CSI30 : Computer Graphics Lecture 24: Curves (cont.)

> Tamar Shinar Computer Science & Engineering UC Riverside

Blending functions are more convenient basis than monomial basis

• monomial basis

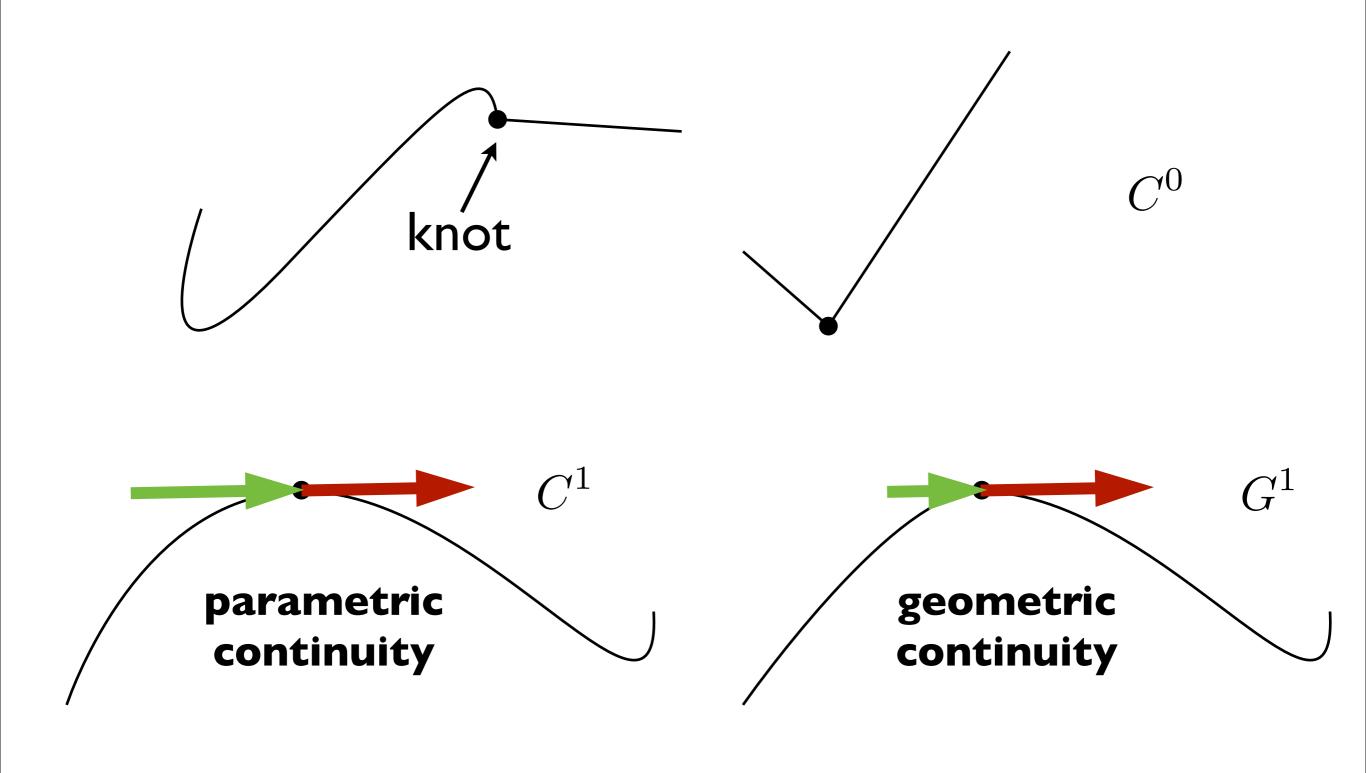
$$\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2 + \mathbf{a}_3 u^3$$

• blending functions

$$\mathbf{f}(u) = b_0(u)\mathbf{p}_0 + b_1(u)\mathbf{p}_1 + b_2(u)\mathbf{p}_2 + b_3(u)\mathbf{p}_3$$

- geometric form is more intuitive because it combines control points with blending functions

Stitching curve segments together: continuity

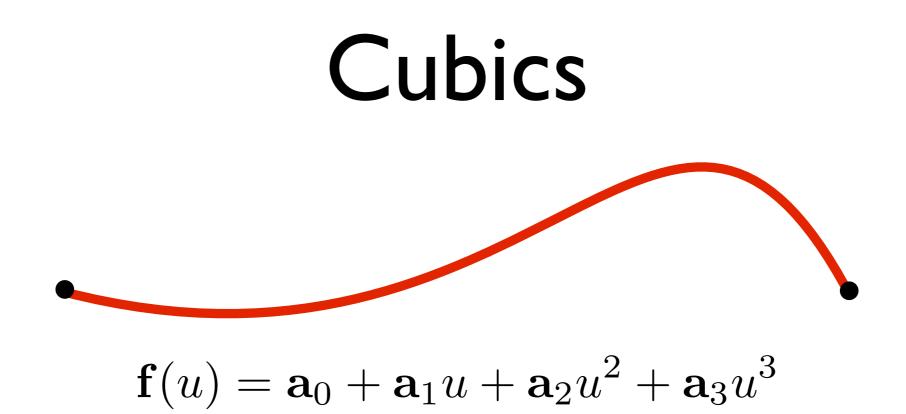


Тор

CO: the curves are continuous, but have discontinuous first derivatives **Bottom**

