC Riverside

What is rasterization!?

Per-Vertex
Vertex Operations
Data Y Evaluator —» o
Primitive
: Assembly Per-
: E‘lstplay Fragment |—»| Framebuffer
IS ation Operations
Pixel y »{ Pixel :
Data e e Operations <. | Texture
: Memory

--

Figure 1. Block diagram of OpenGL.

® input: primitives, output: fragments
® enumerate the pixels covered by a primitive

® interpolate attributes across the primitive

- output 1 fragment per pixel covered by the primitive

Triangles

barycentric coordinates

barycentric coordinates

p = f(a,b,c)
p = aa+ Bb + ~vc

What are (o, 3,7) !

<whiteboard> a

Triangle rasterization

WWhich pixels should be used
to approximate a triangle?

C

Triangle rasterization issues

WWhich pixels should be used
to approximate a triangle?

H B
-.E';I -
e

o .

Who should fill in shared edge?

but who should fill in pixels for a shared edge?

WWhich pixels should be used
to approximate a triangle?

Who should fill in shared edge?

give to triangle that contains pixel center
- but we have some ties
why can’t neither/both triangles draw the pixel?
neither: gaps
both: indeterminacy (due to indeterminate drawing order), incorrect, e.q., if both triangles
are partially transparent
we want a unique assignment

WWhich pixels should be used
to approximate a triangle?

Use Midpoint Algorithm for edges and fill in?

That could be one possibility but we use a different approach based on barycentric
coordinates

WWhich pixels should be used
to approximate a triangle?

Use an approach based on
barycentric coordinates

For each pixel, we compute its barycentric coordinates
If the coordinates are all >= 0, then the pixel is covered by the triangle

VVe can interpolate attributes
using barycentric coordinates

C = acp + PC1 + YC2

+n//itibhhle Avn ~ ~rclor- hicc/loarcdQ7/ PaX & 87 hetrmli
1 I...\Jlél_él } MICo7/C T CO'T 1 %L-Q 7 J0TCnnl

llllllllllllll

(@)
v

10

Using barycentric coordinates also has the advantage that we can easily interpolate colors or
other attributes from triangle vertices

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Triangle rasterization algorithm

for all x do

for all y do

compute (a, 3,~) for (x,y)
if (c« €]0,1] and 8 € [0, 1] and ~v € [0, 1]) then
c = acy + feci + ¢
drawpixel(x,y) with color c

Triangle rasterization algorithm

for all x do

for all y do S

compute (o, 3,) for (x,y)
if (c« €]0,1] and 8 € [0, 1] and ~v € [0, 1]) then
c = acp + fci + e
drawpixel(x,y) with color c

the rest of the algorithm is to make the steps in red more efficient

Triangle rasterization algorithm

use a bounding rectangle

for x in [x_min, x_max]

for y in [y_min,y max] SEEiiiEes

compute (a, 3,~) for (x,y)
if (c« €]0,1] and 8 € [0, 1] and ~v € [0, 1]) then
c = acy + feci + ¢
drawpixel(x,y) with color c

Triangle rasterization algorithm

for x in [x_min, x_max]

for y in [y_min,y max]

X — fbc(xa y)/fbc(waa Ya

)
5 — fac(xv y)/fac(ivba yb)
)

v = fan(@,Y)/ fab(Te, Ye

if (« €]0,1] and 3 € [0,1] and v € [0, 1]) then
c = acy + fci + yeo
drawpixel(x,y) with color c

<whiteboard>

<whiteboard> : computing alpha, beta, and gamma

Triangle rasterization algorithm

Optimizations!

for x in [x_min, x_max]
for y in [y_min,y max]

& — fbc(way)/fbc(ajaaya)
B — fac(ﬁay)/fac(xbayb)
)

Y= fab(xv y)/fab(xm Yc

if (« €]0,1] and 3 € [0,1] and v € [0, 1]) then
c = acqy + ¢ + e
drawpixel(x,y) with color c

1. can make computation of bary. coords. incremental

- f(x,y) = Ax+By+C

- f(x+1,y) = f(x,y) + A

2. color computation can also be made incremental

3. alpha > 0 and beta > 0 and gamma > O (if true => they are also less than one)

Triangle rasterization algorithm

dealing with shared triangle edges C

for x in [x_min, x_max]
for y in [y_min,y max]

& — fbc(xay)/fbc(xaa ya)
6 — fac(xay)/fac(xbayb)
Y = fab(may)/fab(xcayc) a I'e

if (> 0and 8> 0and~y > 0) then

|f (a > 0or fi2(po)fi2(r) > 0) and then
(8 > 0or fou(p1)foo(r) > 0) and
(v > 0 or foi1(p2)foi(r) > 0)

c = acy + ey + yes
drawpixel(x,y) with color c

- compute f_12(r), f 20(r) and f_01(r) and make sure r doesn’t hit a line

