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Blending Functions 



Blending functions are more convenient 
basis than monomial basis

• “geometric form” (blending functions)

• “canonical form” (monomial basis)

- geometric form (bottom) is more intuitive because it combines control points with blending functions
[ see Shirley Section 15.3]



Interpolating Polynomials 



Interpolating polynomials

• Given n+1 data points, can find a unique interpolating 
polynomial of degree n

• Different methods:

• Vandermonde matrix

• Lagrange interpolation

• Newton interpolation



higher order interpolating 
polynomials are rarely used

overshoots

non-local effects
4th order (gray) to 5th order (black)

These images demonstrate problems with using higher order polynomials:
- overshoots
- non-local effects (in going from the 4th order polynomial in grey to the 5th order polynomial in black)



Piecewise Polynomial Curves



Example: blending functions for 
two line segments

b1(u) = 1-2u,  0 <= u  <= .5
             0         .5 <= u <= 1
b2(u) = 2u,  0 <= u <= .5
            2(1-u),  .5 <= u <= 1
b3(u) = 0 ,  0 <= u <= .5
             2u-1, .5 <= u <= 1



Cubics

• Allow up to C2 continuity at knots

• need 4 control points

• may be 4 points on the curve, combination of points 
and derivatives, ...

• good smoothness and computational properties

need 4 control points: might be 4 points on the curve, combination of points and derivatives, ...



We can get any 3 of 4 properties

1.piecewise cubic

2.curve interpolates control points

3.curve has local control

4.curves has C2 continuity at knots



Cubics

• Natural cubics

• C2 continuity

• n points -> n-1 cubic segments

• control is non-local :(

• ill-conditioned x(



Cubic Hermite Curves

• C1 continuity

• specify both positions and derivatives



Cubic Hermite Curves

/

/

Specify endpoints
and derivatives

construct 
curve with

C^1 continuity



Hermite blending functions

[Wikimedia Commons]



Example: keynote curve tool



Interpolating vs. Approximating Curves

Interpolating Approximating
(non-interpolating)

approximating 



Cubic Bezier Curves



Cubic Bezier Curves

-The curve interpolates its first (u=0) and last (u = 1) control points
- first derivative at the beginning is the vector from first to second point, scaled by degree



Cubic Bezier Curve Examples



Cubic Bezier blending functions



Bezier Curves Degrees 2-6
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Bernstein Polynomials

•The blending functions are a special 
case of the Bernstein polynomials 

•These polynomials give the blending 
polynomials for any degree Bezier form 

All roots at 0 and 1 
For any degree they all sum to 1 
They are all between 0 and 1 inside (0,1) 
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n = 3

n = 4

n = 5

n = 6



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision

Shirley Section 15.6.1 (p. 368)



Joining Cubic Bezier Curves

for C1 continuity, the vectors must line up and be the same length
for G1 continuity, the vectors need only line up
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Evaluating p(u) geometrically
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Evaluating p(u) geometrically



Evaluating p(u) geometrically

De Casteljau algorithm

Kas-tell-joh



Bezier subdivision

de Casteljau algorithm
Left: Subdivide the curve at the point u=.5 
Right: Subdivide the curve at some other point u



Recursive Subdivision for Rendering



Cubic B-Splines



Cubic B-Splines



Spline blending functions



General Splines

• Defined recursively by Cox-de Boor recursion formula



Spline properties

convexity

Basis functions



Surfaces



Parametric Surface



Parametric Surface - 
tangent plane



Bicubic Surface Patch



Bezier Surface Patch

Patch lies in 
convex hull


