CSI 30 : Computer Graphics Lecture I0: Perspective Viewing (cont.)

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Projective Transformations

Example:

$$
M=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 3 & 0 \\
0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right)
$$

Perspective Projection

$$
P=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right) \quad z^{\prime}=(n+f)-\frac{n f}{z}
$$

The perspective transformation does not preserve \mathbf{z} completely, but it preserves $\mathbf{z}=\mathbf{n}, \mathbf{f}$ and is monotone (preserves ordering) with respect to z

So far we've mapped the view frustrum to a rectangular box. This rectangular box has the same near face as the view frustrum. The far face has been mapped down to the far face of the box. This mapping is given by P. The bottom figure shows how lines in the view frustrum get mapped to the rect. box.

We're not quite done yet thought, because the projection transform should map the view frustrum to the canonical view volume.

$$
M_{\text {per }}=M_{\text {orth }} P
$$

$\downarrow^{M_{\text {mate }}}$

We need a second mapping to get our points into the canonical view volume. This second mapping is a mapping from one box to another. So it's given by an orthographic mapping, M_orth. The final perspective transformation is the composition of P and M_{-}orth.

Line drawing algorithm

construct $M_{v p} M_{c a m}$
construct $M_{p e r}$
$M=M_{v p} M_{p e r} M_{c a m}$
for each line segment $\left(a_{i}, b_{i}\right)$ do

$$
\begin{aligned}
\mathbf{p} & =M \mathbf{a}_{i} \\
\mathbf{q} & =M \mathbf{b}_{i}
\end{aligned}
$$

drawline $\left(x_{p} / w_{p}, y_{p} / w_{p}, x_{q} / w_{p}, y_{q} / w_{p}\right)$

draw lines specified in world space

 transformation matrix M. 2. When we call the drawline function, we have to divide the x and y coordinates by the w coordinate.
OpenGL Perspective Viewing

glFrustum (xmin, xmax, ymin, ymax, near, far)

Using Field of View

With glFrustum it is often difficult to get the desired view gluPerpective (fovy, aspect, near, far) often provides a better interface

Clipping after the perspective transformation can cause problems

