
CS130 : Computer Graphics
Lecture 4: Rasterizing 2D Lines

Tamar Shinar
Computer Science & Engineering

UC Riverside

Rendering approaches

1. object-oriented

foreach object ...

2. image-oriented

foreach pixel ...

vertices image3D rendering
pipeline

there’s more than one way to do object-oriented rendering - e.g., OpenGL graphics
pipeline vs. Renderman

Outline

rasterization - make fragments from clipped objects

clipping - clip objects to viewing volume

hidden surface removal - determine visible fragments

What is rasterization?

Rasterization is the process of determining
which pixels are “covered” by the primitive

What is rasterization?

• input: primitives, output: fragments

• enumerate the pixels covered by a primitive

• interpolate attributes across the primitive

- output 1 fragment per pixel covered by the primitive

6

Rasterization

Compute integer coordinates for pixels near the
 2D primitives

Algorithms are invoked many, many times and
so must be efficient

Output should be visually pleasing, for example,
lines should have constant density

Obviously, they should be able to draw all
possible 2D primitives

Screen coordinates

we’ll assume stuff has been converted to normalized device coordinates

Line Representation

Implicit Line Equation

<whiteboard>

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Line Drawing

Which pixels should be used
to approximate a line?

Draw the thinnest possible
line that has no gaps

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

draw pixels from left to right, occasionally move up

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

draw pixels from left to right, occasionally move up

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:
<whiteboard>

<whiteboard>: work out the implicit line equation in terms of X0 and X1
Question: will f(x,y+1/2) be > 0 or < 0?

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:

this means midpoint is above the line -> line is closer to bottom pixel

Line drawing algorithm
(case: 0 < m <= 1)

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

can now fill in the condition

We can make the Midpoint
Algorithm more efficient

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

in each iteration we draw the current pixel and we evaluate the line equation at the next
midpoint halfway above the current pixel

We can make the Midpoint
Algorithm more efficient

by making it incremental!

Assume we have drawn the last red pixel and evaluated the line equation at the next (Red)
midpoint
There are two possible outcomes:
1. we will choose the bottom pixel. In this case the next midpoint will be at the same level (x
+1,y)
2. we will choose the top pixel. In this case the next midpoint will be one level up (x+1, y+1)
The line equation at these next midpoints can be evaluated incrementally using the update
formulas shown.

We can make the Midpoint
Algorithm more efficient

As we move over one pixel to the right, we will choose either (x+1,y) (yellow) or (x+1,y+1)
(green) and the next midpoint we will evaluate will be eiterh

We can make the Midpoint
Algorithm more efficient

As we move over one pixel to the right, we will choose either (x+1,y) (yellow) or (x+1,y+1)
(green) and the next midpoint we will evaluate will be eiterh

We can make the Midpoint
Algorithm more efficient

y = y0
d = f(x0+1,y0+1/2)
for x = x0 to x1 do
 draw(x,y)
 if (d<0) then
 y = y+1
 d = d+(y0-y1)+(x1-x0)
 else
 d = d+(y0-y1)

algorithm is incremental and uses only integer arithmetic

Adapt Midpoint Algorithm for
other cases

case: 0 < m <= 1

Adapt Midpoint Algorithm for
other cases

case: 1 <= m

Adapt Midpoint Algorithm for
other cases

case: -1 <= m < 0

Line drawing references

• the algorithm we just described is the Midpoint Algorithm
(Pitteway, 1967), (van Aken and Novak, 1985)

• draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

