CSI30 : Computer Graphics Curves

Tamar Shinar Computer Science & Engineering UC Riverside

Design considerations

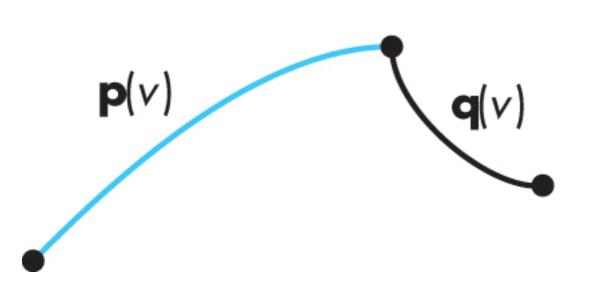
local control of shape

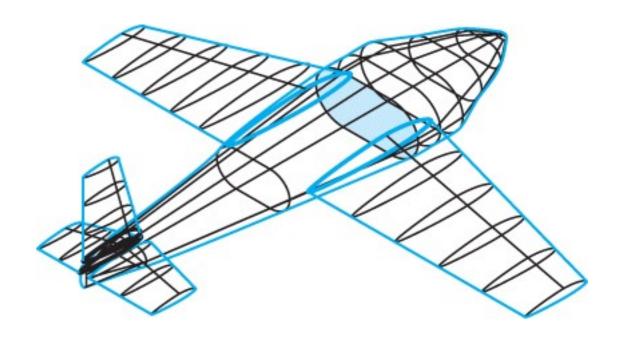
•design each segment independently

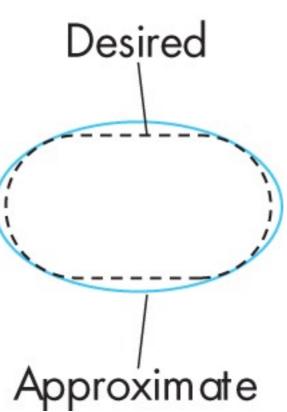
smoothness and continuityability to evaluate derivatives