Left: At the knot, the curve has C1 continuity: the curve segments have common point and first derivative

Right: At the knot, the curve has G1 continuity: the curve segments have a common point, and parallel first derivatives of different magnitude



- Allow up to C^2 continuity at knots
- Symmetry: specify position and derivative at the beginning and end
- good smoothness and computational properties

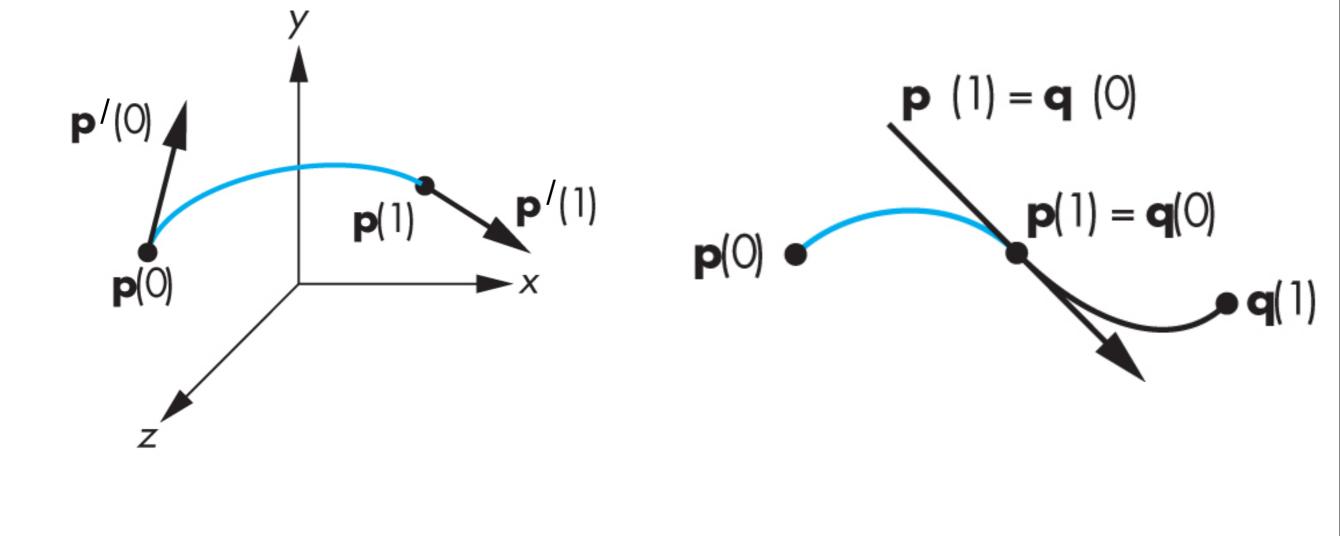
need 4 control points: might be 4 points on the curve, combination of points and derivatives, ...

