CSI 30 : Computer Graphics Lecture I2: Lighting and Shading

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Why we need shading

- Suppose we build a model of a sphere using many polygons and color each the same color. We get something like
-But we want

Shading

-Why does the image of a real sphere look like
-Light-material interactions cause each point to have a different color or shade

- Need to consider
- Light sources
- Material properties
- Location of viewer
- Surface orientation (normal)

General rendering

- The most general approach is based on physics - using principles such as conservation of energy
- a surface either emits light (e.g., light bulb) or reflects light for other illumination sources, or both
- light interaction with materials is recursive
- the rendering equation is an integral equation describing the limit of this recursive process

Fast local shading models

- the rendering equation can't be solved analytically
- numerical methods aren't fast enough for real-time
- for our fast graphics rendering pipeline, we'll use a local model where shade at a point is independent of other surfaces
- use Phong reflection model
- shading based on local light-material interactions

Local shading model

direct light is the color of the light source reflected light is the color of the light reflected from the object surface for rendering, color of light source and reflected light determines the colors of pixels in the frame buffer only need to consider the rays that leave the source and reach the viewer's eye

Global Effects

Light-material interactions

at a surface, light is absorbed, reflected, or transmitted
specular

diffuse

translucent

General light source

Illumination function:

$$
L(\mathbf{x}, \omega, \lambda)
$$

[Angel and Shreiner]

Idealized light sources

- Ambient light
- Point light
- Spotlight
- distant (directional) light

Ambient light source

- achieve a uniform light level

$$
\mathbf{L}_{a}=\left[\begin{array}{l}
L_{a r} \\
L_{a g} \\
L_{a b}
\end{array}\right]
$$

- no black shadows
- ambient light intensity at each point in the

$$
L_{a}
$$ scene

Point light source

$$
\mathbf{L}\left(\mathbf{p}_{0}\right)=\left[\begin{array}{c}
L_{r}\left(\mathbf{p}_{0}\right) \\
L_{g}\left(\mathbf{p}_{0}\right) \\
L_{b}\left(\mathbf{p}_{0}\right)
\end{array}\right] \quad L\left(\mathbf{p}_{0}\right)
$$

illumination intensity at \mathbf{p} :

$$
l\left(\mathbf{p}, \mathbf{p}_{0}\right)=\frac{1}{\left|\mathbf{p}-\mathbf{p}_{0}\right|^{2}} \mathbf{L}\left(\mathbf{p}_{0}\right)
$$

[Angel and Shreiner]

- use scalar I(\vec\{p\}_0) to denote any of three components
- points sources alone aren't too realistic looking -- tend to be high contrast
- most real-world scenes have large light sources
- add ambient light to mitigate high contrast

Point light source

Most real-world scenes have large light sources

Point light sources alone aren't too realistic - add ambient light to mitigate high contrast

Point light source

Most real-world scenes have large light sources

Point light sources alone aren't too realistic - drop off intensity more slowly

$$
l\left(\mathbf{p}, \mathbf{p}_{0}\right)=\frac{1}{d^{2}} \mathbf{L}\left(\mathbf{p}_{0}\right)
$$

Spotlights

Spotlights

[Angel and Shreiner]
add an exponent for greater control final result is like point light but modified by this cone

Distant light source

characterized by direction

[Angel and Shreiner] if the light source is very far, the direction vectors don't change
characterized by direction rather than position