stability

small change in input leads to small change in output
ease of rendering







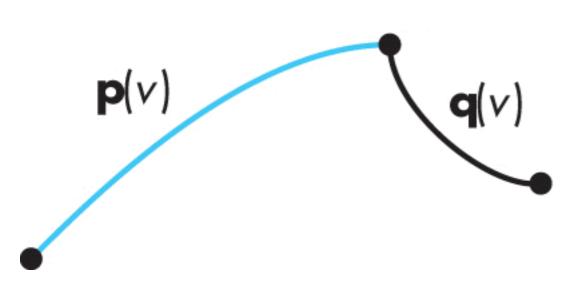
Design considerations

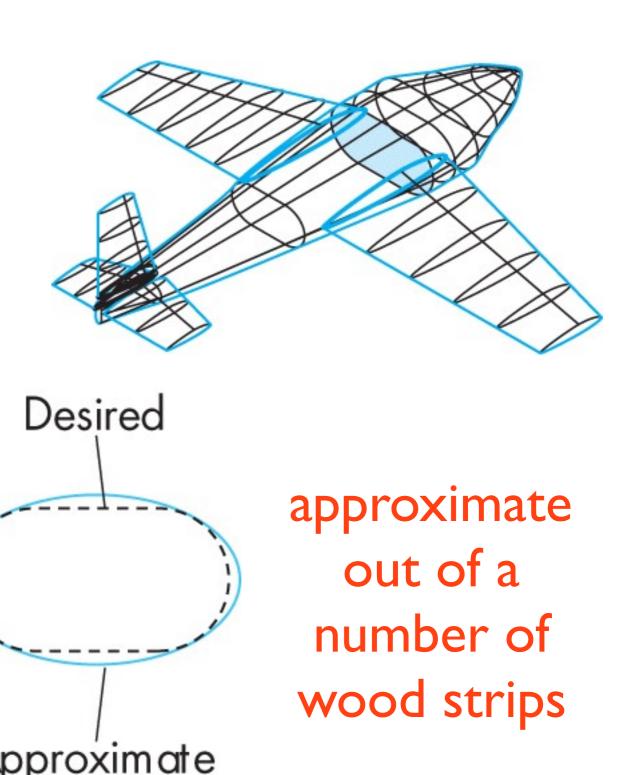
local control of shape

•design each segment independently

smoothness and continuity
ability to evaluate derivatives
stability

small change in input leads to small change in output
ease of rendering





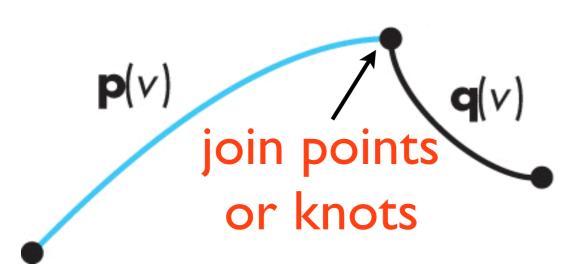
Design considerations

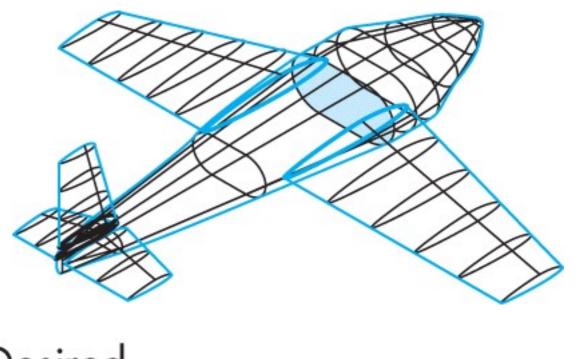
local control of shape

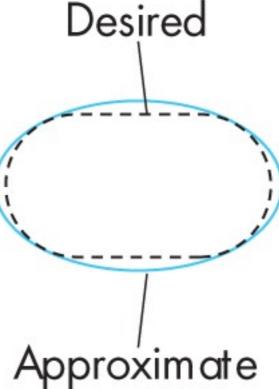
•design each segment independently

smoothness and continuity
ability to evaluate derivatives
stability

small change in input leads to small change in output
ease of rendering





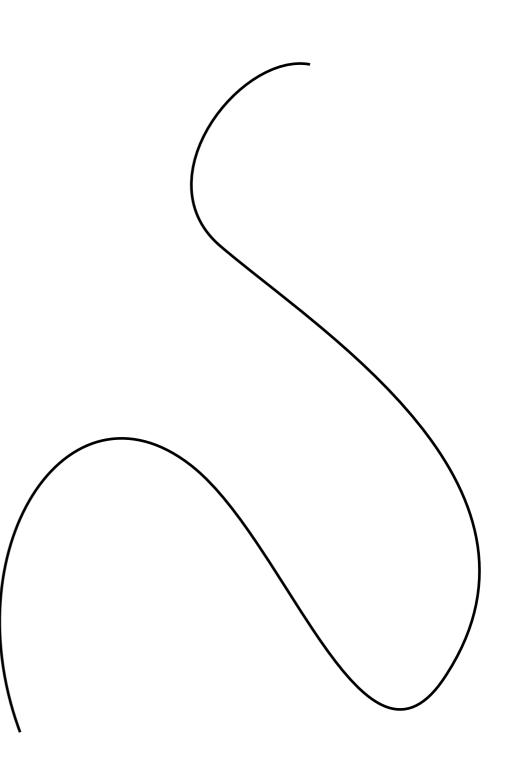


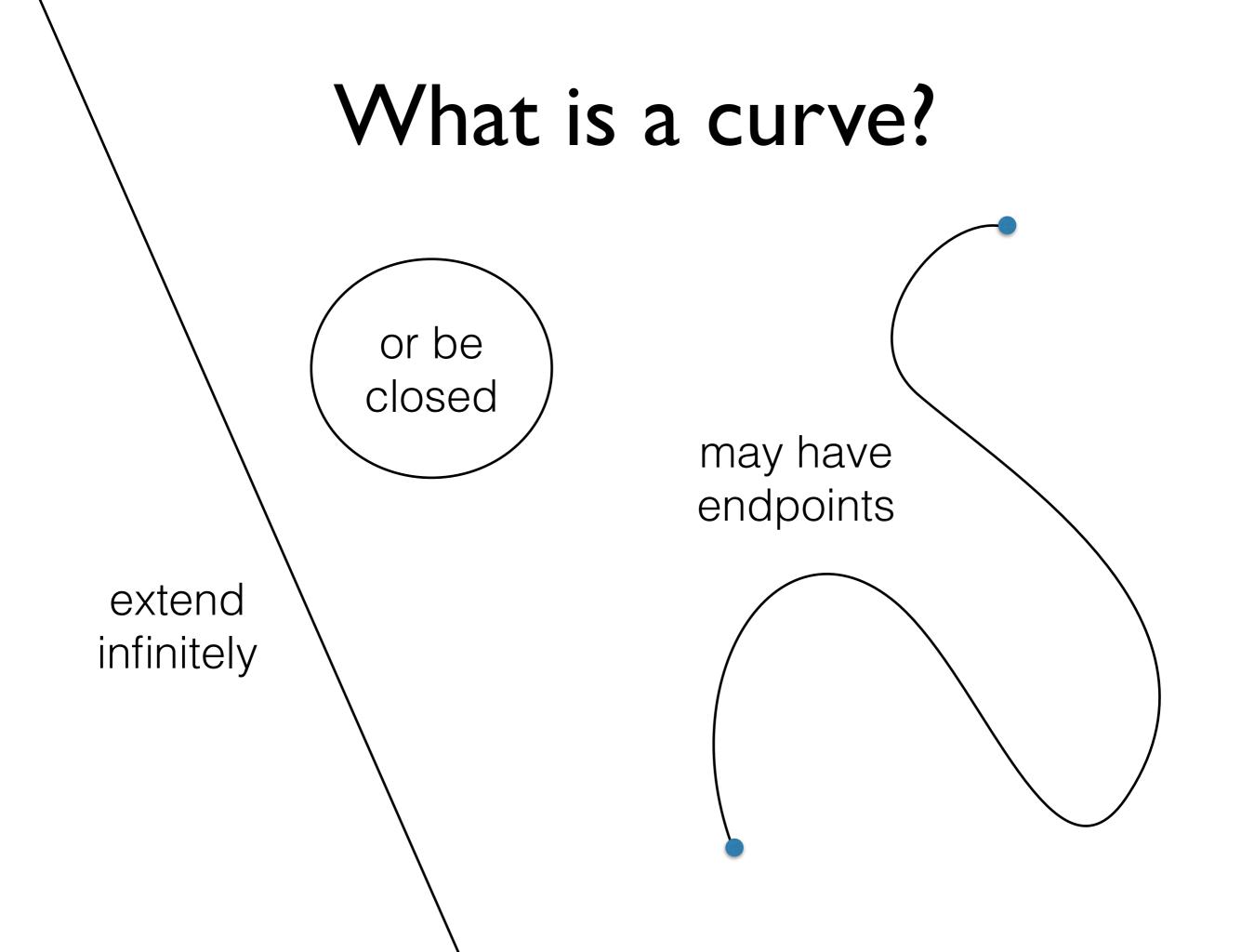
approximate out of a number of wood strips

What is a curve?

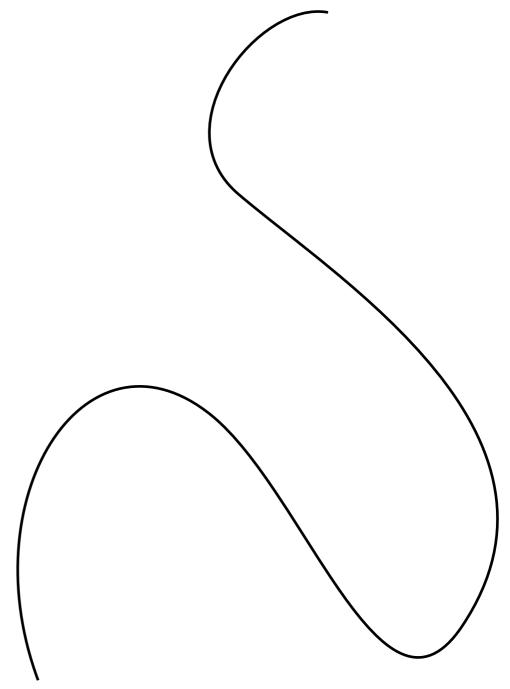
intuitive idea: draw with a pen set of points the pen traces

may be 2D, like on paper or 3D, *space curve*





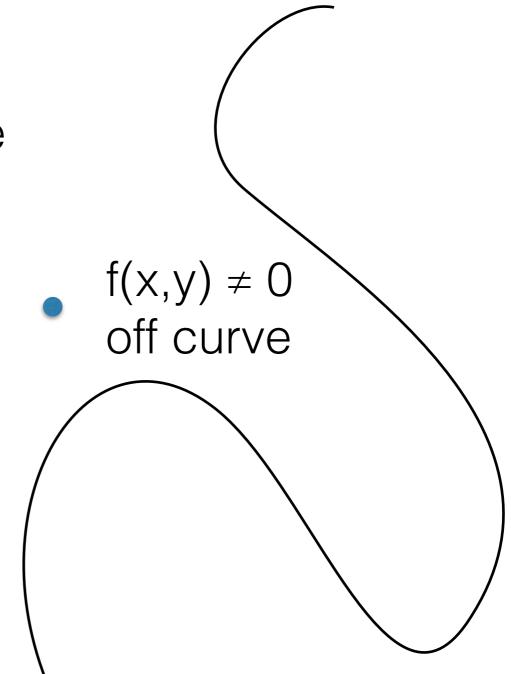
Implicit (2D) f(x,y) = 0test if (x,y) is on the curve



Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

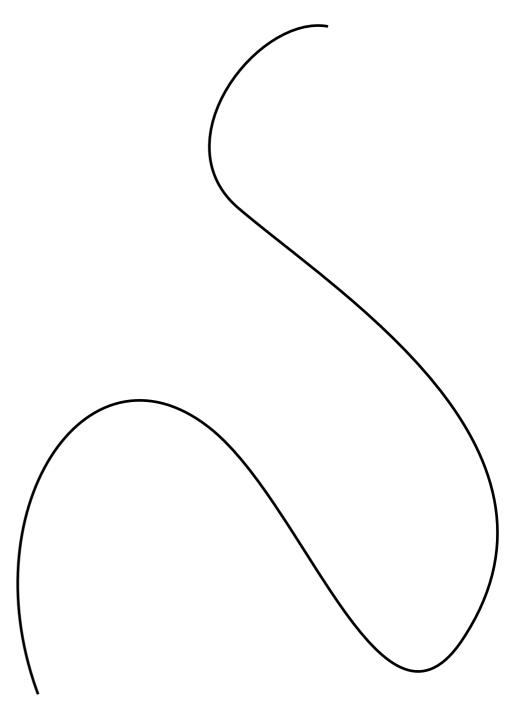
f(x,y) = 0
on curve

Implicit (2D) f(x,y) = 0test if (x,y) is on the curve



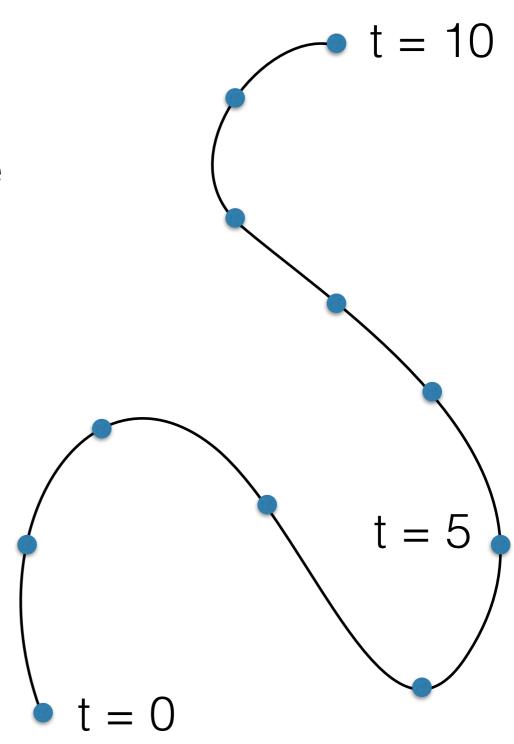
Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric (2D)(x,y) = f(t) (3D)(x,y,z) = f(t)map free parameter t to points on the curve



Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

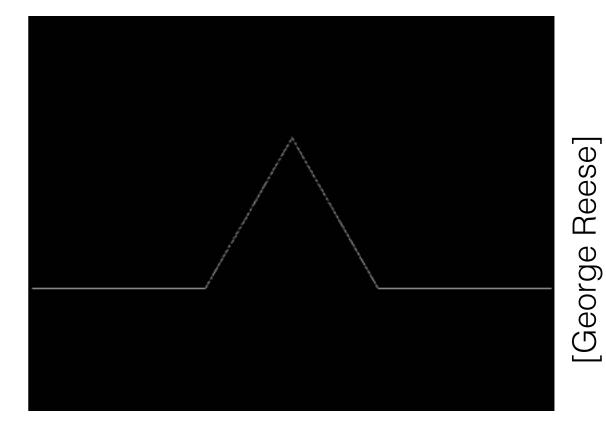
Parametric (2D)(x,y) = f(t) (3D)(x,y,z) = f(t)map free parameter t to points on the curve



Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric (2D) (x,y) = f(t) (3D) (x,y,z) = f(t)map free parameter t to points on the curve

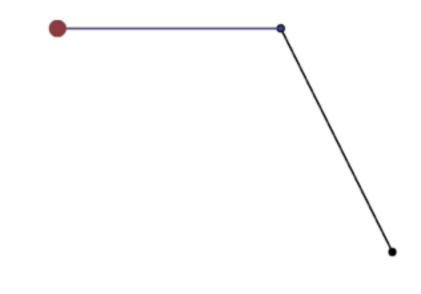
Procedural e.g., fractals, subdivision schemes



