CSI 30 : Computer Graphics Lecture 4: Rasterizing 2D Lines

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Rendering approaches

I. object-oriented foreach object ...
2. image-oriented
foreach pixel ...

Outline

rasterization - make fragments from clipped objects clipping - clip objects to viewing volume
hidden surface removal - determine visible fragments

What is rasterization?

Rasterization is the process of determining which pixels are "covered" by the primitive

What is rasterization?

- input: primitives, output: fragments
- enumerate the pixels covered by a primitive
- interpolate attributes across the primitive

Rasterization

Compute integer coordinates for pixels near the 2D primitives

Algorithms are invoked many, many times and so must be efficient

Output should be visually pleasing, for example, lines should have constant density

Obviously, they should be able to draw all possible 2D primitives

Screen coordinates

Line Representation

Implicit Line Equation

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$ <whiteboard>

Line Drawing

Which pixels should be used to approximate a line?

Draw the thinnest possible line that has no gaps

Line drawing algorithm (case: $0<m<=1$)

$$
\begin{array}{|l}
y=y 0 \\
\text { for } x=x 0 \text { to } x I \text { do } \\
\text { draw }(x, y) \\
\text { if }(<\text { condition>) then } \\
y=y+1
\end{array}
$$

- move from left to right -choose between $(x+1, y)$ and $(x+1, y+I)$

Line drawing algorithm (case: $0<\mathrm{m}<=$ I)

$$
\begin{array}{|l}
y=y 0 \\
\text { for } x=x 0 \text { to } x I \text { do } \\
\text { draw }(x, y) \\
\text { if }(<\text { condition>) then } \\
y=y+1
\end{array}
$$

- move from left to right
 -choose between $(x+1, y)$ and $(x+1, y+I)$

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

<whiteboard>
evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right) ? 0
$$

<whiteboard>: work out the implicit line equation in terms of X0 and X1 Question: will $f(x, y+1 / 2)$ be >0 or <0 ?

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right)>0
$$

this means midpoint is above the line $->$ line is closer to bottom pixel

Line drawing algorithm (case: $0<m<=$ I)

$$
\begin{aligned}
& \mathbf{y}=\mathbf{y} 0 \\
& \text { for } \mathbf{x}=\mathbf{x} \mathbf{0} \text { to } \mathbf{x} \mathbf{I} \text { do } \\
& \quad \operatorname{draw}(\mathbf{x}, \mathbf{y}) \\
& \text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
& \quad \mathbf{y}=\mathbf{y}+\mathbf{1}
\end{aligned}
$$

We can make the Midpoint Algorithm more efficient

$$
\begin{array}{|l|}
\hline \mathbf{y}=\mathbf{y} 0 \\
\text { for } \mathbf{x}=\mathbf{x} \mathbf{0} \text { to } \mathbf{x} \mathbf{I} \text { do } \\
\quad \operatorname{draw}(\mathbf{x}, \mathbf{y}) \\
\text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
\quad \mathbf{y}=\mathbf{y}+\mathbf{l}
\end{array}
$$

We can make the Midpoint Algorithm more efficient

by making it incremental!

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

Assume we have drawn the last red pixel and evaluated the line equation at the next (Red) midpoint
There are two possible outcomes:

1. we will choose the bottom pixel. In this case the next midpoint will be at the same level (x $+1, y)$
2. we will choose the top pixel. In this case the next midpoint will be one level up ($x+1, y+1$) The line equation at these next midpoints can be evaluated incrementally using the update formulas shown.

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)>0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

As we move over one pixel to the right, we will choose either ($\mathrm{x}+1, \mathrm{y}$) (yellow) or ($\mathrm{x}+1, \mathrm{y}+1$) (green) and the next midpoint we will evaluate will be eiterh

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)<0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

As we move over one pixel to the right, we will choose either ($\mathrm{x}+1, \mathrm{y}$) (yellow) or $(\mathrm{x}+1, \mathrm{y}+1)$ (green) and the next midpoint we will evaluate will be eiterh

We can make the Midpoint Algorithm more efficient

$$
\begin{aligned}
& y=y 0 \\
& d=f(x 0+1, y 0+l / 2) \\
& \text { for } x=x 0 \text { to } x l \text { do } \\
& \text { draw }(x, y) \\
& \text { if }(d<0) \text { then } \\
& y=y+l \\
& d=d+(y 0-y l)+(x l-x 0) \\
& \text { else } \\
& d=d+(y 0-y l) \\
& \hline
\end{aligned}
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

algorithm is incremental and uses only integer arithmetic

Adapt Midpoint Algorithm for other cases

case: $0<m<=$ |

Adapt Midpoint Algorithm for other cases

case: l <= m

Adapt Midpoint Algorithm for other cases

$$
\text { case: }-\mathrm{l}<=\mathrm{m}<0
$$

Line drawing references

- the algorithm we just described is the Midpoint Algorithm (Pitteway, 1967), (van Aken and Novak, 1985)
- draws the same lines as the Bresenham Line Algorithm (Bresenham, 1965)

