
CS130 : Computer Graphics
Lecture 2: Graphics Pipeline

Tamar Shinar
Computer Science & Engineering

UC Riverside

Raster Devices and Images

Raster Devices

Raster Display

Hearn, Baker, Carithers

virtually all graphics system are raster based, meaning the image we see is a raster of
pixels
or a rectangular array of pixels
Here a raster scan device display an image as a set of discrete points across each scanline

Raster Display

get different colors by mixing red, green, and blue
this is from an LCD monitor
printers are also raster-based. image is made out of points on a grid

Transmissive vs. Emissive Display

[H
&

B, Fig. 2-16]

+
_

ON ONOFF

LEDs

anode

cathodes

(LEFT)In the off state the front polarizer blocks all the light that passes the back polarizer
in the on state the liquid crystal rotates the polarization of the light so it can pass through
the front polarizer
(RIGHT) LED display

Monitor Gamma

displayed intensity = (max intensity)

Gamma Correction

displayed intensity = (max intensity)

find gamma, so that you can give the monitor a^{1/\gamma}
- find a such that a^{\gamma} = .5 through checkboard test and solve for gamma

additive color - Primary colors are red, green, blue. form a color by adding these. CRTs,
projectors, LCD displays, positive film
subtractive color - form a color by filtering white light with cyan, magenta, and yellow filters
printing, negative film

Alpha Channel

Compositing: two different interpretations: pixel coverage (fraction of pixel covered) and
blending

Raster Image

A raster image is 2D array storing pixel values at each pixel (picture element)
3 numbers for color
alternative: vector image -- essentially a set of instructions for rendering an image

What is an image?

(grayscale)

(color)

Continuous image

What is an image?

Sampled image

(grayscale)

(color)

Graphics Pipeline

Modern graphics system
[A

ngel and Shreiner]

the pixels are stored in a location in memory call the frame buffer
frame buffer resolution determines the details in the image
 - e.g., 24 bit color “full color”
 - high dynamic range or HDR use 12 or more bits for each color
frame buffer = color buffers + other buffer

17

Z-buffer Rendering

•Z-buffering is very common approach, also
often accelerated with hardware

•OpenGL is based on this approach

3D Polygons Image Pixels
GRAPHICS PIPELINE

Choice of primitives

• Which primitives should an API contain?

• small set - supported by hardware, or

• lots of primitives - convenient for user

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

Performance is in 10s millions polygons/sec --
portability, hardware support key

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Other geometric shapes will be built out of these

Two classes of primitives
 [A

ngel and Shreiner]

Geometric : points, lines, polygons
Image : arrays of pixels

Point and line segment types
 [A

ngel and Shreiner]

Polygons
• Multi-sided planar element composed of edges and

vertices.
• Vertices (singular vertex) are represented by points
• Edges connect vertices as line segments

E1

E3 E2

(x1,y1)

(x2,y2)

(x3,y3)

Valid polygons

• Simple

• Convex

• Flat

Valid polygons

• Simple

• Convex

• Flat

OpenGL polygons

• Only triangles are supported (in latest versions)

GL_POINTS GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

Other polygons

triangulation

triangulation
as long as triangles are not collinear, they will be simple, flat, and convex -- easy to render

Graphics Pipeline
[A

ngel and Shreiner]

Pipelining operations

* +b
a

c

An arithmetic pipeline that computes c+(a*b)

By pipelining the arithmetic operation, the throughput, or rate at which data flows through
the system, has been doubled
If the pipeline had more boxes, the latency, or time it takes one datum to pass through the
system, would be higher
throughput and latency must be balanced

3D graphics pipeline

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Geometry: primitives - made of vertices
Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

the pipeline is best when we are doing the same operations on many data sets
 -- good for computer graphics!! where we process larges sets of vertices and pixels in the
same manner
1. Geometry: objects - made of primitives - made of vertices
2. Vertex processing: coordinate transformations and color
3. Clipping and primitive assembly: use clipping volume. must be primitive by primitive
rather than vertex by vertex. therefore vertices must be assembled into primitives before
clipping can take place. Output is a set of primitives.
4. Rasterization: primitives are still in terms of vertices -- must be converted to pixels. E.g.,
for a triangle specificied by 3 vertices, the rasterizer must figure out which pixels in the frame
buffer fill the triangle. Output is a set of fragments for each primitive. A fragment is like a
potential pixel. Fragments can carry depth information used to figure out if they lie behind
other fragments for a given pixel.
5. Fragment processing: update pixels in the frame buffer. some fragments may not be
visible. texture mapping and bump mapping. blending.

Graphics Pipeline
(slides courtesy K. Fatahalian)

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

EACH VERTEX IS
TRANSFORMED

INDEPENDENTLY

Primitive processing

v0

v1

v2

v3

v4

v5

Vertices

v0

v1

v2

v3

v4

v5

Primitives
(triangles)

Then organized into primitives that are clipped
and culled…

Rasterization

Primitives are rasterized into “pixel fragments”

Fragments

Rasterization

Primitives are rasterized into “pixel fragments”

EACH PRIMITIVE IS RASTERIZED
INDEPENDENTLY

Fragment processing

Shaded fragments

Fragments are shaded to compute a color at each pixel

Fragment processing

EACH FRAGMENT IS PROCESSED
INDEPENDENTLY

Fragments are shaded to compute a color at each pixel

Pixel operations

Pixels

Fragments are blended into the frame bu!er at
their pixel locations (z-bu!er determines visibility)

Pipeline entities

v0

v1

v2

v3

v4

v5
v0

v1

v2

v3

v4

v5

Vertices Primitives Fragments

Pixels Fragments (shaded)

Graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation

Fragment Processing

Pixel Operations

Fixed-function

Programmable

Memory Bu!ers
Vertex Data Bu!ers

Textures

Output image (pixels)

Textures

Textures

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