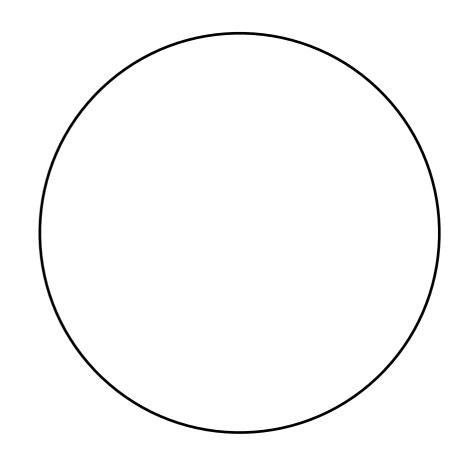
Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

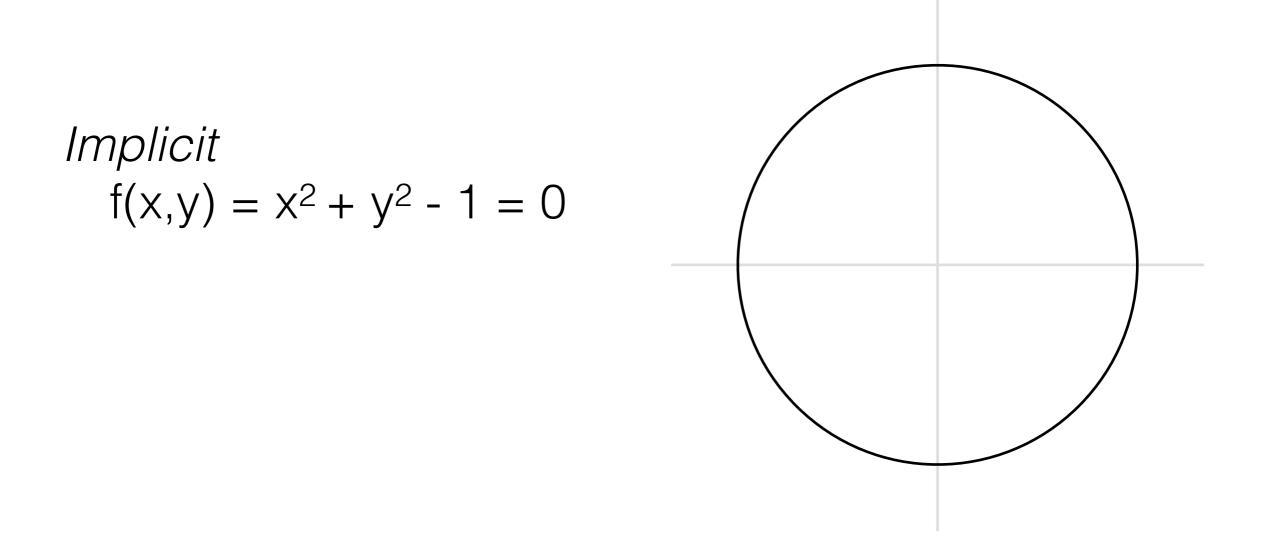
Parametric (2D)(x,y) = f(t) (3D)(x,y,z) = f(t)map free parameter t to points on the curve

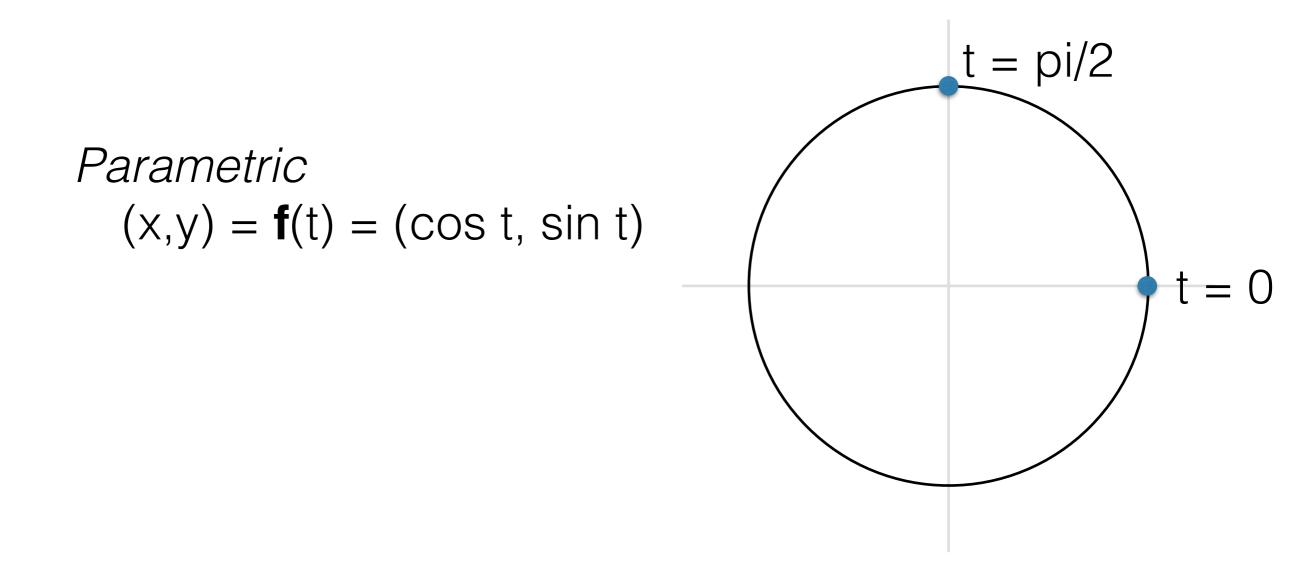
Procedural e.g., fractals, subdivision schemes

