
CS130 : Computer Graphics
Lecture 7: Viewing Transformations (cont.)

Tamar Shinar
Computer Science & Engineering

UC Riverside

Viewing Transformations

Viewing transformations

• Move objects from their 3D locations to their positions
in a 2D view

World
space

Image
space

Viewing transformations

World coordinates Screen
coordinates

The viewing transformation also project any pixels viewing ray back to the pixel’s position in image space

Decomposition of viewing transforms

Viewport
transform

Projection
transform

Camera
transform

•rigid body
transformation
•place camera at
origin

•x, y, z in [-1,1]
•depends on type
of projection

•map to pixel
coordinates

Viewing transforms depend on: camera position and orientation, type of projection,
field of view, image resolution

there are several names for these spaces: “camera space” = “eye space”, “canonical view volume” = “clip space”= “normalized device coordinates”, “screen
space=pixel coordinates”
and for the transforms: “camera transformation” = “viewing transformation”

Viewport transform

Viewport
transform

Projection
transform

Camera
transform

Viewport transform

<whiteboard>

Viewport
transform

Projection
transform

Camera
transform

Orthographic Projection Transform

Viewport
transform

Projection
transform

Camera
transform

<whiteboard>

Camera Transform

Viewport
transform

Projection
transform

Camera
transform

Camera Transform
How do we specify the camera configuration?

Camera Transform
How do we specify the camera configuration?

eye
position

Camera Transform
How do we specify the camera configuration?

gaze
direction

Camera Transform
How do we specify the camera configuration?

up
vector

Camera Transform
How do we specify the camera configuration?

Camera Transform

<whiteboard>

Viewport
transform

Projection
transform

Camera
transform

Perspective Viewing

rigid - translation and rotation only - parallel lines and angles are preserved  
affine - scaling, shear, translation, rotation - parallel lines preserved, angles not preserved projective - parallel lines
and angles not preserved

note that the height, y’, in camera space is proportional to y and inversely proportion to z. We want to be able to
specify such a transformation with our 4x4 matrix machinery

How can we
represent this with
our 4x4 matrices?
<whiteboard>

note that the height, y’, in camera space is proportional to y and inversely proportion to z. We want to be able to
specify such a transformation with our 4x4 matrix machinery

<whiteboard>

Note: this makes our homogeneous representation for points unique only up to a constant

note that both x and y will be transformed

This simple projection matrix won’t suffice. We need to preserve z information for later hidden surface removal.
whiteboard: derive P

The perspective transformation does not preserve z completely, but it preserves z = n, f and is monotone (preserves
ordering) with respect to z

So far we’ve mapped the view frustum to a rectangular box. This rectangular box has the same near face as the view
frustum. The far face has been mapped down to the far face of the box. This mapping is given by P. The bottom
figure shows how lines in the view frustum get mapped to the rect. box.

We’re not quite done yet thought, because the projection transform should map the view frustum to the canonical
view volume.

We need a second mapping to get our points into the canonical view volume. This second mapping is a mapping from
one box to another. So it’s given by an orthographic mapping, M_orth. The final perspective transformation is the
composition of P and M_orth.

Hereʼs how you set up a perspective view in OpenGL. Note that near and far are both negative, but you pass their absolute values to OpenGL.

Sometimes itʼs more convenient to just give an angle, the field-of-view, and an aspect ratio, instead of l, r, t, b. The glu library provides such a function. It will figure out l, r, t, b, and
call glFrustum for you.