Cubic Hermite Curves

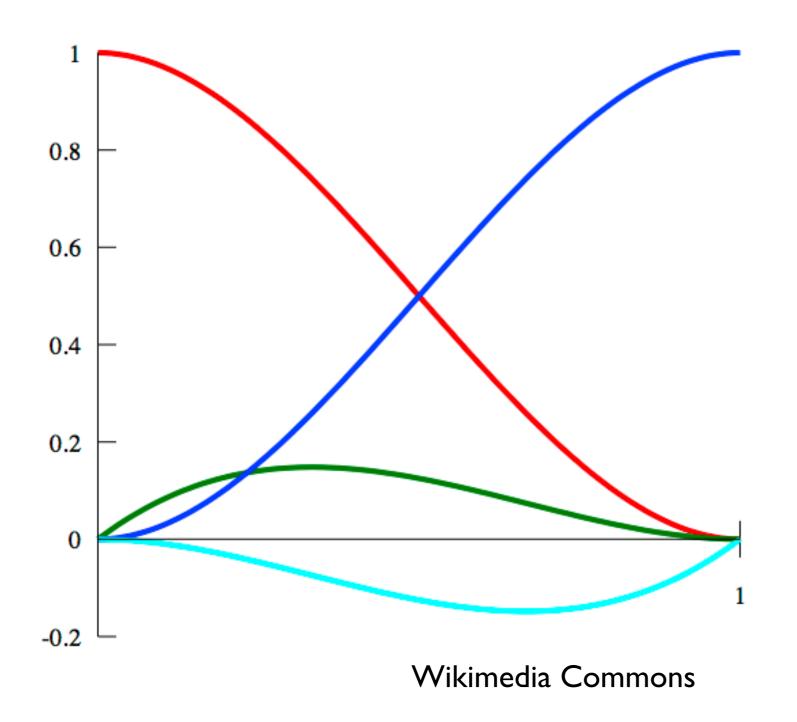
Cubic Hermite Curves

Specify endpoints and derivatives

construct curve with C^1 continuity



Hermite blending functions



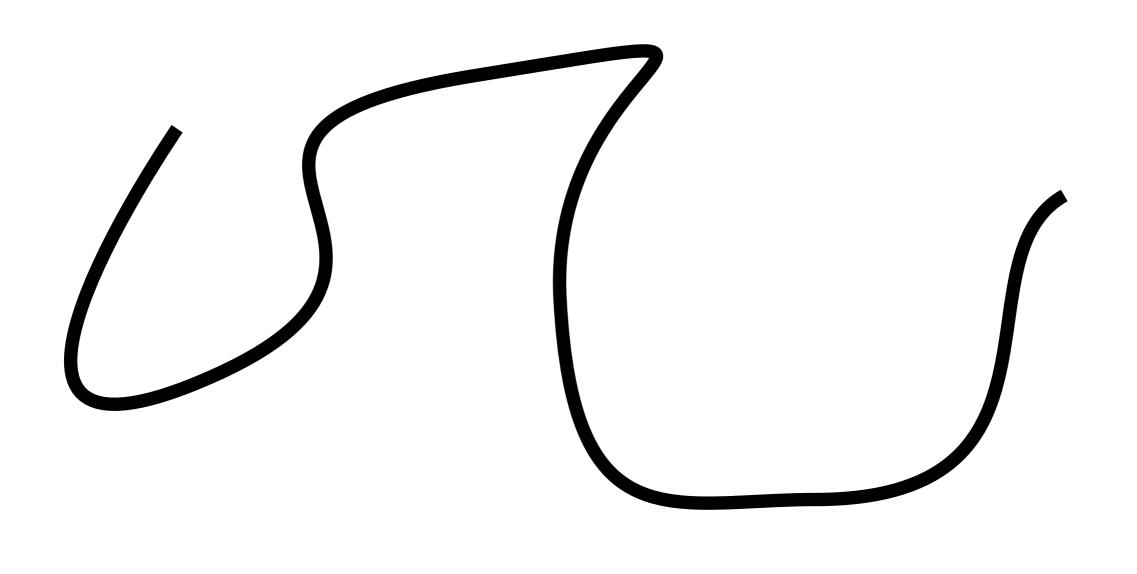
$$b_0(u) = 2u^3 - 3u^2 + 1$$