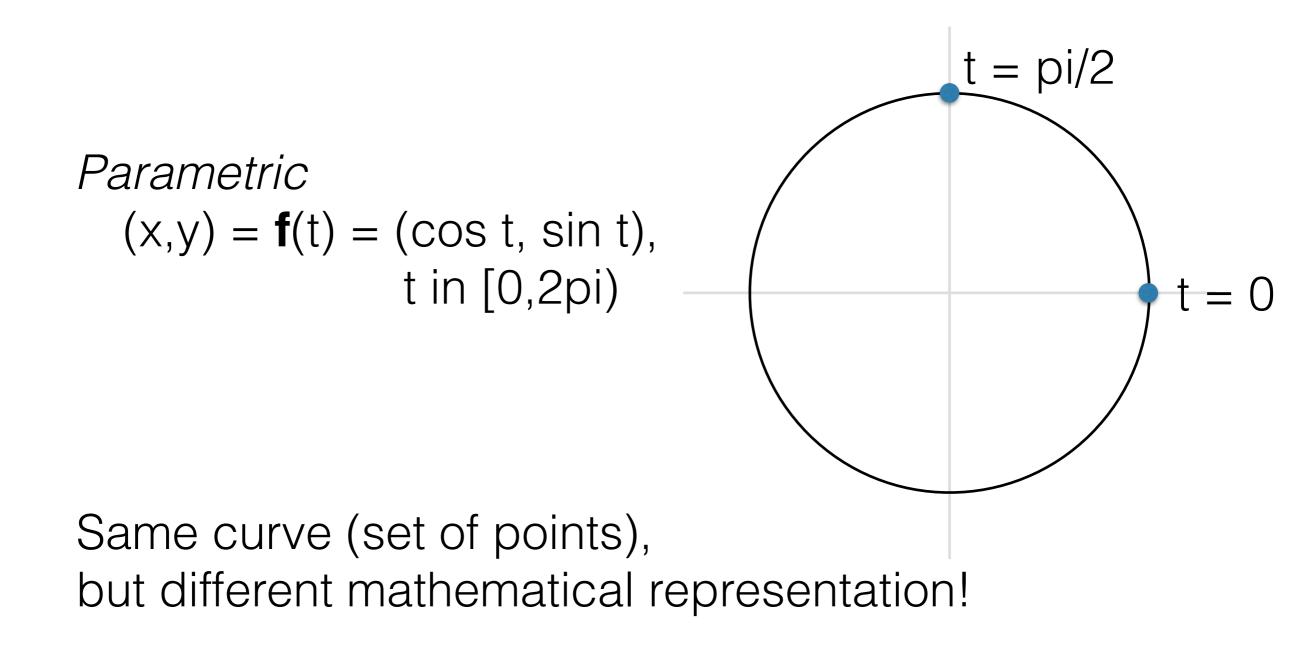


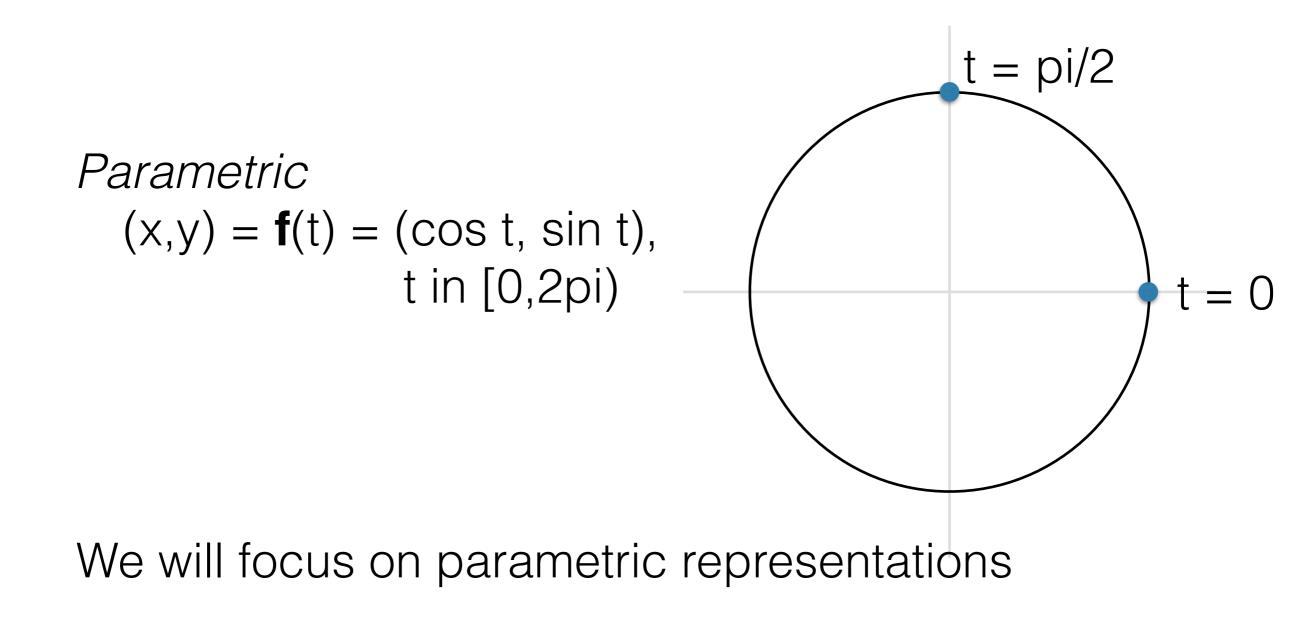
Bezier Curve

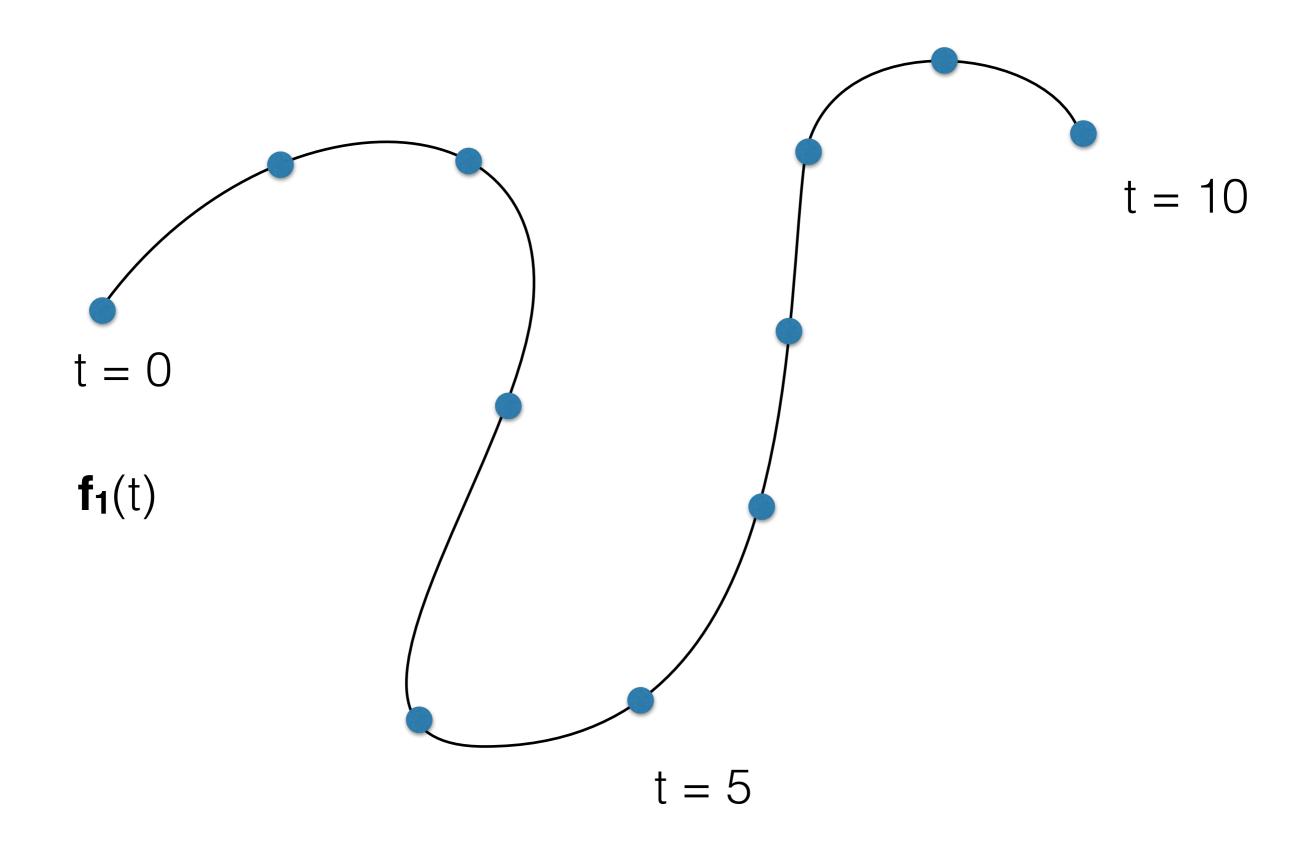


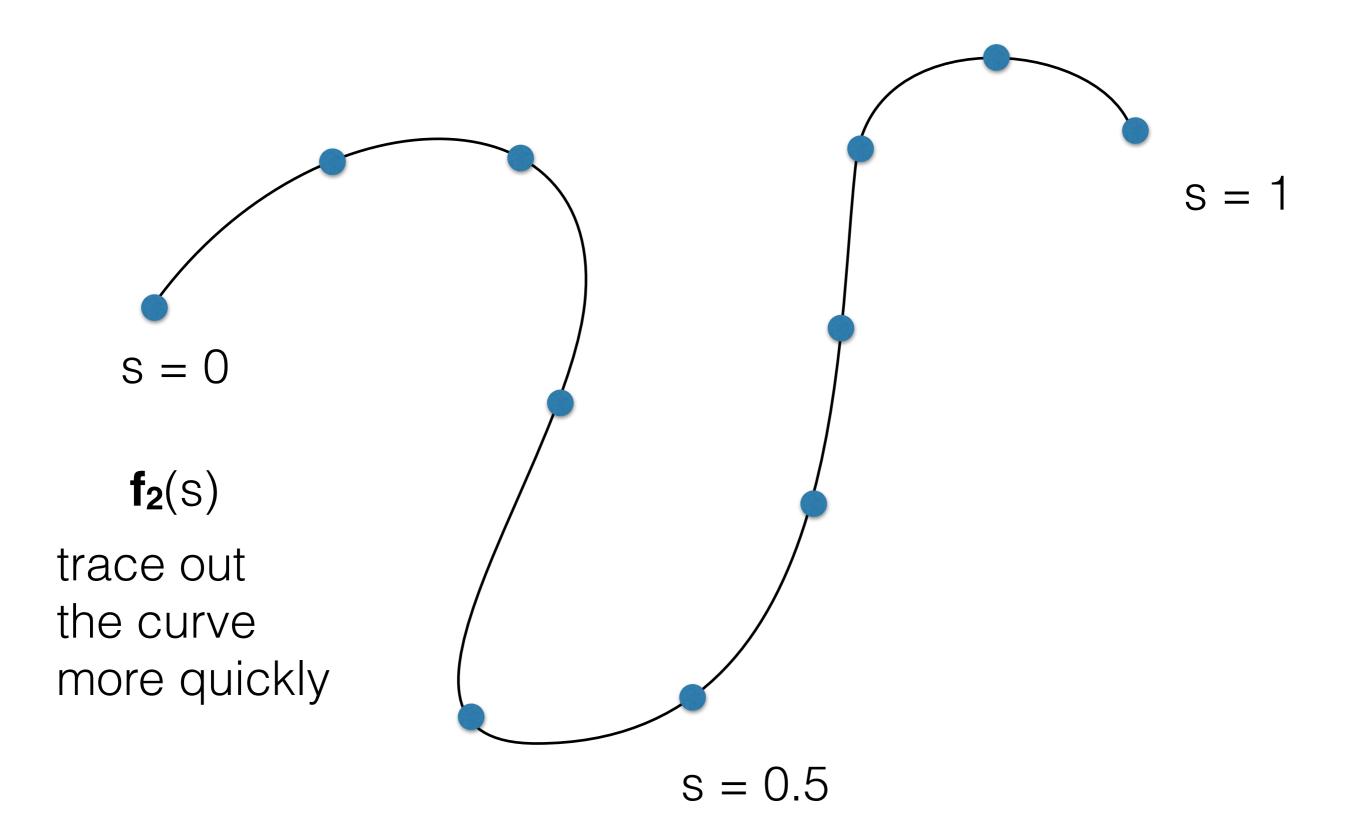


