CSI30 : Computer Graphics Curves (cont.)

Tamar Shinar Computer Science & Engineering UC Riverside

Blending Functions

Blending functions are more convenient basis than monomial basis

• "canonical form" (monomial basis)

$$\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2 + \mathbf{a}_3 u^3$$

• "geometric form" (blending functions)

$$\mathbf{f}(u) = b_0(u)\mathbf{p}_0 + b_1(u)\mathbf{p}_1 + b_2(u)\mathbf{p}_2 + b_3(u)\mathbf{p}_3$$

Interpolating Polynomials

Interpolating polynomials

- Given n+1 data points, can find a unique interpolating polynomial of degree n
- Different methods:
 - Vandermonde matrix
 - Lagrange interpolation
 - Newton interpolation

higher order interpolating polynomials are rarely used

Piecewise Polynomial Curves

Example: blending functions for two line segments

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \le 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases}$$

- Allow up to C^2 continuity at knots
- need 4 control points
 - may be 4 points on the curve, combination of points and derivatives, ...
- good smoothness and computational properties

We can get any 3 of 4 properties

I.piecewise cubic
2.curve interpolates control points
3.curve has local control
4.curves has C2 continuity at knots

Cubics

- Natural cubics
 - C2 continuity
 - n points -> n-l cubic segments
- control is non-local :(
- ill-conditioned x(

Cubic Hermite Curves

- CI continuity
- specify both positions and derivatives

Cubic Hermite Curves

Specify endpoints and derivatives construct curve with C^1 continuity

Hermite blending functions

$$b_0(u) = 2u^3 - 3u^2 + 1$$

$$b_1(u) = -2u^3 + 3u^2$$

$$b_2(u) = u^3 - 2u^2 + u$$

$$b_3(u) = u^3 - u^2$$

[Wikimedia Commons]

1

Example: keynote curve tool

Interpolating vs. Approximating Curves

Interpolating

Approximating (non-interpolating)

Cubic Bezier Curves

Cubic Bezier Curves

Cubic Bezier Curve Examples

Cubic Bezier blending functions

Bezier Curves Degrees 2-6

Bernstein Polynomials

•The blending functions are a special case of the Bernstein polynomials

$$b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

 These polynomials give the blending polynomials for any degree Bezier form

All roots at 0 and 1

For any degree they all sum to 1

They are all between 0 and 1 inside (0,1)

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Joining Cubic Bezier Curves

Joining Cubic Bezier Curves

for CI continuity, the vectors must line up and be the same length
for GI continuity, the vectors need only line up

Evaluating p(u) geometrically

Evaluating p(u) geometrically

Bezier subdivision

Recursive Subdivision for Rendering

Cubic B-Splines

Cubic B-Splines

Spline blending functions

$$b_{0}(u) = \frac{1}{6}(1-u)^{3}$$

$$b_{1}(u) = \frac{1}{6}(4-6u^{2}+3u^{3})$$

$$b_{2}(u) = \frac{1}{6}(1+3u+3u^{2}-3u^{3})$$

$$b_{3}(u) = \frac{1}{6}u^{3}$$

$$b_{0}(u) = b_{0}(u)$$

$$b_{3}(u) = \frac{1}{6}u^{3}$$

General Splines

• Defined recursively by Cox-de Boor recursion formula

$$b_{j,0}(t) = \begin{cases} 1 & \text{if } t_j \leq t \\ 0 & \text{otherwise} \end{cases}$$
$$b_{j,n}(t) := \frac{t - t_j}{t_{j+n} - t_j} b_{j,n-1}(t) + \frac{t_{j+n+1} - t}{t_{j+n+1} - t_{j+1}} b_{j+1,n-1}(t)$$

Spline properties

Basis functions

convexity

Surfaces

Parametric Surface

Parametric Surface tangent plane

 $\frac{\frac{\partial x}{\partial u}}{\frac{\partial y}{\partial u}} \\
\frac{\partial z}{\partial u}$ $\mathbf{t}_u =$ $\frac{\frac{\partial x}{\partial v}}{\frac{\partial y}{\partial z}}$ \mathbf{t}_v

Bicubic Surface Patch

Bezier Surface Patch