$$b_1(u) = -2u^3 + 3u^2$$

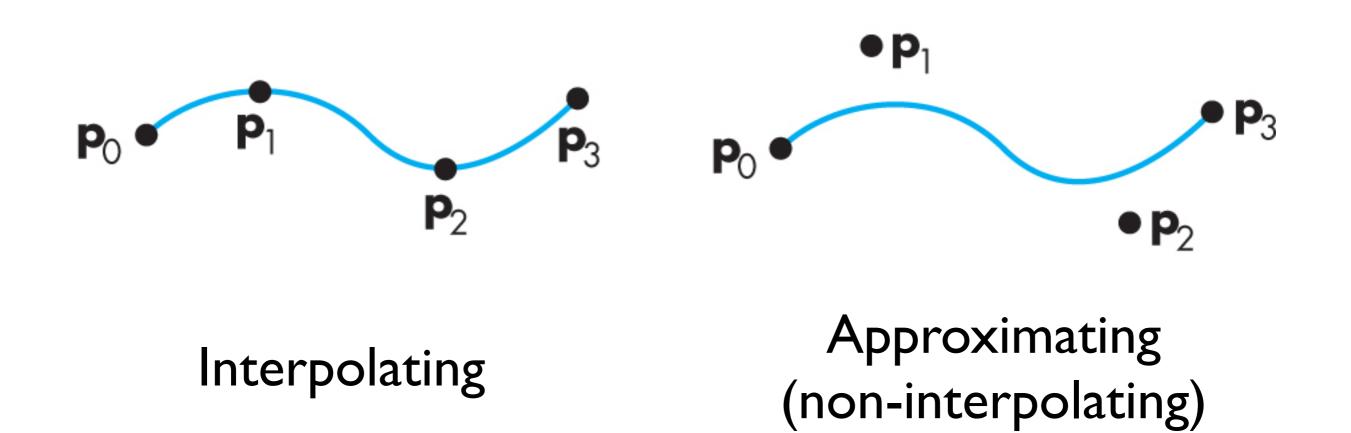
$$b_2(u) = u^3 - 2u^2 + u$$

$$b_3(u) = u^3 - u^2$$

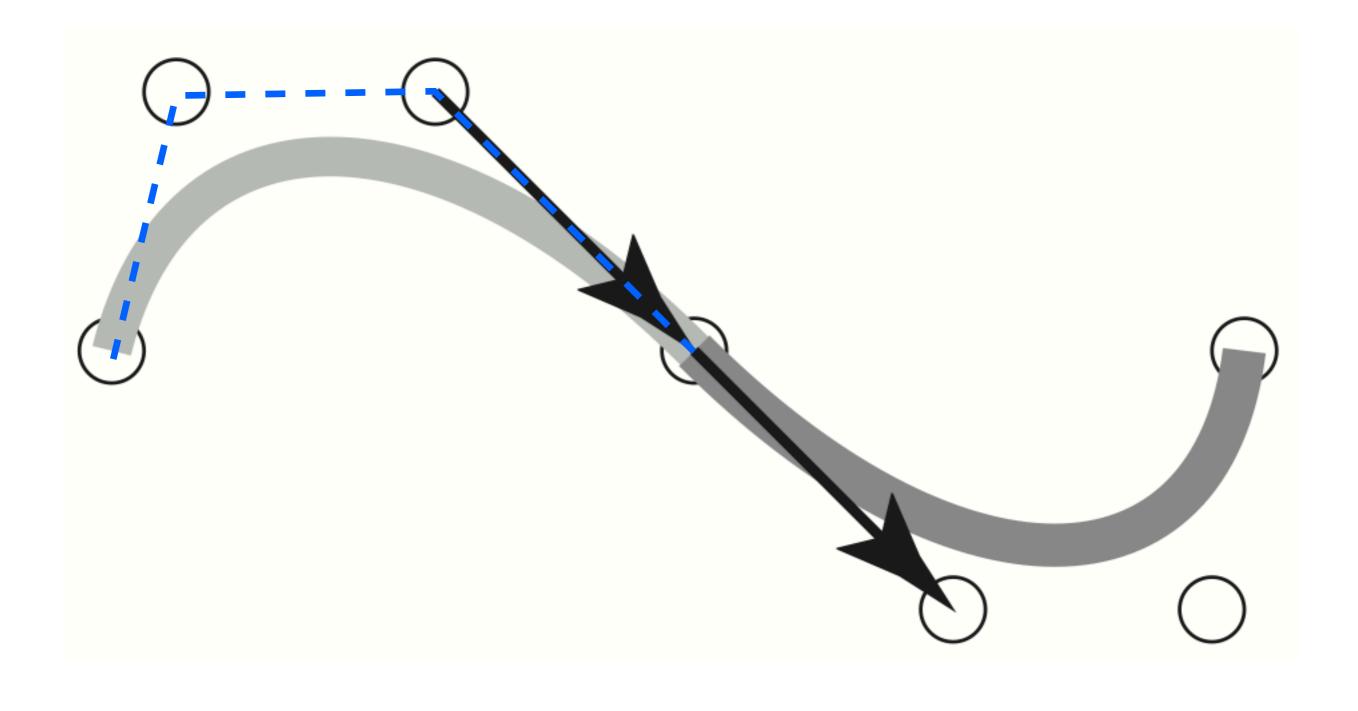
Example: keynote curve tool



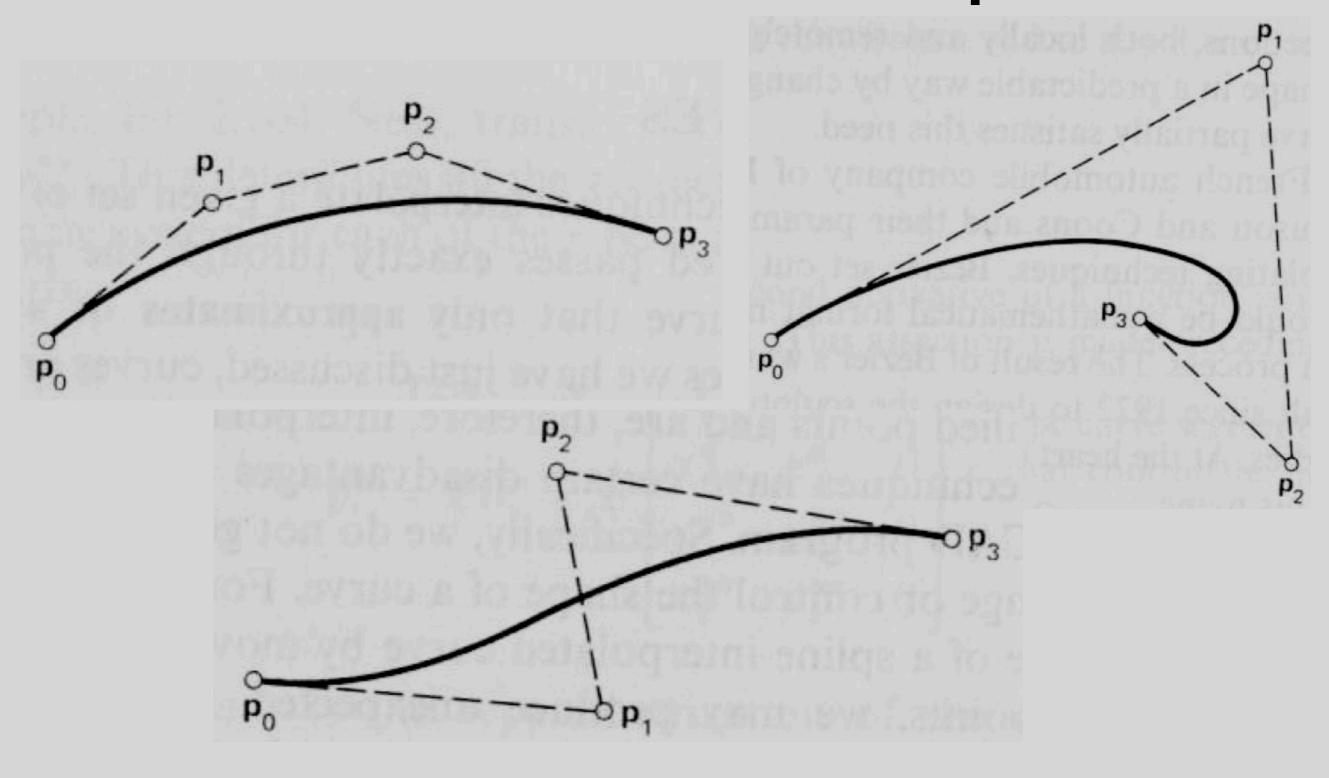
Control points