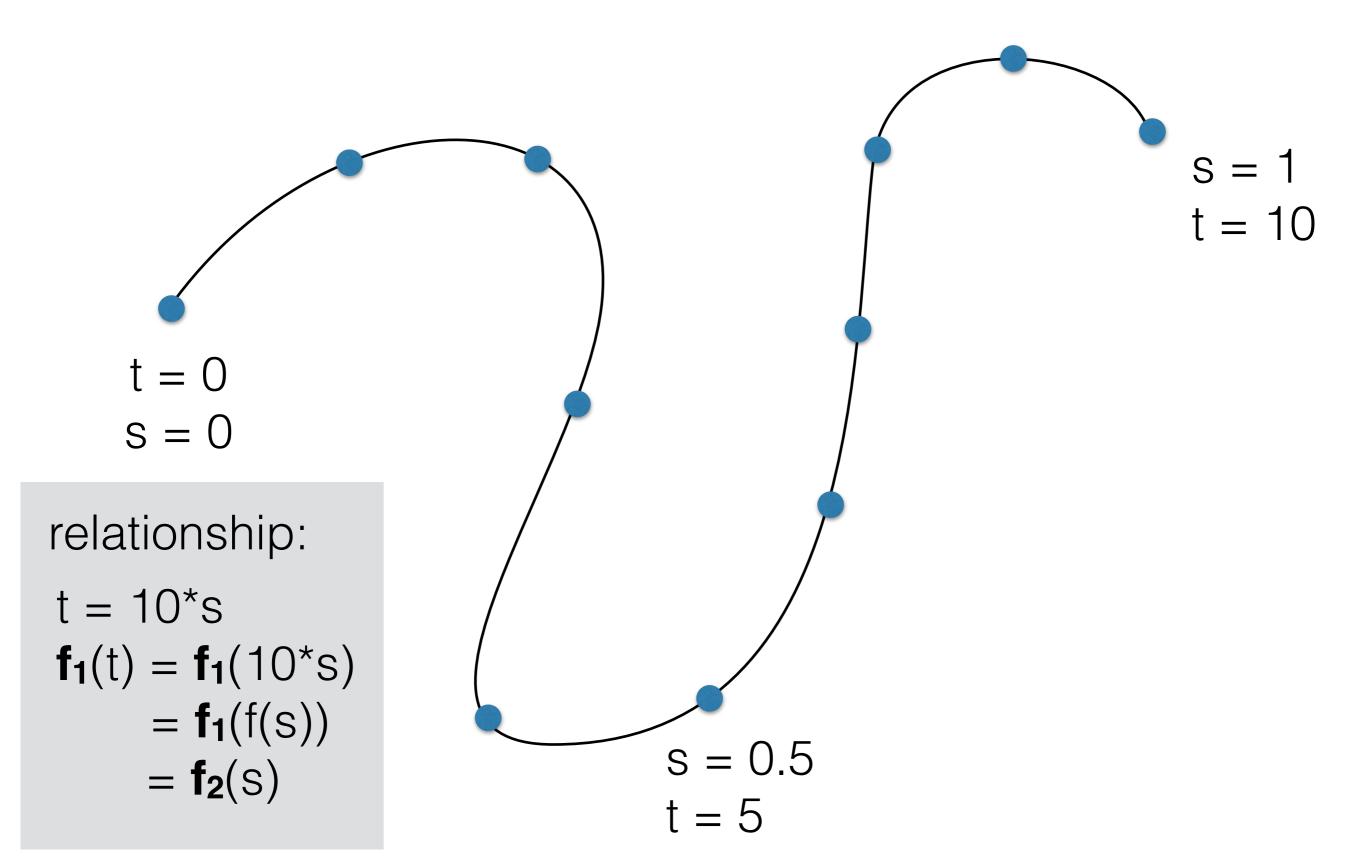


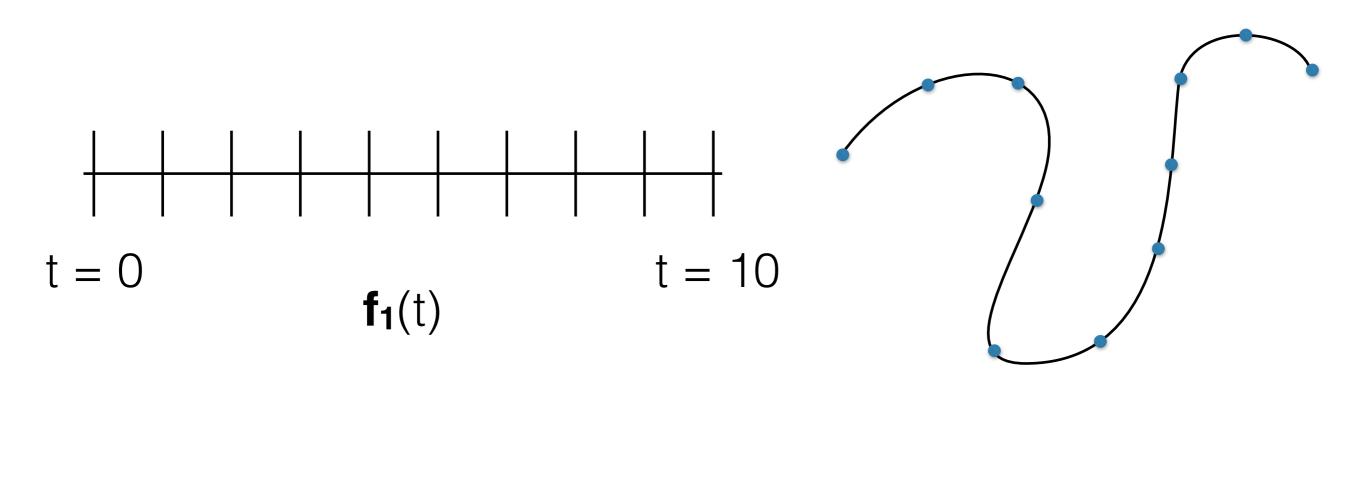


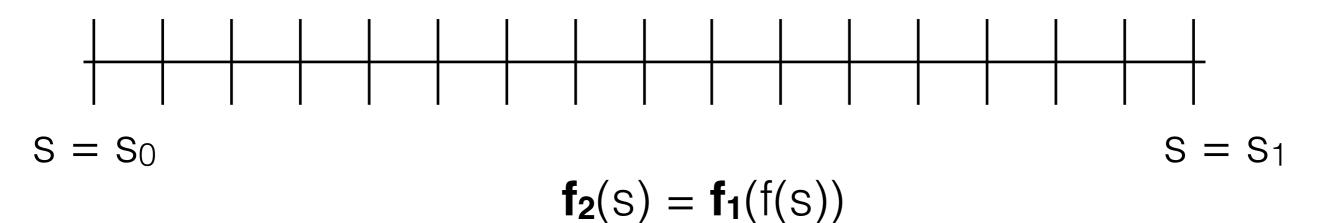


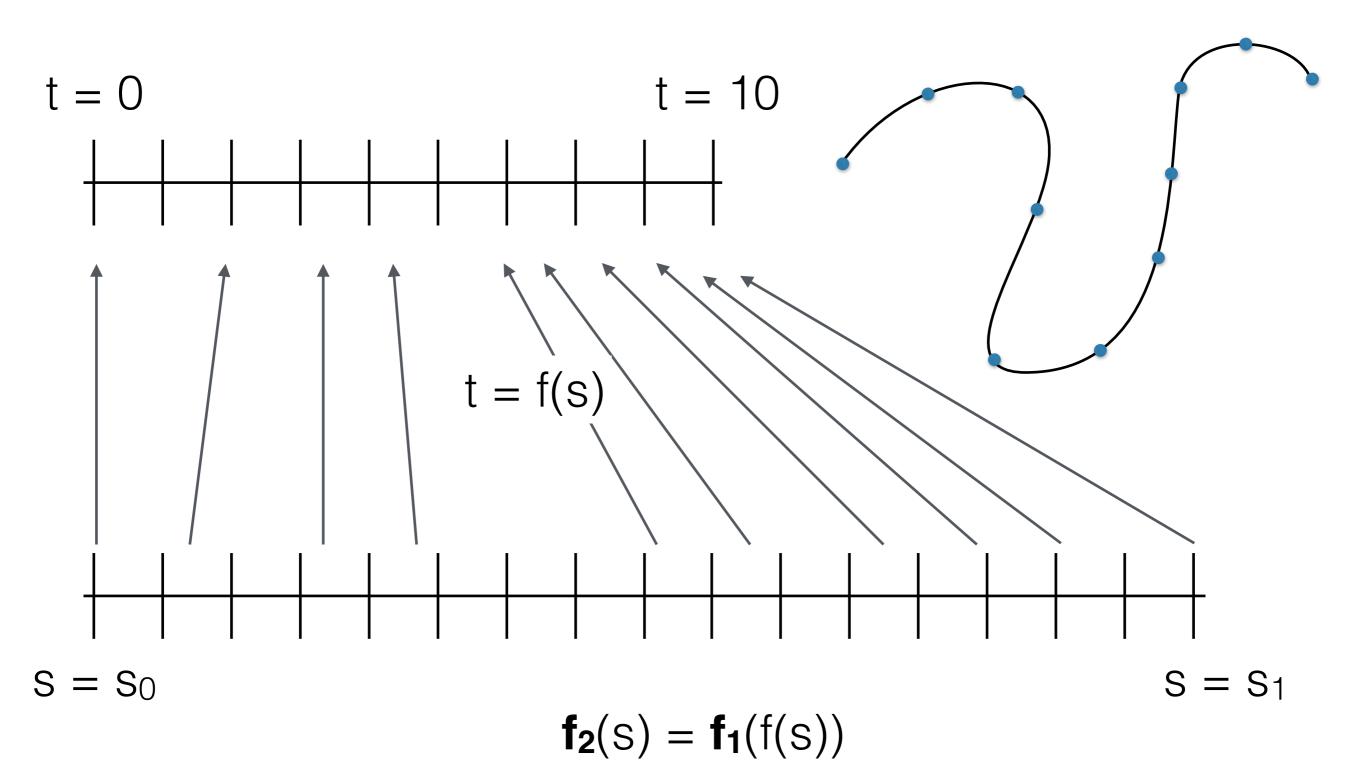


