Name:

Student ID:

CS130 Homework 3

- 1. Find a sequence of transformation matrices (translation, rotation, and scaling matrices) that map the triangle ABC to the triangle ABC.
- 2. What kinds of transformations can a rigid body undergo?
- 3. List all the viewing transformations in the graphics pipeline.
- 4. The z-buffer approach to rendering
 - I. selects which fragment to draw based on its depth
 - II. orders triangles from back to front
 - III. selects which vertices to clip based on their z-values
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) I, II and III
- 5. Indicate where each statement is true or false.
 - (T / F) The viewport transformation maps from normalized device coordinates to screen space.
 - (**T** / **F**) Given any matrices M_1 , M_2 , and M_3 , it must be true that $M_3M_2M_1 = M_1M_2M_3$.

- (**T** / **F**) Given invertible matrices M_1 , M_2 , and M_3 , $(M_3M_2M_1)^{-1} = M_1^{-1}M_2^{-1}M_3^{-1}$.
- (T / F) If a function is linear it is also affine.
- (T / F) All rotations in 3D space can be specified with 2 real numbers.
- (T / F) The inverse of a translation matrix is its transpose.
- 6. Perspective transformations
 - I. are linear transformations
 - II. keep parallel lines parallel
 - III. are affine transformations
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I, II and III
 - (e) None
- 7. What is the matrix on top of the current matrix stack after the following functions are called?
 - glLoadIdentity(); glScalef(2,2,1); glPushMatrix(); glScalef(1,1,1); glTranslatef(1,0,0); glPushMatrix(); glTranslatef(1,0,0); glPopMatrix(); glPopMatrix(); glTranslatef(2,0,0);