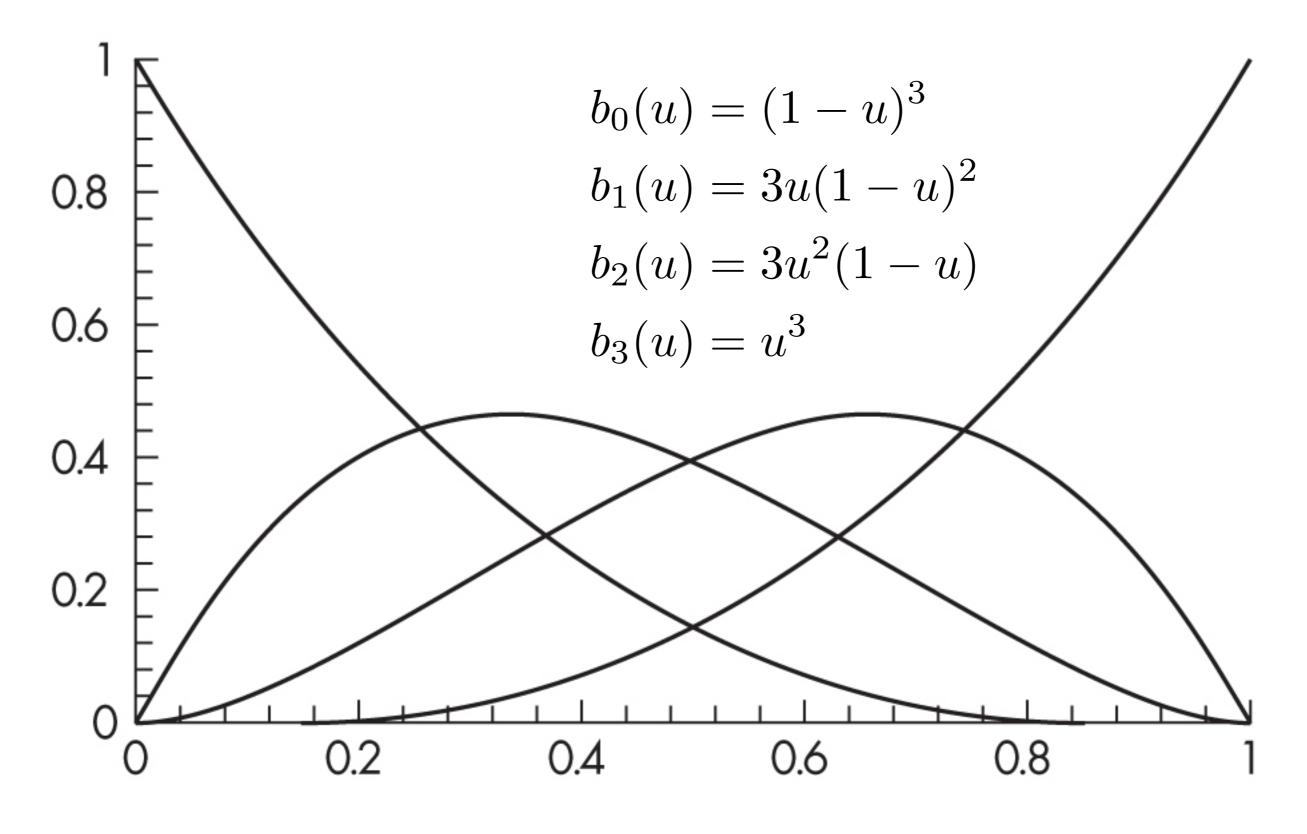
Cubic Bezier Curves



Bezier Curve Examples



Bezier blending functions



Bernstein Polynomials

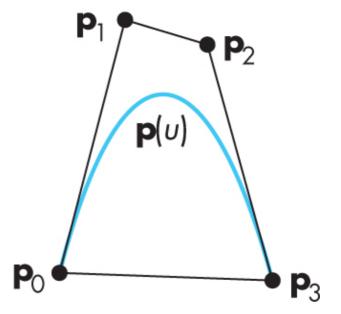
•The blending functions are a special case of the Bernstein polynomials