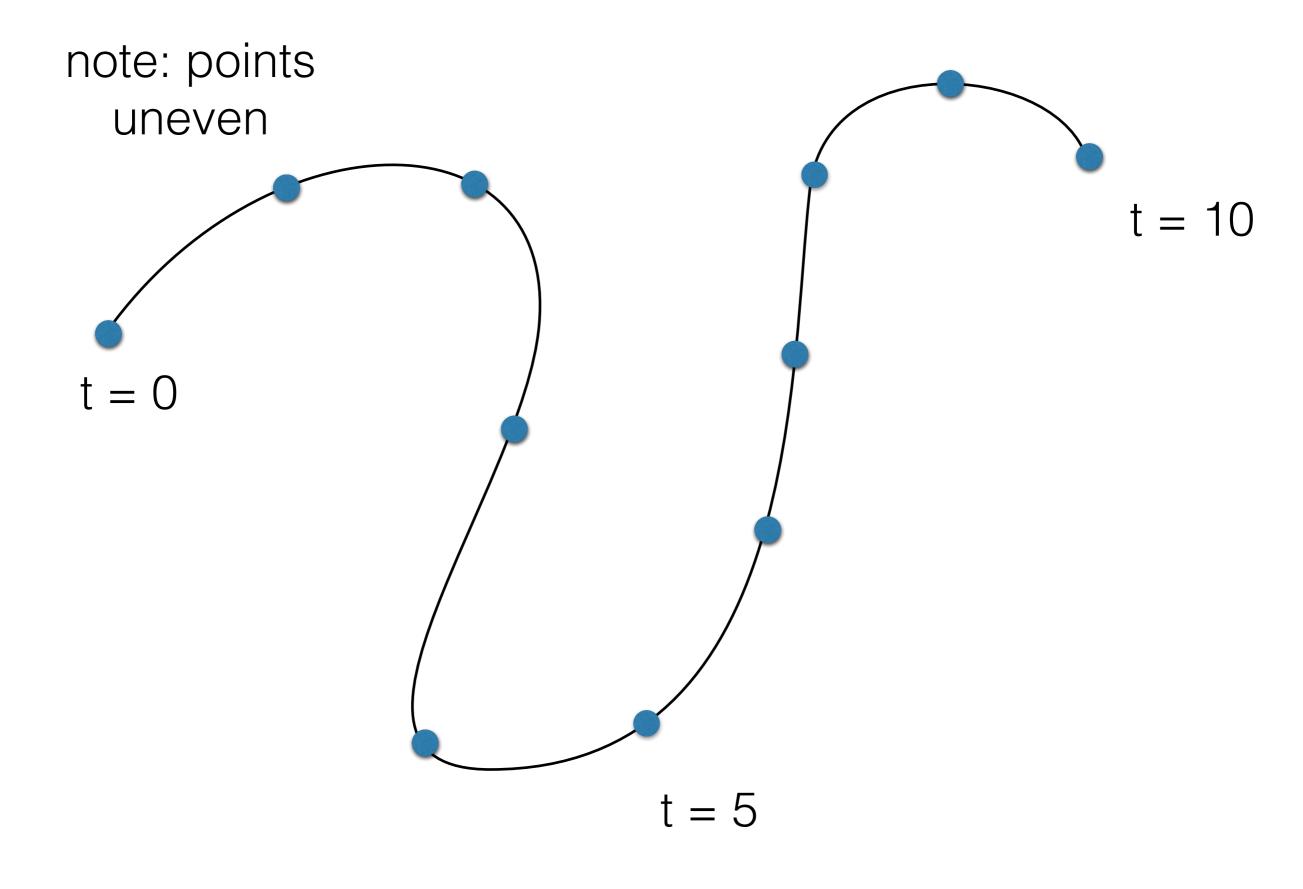


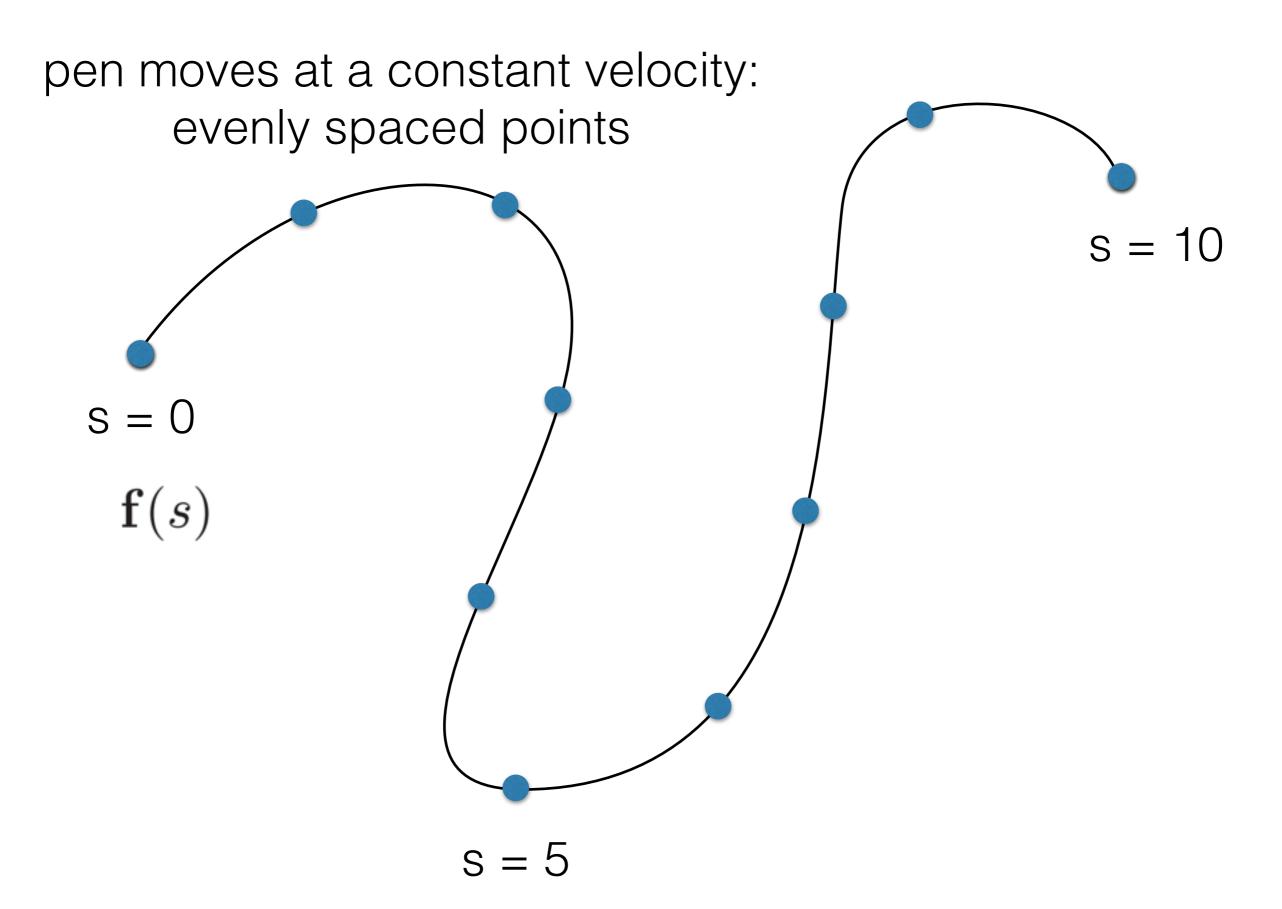


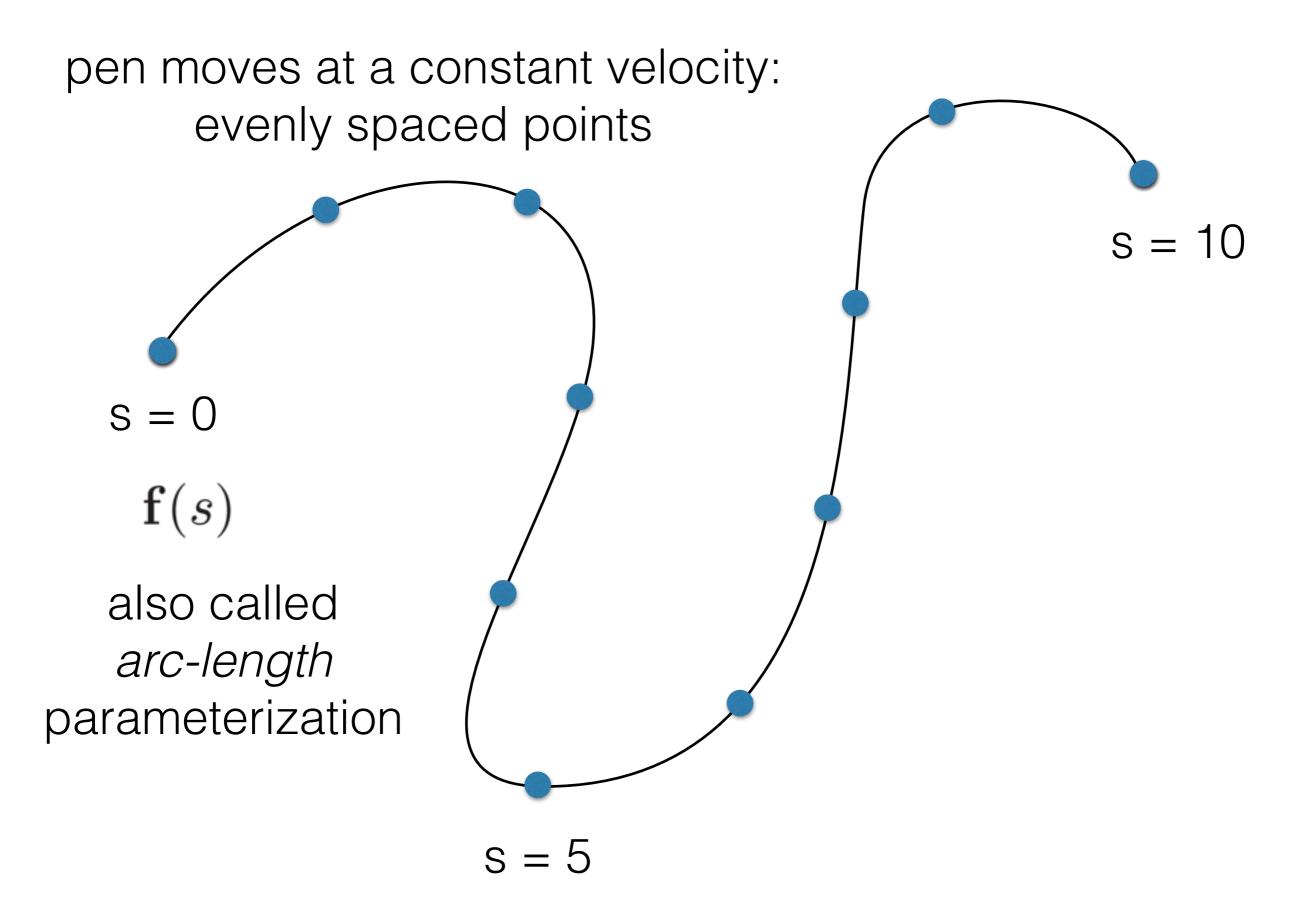


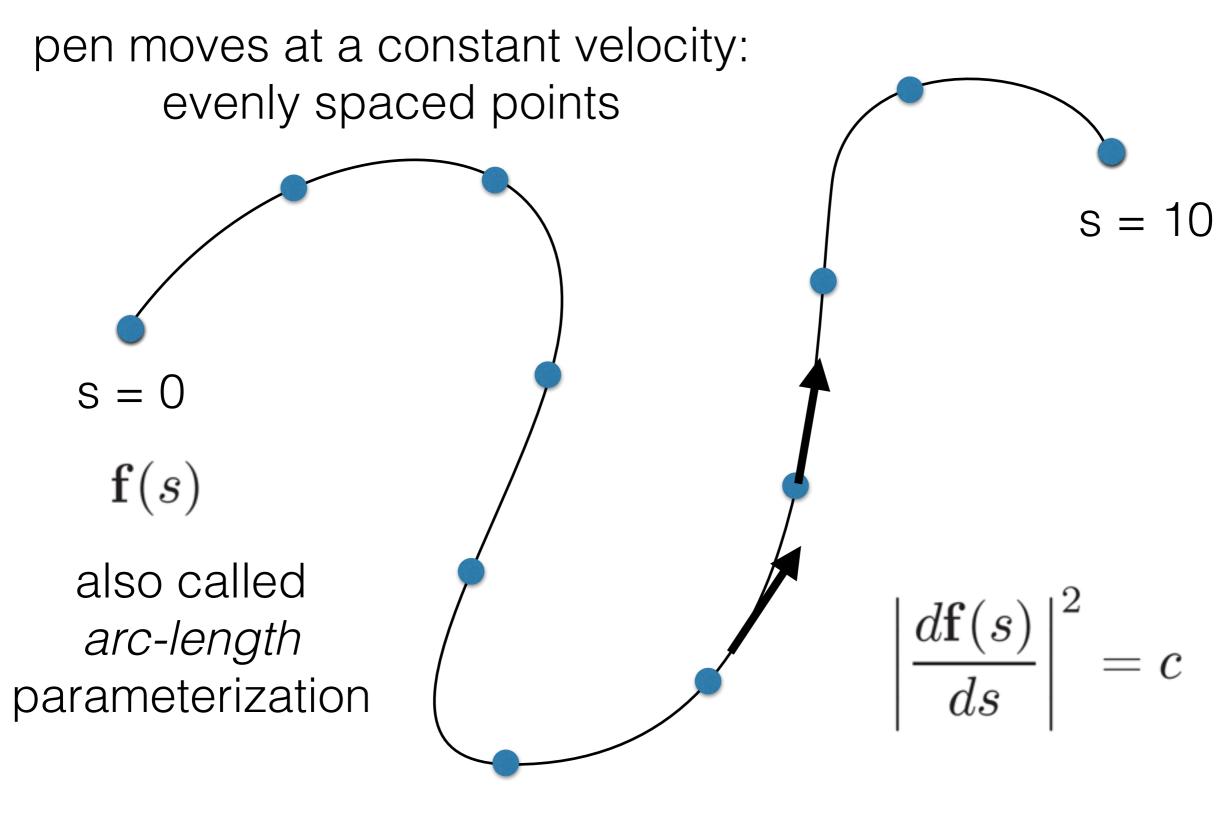








