CSI 30 : Computer Graphics

Lecture 5:Viewing Transformations
Tamar Shinar
Computer Science \& Engineering
UC Riverside

Hidden Surface Removal

paint distant objects before near objects
sort polygons in a scene by depth and draw in that order

- still draws invisible parts
uses "depth ordering"
- Example: note parts of meadow are nearer than distant trees - but ordering is based on occlusion

Occlusion

"painter's algorithm" draw primitives in back-tofront order

problem:

triangle intersection

Occlusion

"painter's algorithm" draw primitives in back-tofront order

problem:

 occlusion cycle
Use a z-buffer for hidden surface removal

- assume both spheres of the same size, red drawn last

Use a z-buffer for hidden surface removal

at each pixel, record distance to the closest object that has been drawn in a depth buffer

Use a z-buffer for hidden surface removal

done in the fragment blending phase
-each fragment must carry a depth

- usually used fixed precision depth buffers - can get errors due to roundoff

Use a z-buffer for hidden surface removal

http://www.beyond3d.com/content/articles/4I/
fragment has z value and color value

- compare z value to old z value at that pixel
- if new value is nearer replace both color value and z value

Backface culling: another way to eliminate hidden geometry

Hidden Surface Removal in OpenGL

```
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
```

For a perspective transformation, there is more precision in the depth buffer for z-values closer to the near plane

Transformation Matrices <whiteboard>

