Name:

Student ID:

Homework 5

- 1. How does light bounce off of a lambertian surface? Write an equation that computes the illuminance of a point on a lambertian surface, given the normal of the surface, \vec{N} , the viewing direction \vec{V} , and the direction of the light, \vec{L} . You may add other parameters to the equation as you see fit.
- 2. How does light bounce off of a perfectly specular surface? Write an equation that computes the illuminance of a point on a perfectly specular surface, given the normal of the surface, \vec{N} , the viewing direction \vec{V} , and the direction of the light, \vec{L} . You may add other parameters to the equation as you see fit.
- 3. Discuss the differences you might expect to see in the appearance of specular reflections modeled with $(N \cdot H)^{n_s}$ compared to the specular reflections modeled with $(V \cdot R)^{n_s}$.