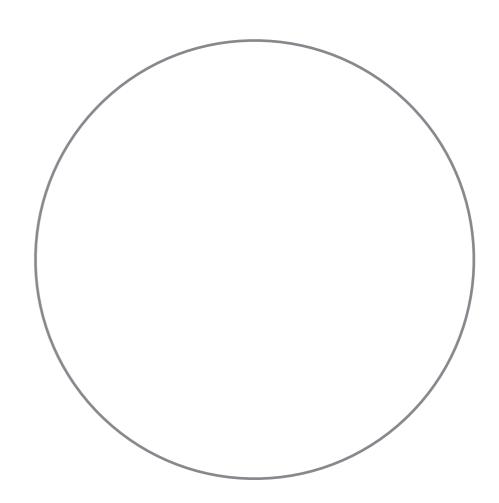


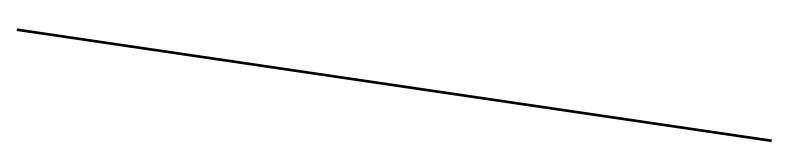


s = 5

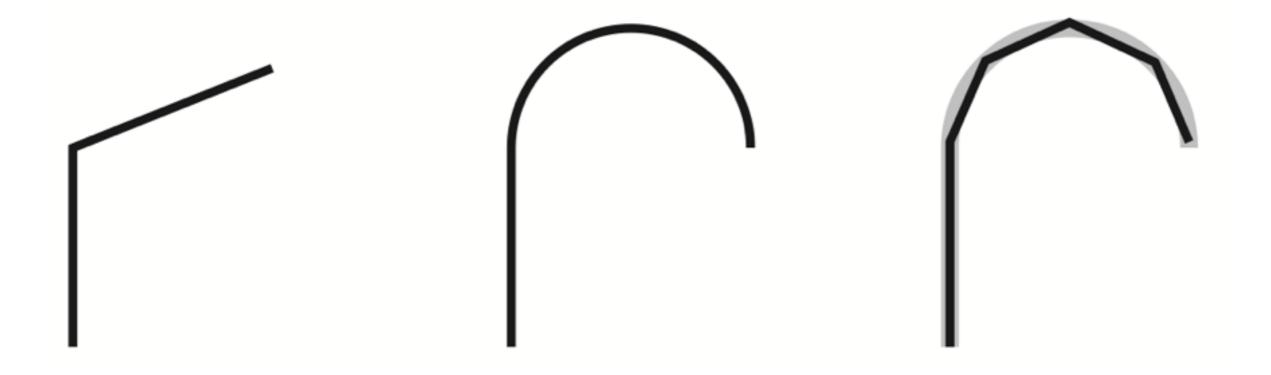
sometimes easy to find a parametric representation