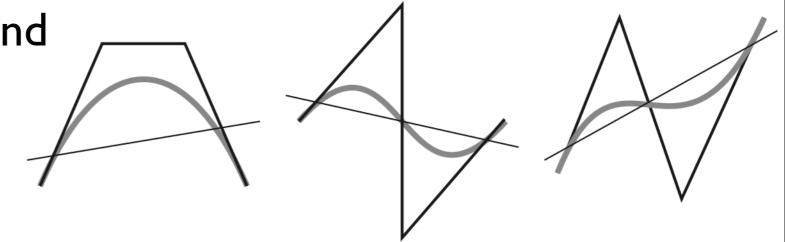
$$b_{\rm kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

- •These polynomials give the blending polynomials for any degree Bezier form
 - -All roots at 0 and 1
 - -For any degree they all sum to 1
 - -They are all between 0 and 1 inside (0,1)

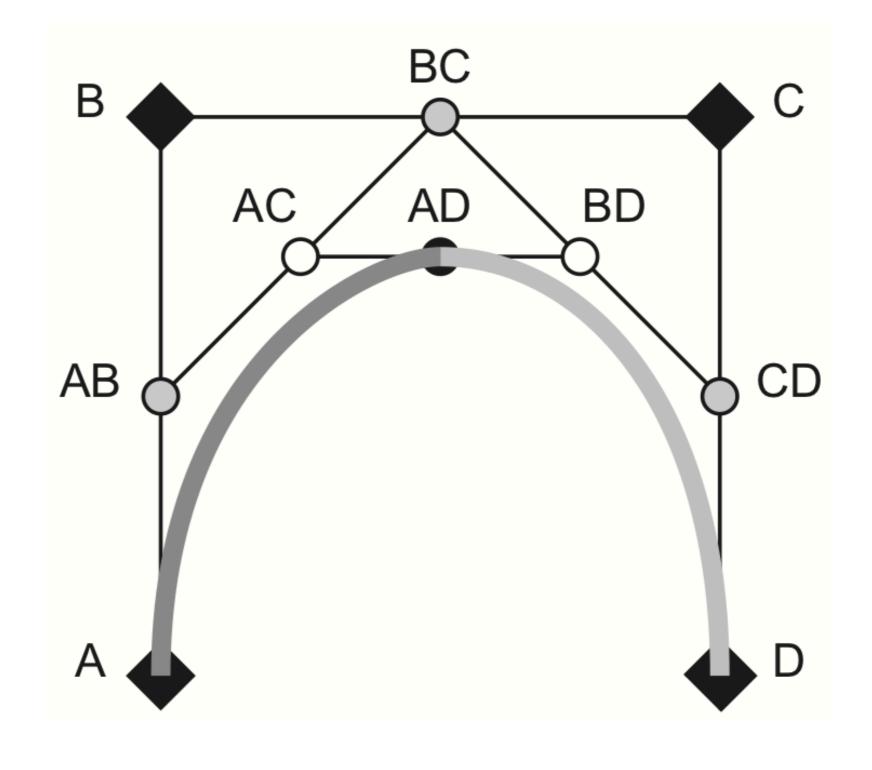
Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

