CSI30 : Computer Graphics Animation

Tamar Shinar Computer Science & Engineering UC Riverside

Types of animation

- keyframing
- rotoscoping
- stop motion
- procedural
- simulation
- motion capture

history

Gertie the Dinosaur

1914
12 minutes
hand drawn
keyframe animation
registration
cycling

link

Traditional animation

Cels

Multiplane camera

Sleeping Beauty, Disney, 1959

Realistic 3D animation

- Disney's Tron, 1981
- Pixar's Toy Story, 1995, first 3D feature

Performance capture

Rise of the Planet of the Apes, 2011

Lord of the Rings, 2001

Avatar, 2009

Disney's Paperman

Paperman and the Future of 2D Animation

animation principles

SQUASHED 8 STRETCHED & TWISTED DEJECTED Joy TANTRUM CURIOUS BELLIGERENT MORE HANSATER LAUGHTER COCKY The famous half-filled flour sack, guide to maintaining CRYING volume in any animatable shape, and proof that attitudes can be achieved with the simplest of shapes.

12 principles of animation

- I. Squash and stretch
- 2. Anticipation
- 3. Staging

- 4. Straight ahead action and pose to pose
- 5. Follow through and overlapping action
- 6. Slow in and slow out
- 7.Arcs
- 8. Secondary action
- 9. Timing
- 10. Exaggeration
- II. Solid drawing
- 12. Appeal

Physics-based animation

- Many animation principles follow from underlying physics
 - anticipation, follow through, secondary action, squash and stretch, ...
- Spacetime Constraints, Witkin and Kass 1988

keyframe animation

Keyframe animation

- draw a series of poses
- fill in the frames in between ("inbetweening")
 - computer animation uses interpolation

http://anim.tmog.net

Luxo Jr.

multiple possible states of joints

inverse kinematics

[Shirley and Marschner]

Keyframe character DOFs

3 translational DOFs

48 rotational DOFs

Each joint can have up to 3 DOFs

Straightforward to interpolate position but what about orientation?

need to consider both shape of motion and speed of motion

[Shirley and Marschner]

Character Skinning

[McAdams et al. 2011]

Character Skinning

[McAdams et al. 2011]

free form deformation

[Sederberg 1986]

[Shirley and Marschner]

facial animation

©2004 Disney/Pixar

Facial animation

procedural animation

Artificial life

- plants movement and growth
- evolving artificial life

Crowd simulation

[Treuille et al. 2006]

physics-based animation

Particles

mass m $\mathbf{3} \operatorname{dof}$ $\vec{X} = (x, y, z)$

mass m**3 dof** $\vec{X} = (x, y, z)$

forces: e.g., gravity

$$\vec{F} = -m\vec{g}$$

Equations of motion: Newton's 2nd Law

$$\vec{F} = m\vec{a}$$

Equations of motion: Newton's 2nd Law

$$\vec{F} = m\vec{a}$$

$$\frac{d\vec{x}}{dt} = \vec{v}$$
$$m\frac{d\vec{v}}{dt} = \vec{F}$$

System of ODEs

Deformable bodies

Connect a bunch of particles into a <u>ID line</u> segment with springs

A Mass Spring Model for Hair Simulation

Selle, A., Lentine, M., G., and Fedkiw, R. ACM Transactions on Graphics SIGGRAPH 2008, ACM TOG 27, 64.1-64.11 (2008)

Connect a bunch of particles into a <u>2D mesh</u>

Selle, A., Su, J., Irving, G., and Fedkiw, R. IEEE Transactions on Visualization and Graphics (TVCG) 15(2) 339-350

Connect a bunch of particles into a <u>3D mesh</u>

Deformable bodies: equations of motion

Equations of motion: Newton's 2nd Law

$$\vec{F} = m\vec{a}$$

$$\frac{d\vec{x}}{dt} = \vec{v}$$

$$m\frac{d\vec{v}}{dt} = \vec{F}$$

$$\mathbf{PDEs}$$

contains spatial derivatives

Rigid bodies

Rigid bodies

6 dofs forces and torques elastic collisions ODEs

 $(\vec{F},\vec{\tau})$

Rigid body phenomena

stacking collisions, conta friction articulation, control

Articulated rigid bodies

Rachel Weinstein, Joey Teran and Ron Fedkiw

Rigid body simulation

[Weinstein et al 2006]

Rigid and deformable solids coupled together...

Fracture

[Molino et al. 2004]

Contact and collision

frame 25: (1.04167)

Simultaneous resolution of contact, elastic deformation, articulation constraints

our rigid/deformable simulator in Pixar's WALL-E

Fluid simulation

In fluid simulation, we often use a grid-based representation

Fluid equations of motion: Navier-Stokes equations

$$\vec{F} = m\vec{a}$$

$$\rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) = \mu \triangle \mathbf{u} - \nabla p + \mathbf{f}$$

<u>A Vortex Particle Method for Smoke, Water and Explosions</u> Selle, A., Rasmussen, N. and Fedkiw, R. SIGGRAPH 2005, ACM TOG 24, pg 910-914.

Two-way Coupled SPH and Particle Level Set Fluid Simulation

Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R. IEEE TVCG 14, No. 4 (2008)

Control of virtual character

[Shinar et al. 2008]

rigid/deformable simulator in Pixar's WALL-E