e.g., circle, line segment

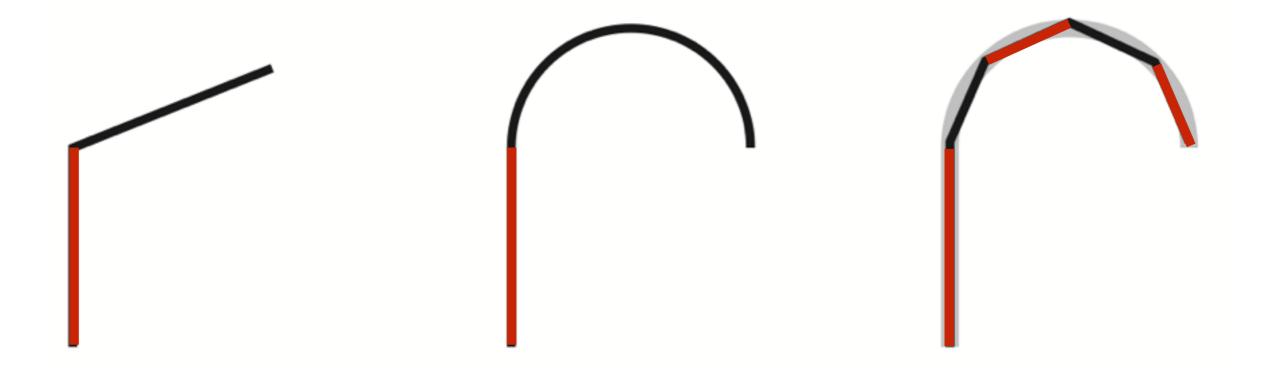




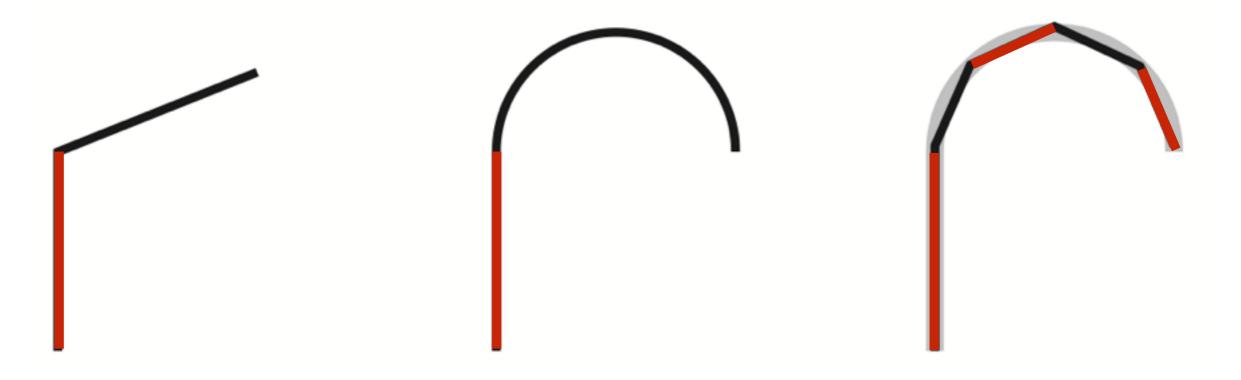
in other cases, not obvious



strategy: break into simpler pieces



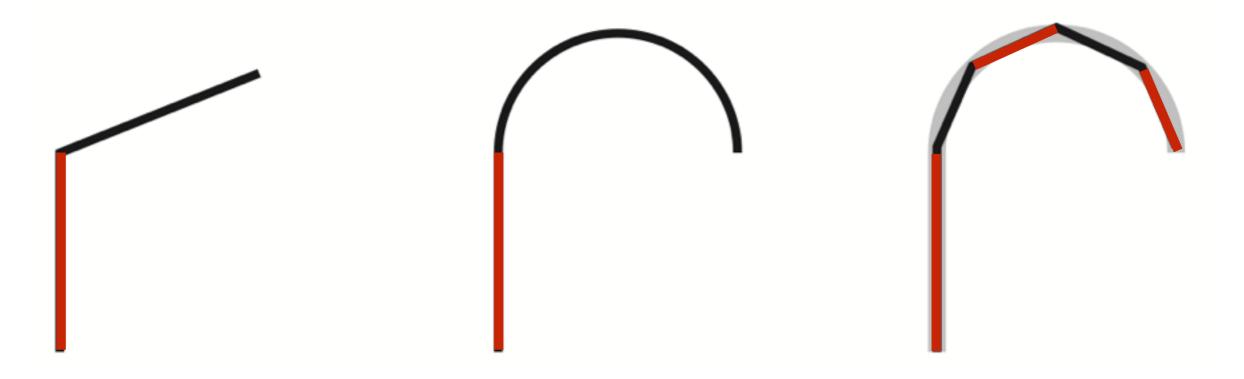
strategy: break into simpler pieces



switch between functions that represent pieces:

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \le 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases}$$

strategy: break into simpler pieces



switch between functions that represent pieces:

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \leq 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases} \quad \text{map the inputs to} \\ \mathbf{f}_1 \text{ and } \mathbf{f}_2 \\ \text{to be from 0 to 1} \end{cases}$$

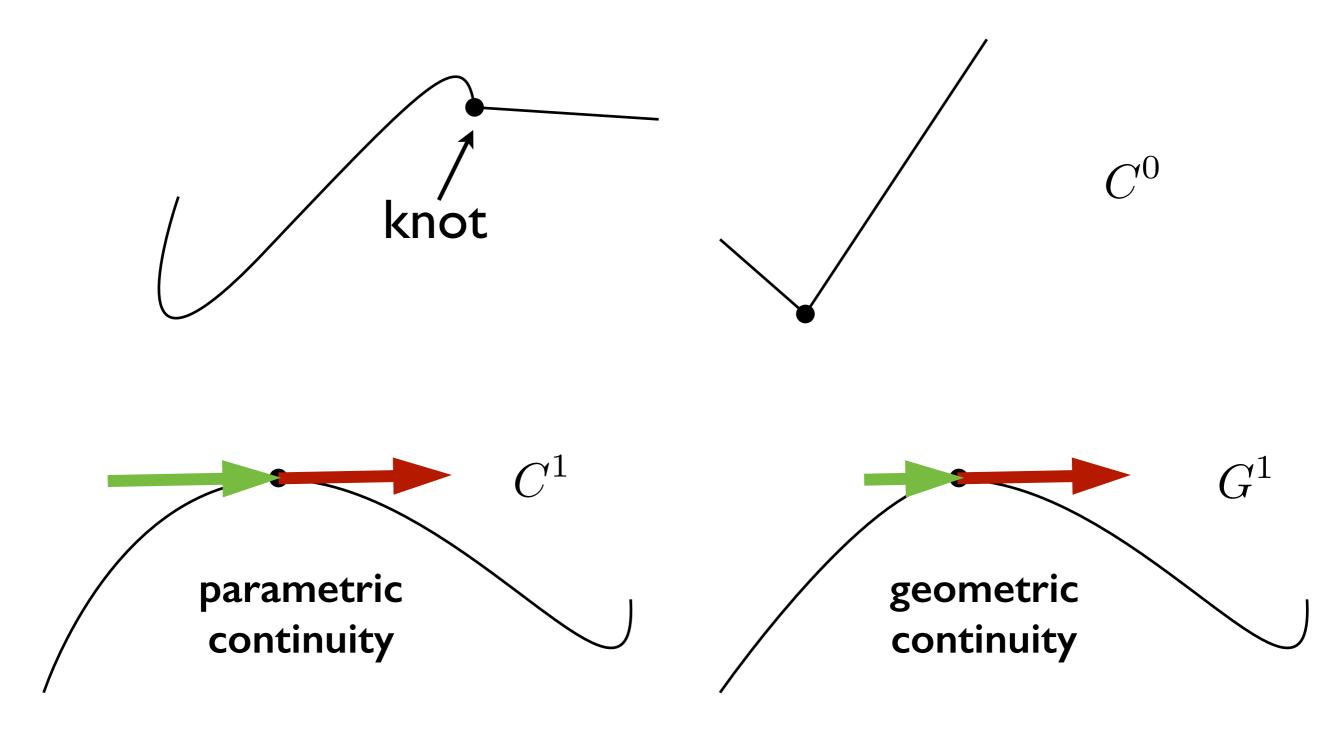
Curve Properties

Local properties: continuity position direction curvature

Global properties (examples): closed curve curve crosses itself

Interpolating vs. non-interpolating

Continuity: stitching curve segments together



Finding a Parametric Representation

Polynomial Pieces

<whiteboard>