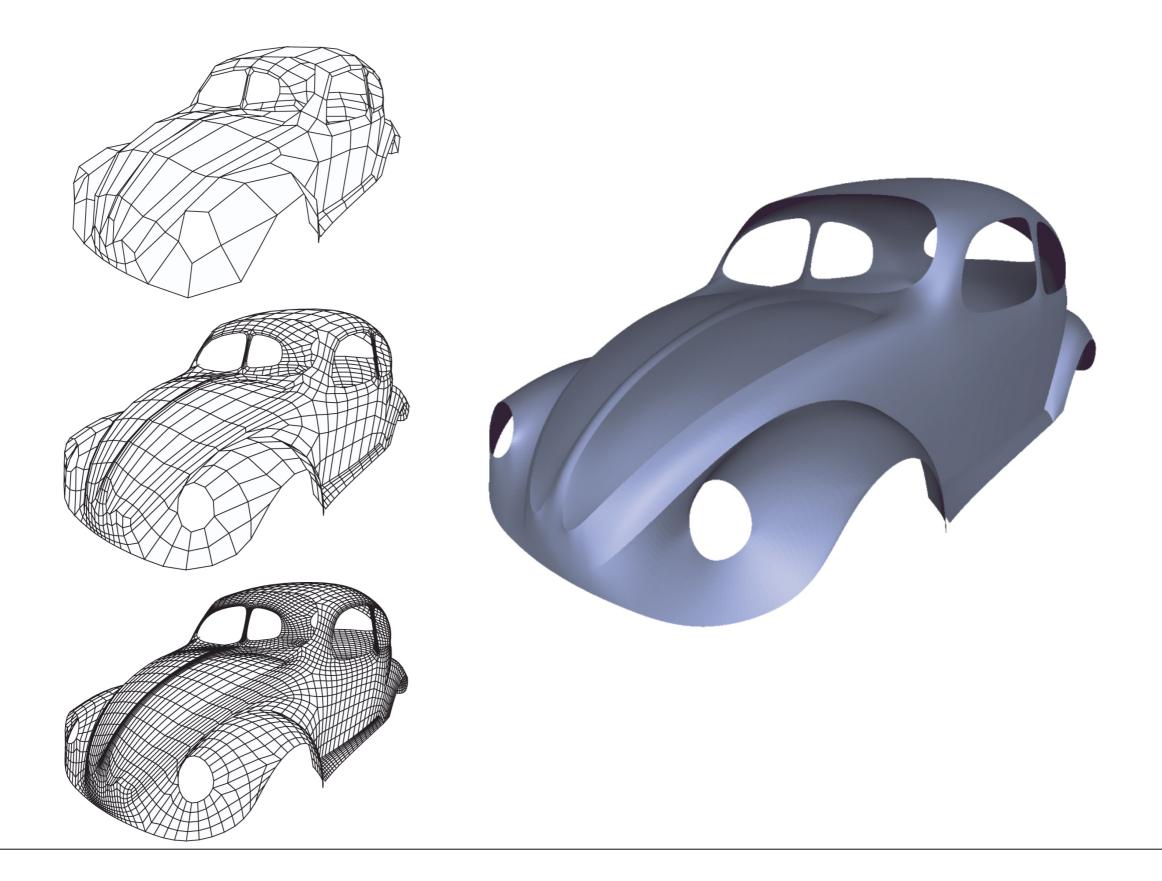




Bezier subdivision

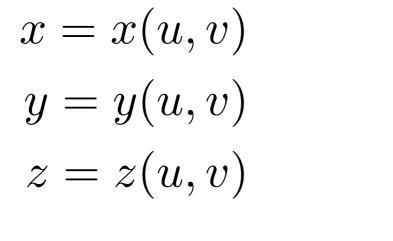


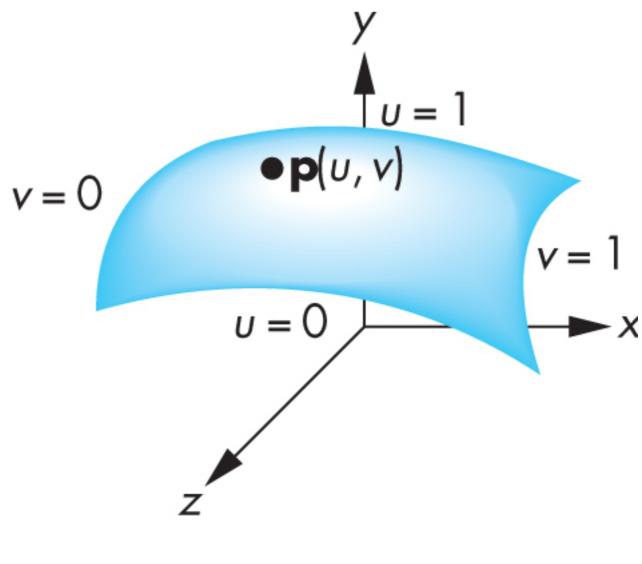
Recursive Subdivision



