CSI 30 : Computer Graphics Lecture 10: Perspective Viewing

Tamar Shinar
Computer Science \& Engineering
UC Riverside

rigid

projective

rigid - translation and rotation only - parallel lines and angles are preserved affine - scaling, shear, translation, rotation - parallel lines preserved, angles not preserved projective - parallel lines and angles not preserved

Projective Transformations

Projective Transformations

Projective Transformations

Projective Transformations

Example:

$$
M=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 3 & 0 \\
0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right)
$$

Perspective Projection

[Shirley, Marschner]

Simple perspective projection

$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 / d & 0\end{array}\right)\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)=\left(\begin{array}{c}x \\ y \\ z \\ z / d\end{array}\right) \Rightarrow\left\{\begin{array}{l}x^{\prime}=\frac{d}{z} x \\ y^{\prime}=\frac{d}{z} y \\ z^{\prime}=\frac{d}{z} z=d\end{array}\right.$
This achieves a simple perspective projection onto the view plane $z=d$

but we've lost all information about z!

<whiteboard>

This simple projection matrix won't suffice. We need to preserve z information for later hidden surface removal.

Perspective Projection

$$
P=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right) \quad z^{\prime}=(n+f)-\frac{n f}{z}
$$

The perspective transformation does not preserve \mathbf{z} completely, but it preserves $\mathbf{z}=\mathbf{n}, \mathbf{f}$ and is monotone (preserves ordering) with respect to z

So far we've mapped the view frustrum to a rectangular box. This rectangular box has the same near face as the view frustrum. The far face has been mapped down to the far face of the box. This mapping is given by P .

$$
M_{\mathrm{per}}=M_{\mathrm{orth}} P
$$

We need a second mapping to get our points into the canonical view volume. This second mapping is just a mapping from one box to another. So it's given by an orthographic mapping, M_orth. The final perspective transformation is the composition of P and $\mathrm{M}_{\mathbf{\prime}}$ orth.

Line drawing algorithm

construct $M_{v p} M_{c a m}$
construct $M_{p e r}$
$M=M_{v p} M_{p e r} M_{c a m}$
for each line segment $\left(a_{i}, b_{i}\right)$ do

$$
\begin{aligned}
\mathbf{p} & =M \mathbf{a}_{i} \\
\mathbf{q} & =M \mathbf{b}_{i}
\end{aligned}
$$

drawline $\left(x_{p} / w_{p}, y_{p} / w_{p}, x_{q} / w_{p}, y_{q} / w_{p}\right)$

draw lines specified in world space

 transformation matrix M. 2. When we call the drawline function, we have to divide the x and y coordinates by the w coordinate.
OpenGL Perspective Viewing

glFrustum (xmin, xmax, ymin, ymax, near, far)

Using Field of View

With glFrustum it is often difficult to get the desired view gluPerpective (fovy, aspect, near, far) often provides a better interface