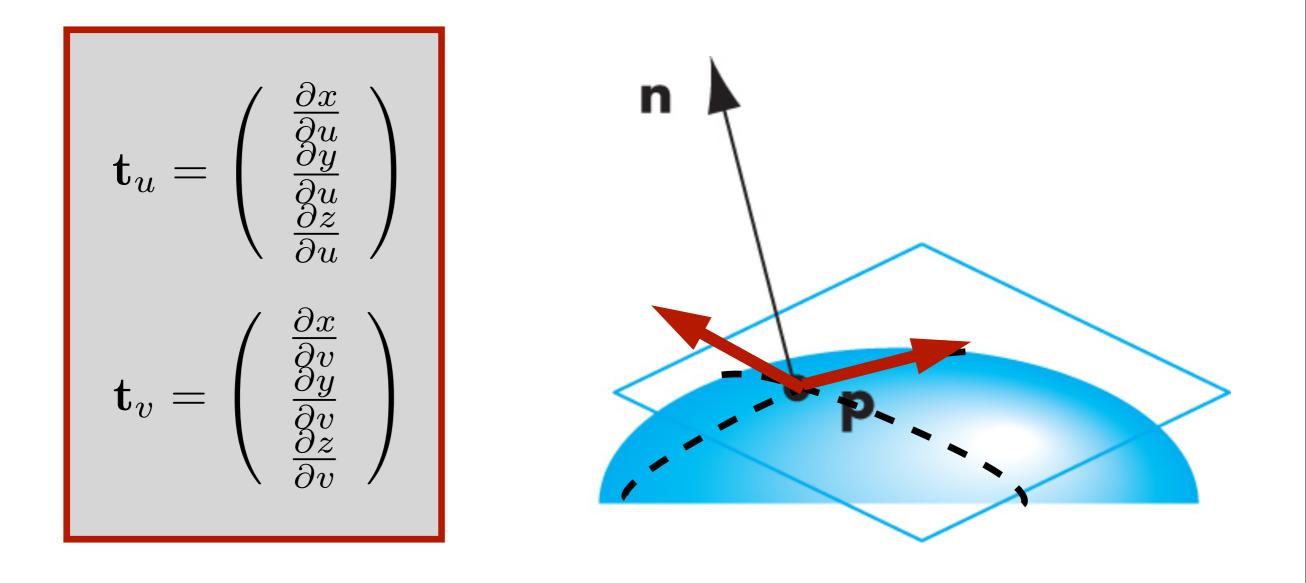
Surfaces

Parametric Surface

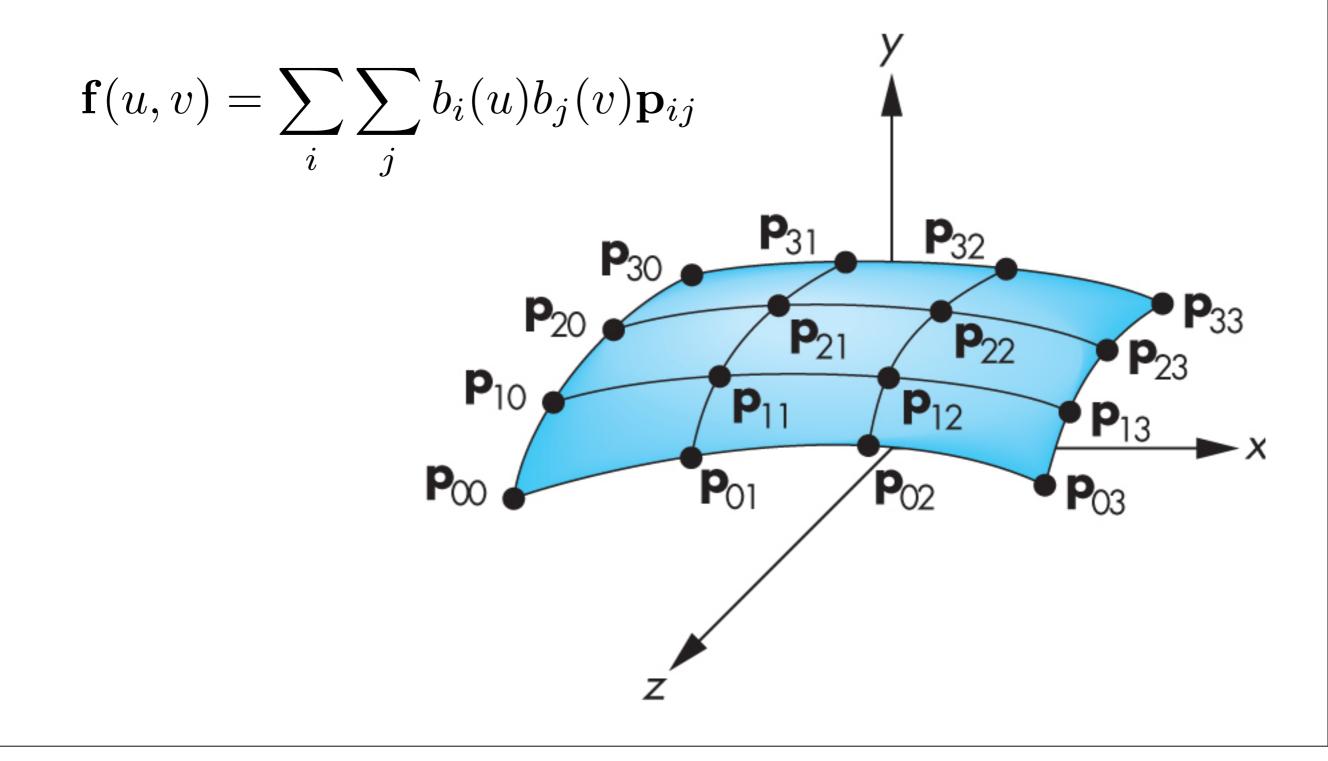




Parametric Surface tangent plane



Bicubic Surface Patch



Bezier Surface Patch

