CSI 30 : Computer Graphics

 Curves (cont.)Tamar Shinar
Computer Science \& Engineering
UC Riverside

Blending Functions

Blending functions are more convenient basis than monomial basis

- "canonical form" (monomial basis)

$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- "geometric form" (blending functions)

$$
\mathbf{f}(u)=b_{0}(u) \mathbf{p}_{0}+b_{1}(u) \mathbf{p}_{1}+b_{2}(u) \mathbf{p}_{2}+b_{3}(u) \mathbf{p}_{3}
$$

Interpolating Polynomials

Interpolating polynomials

- Given $n+1$ data points, can find a unique interpolating polynomial of degree n
- Different methods:
- Vandermonde matrix
- Lagrange interpolation
- Newton interpolation

higher order interpolating polynomials are rarely used

These images demonstrate problems with using higher order polynomials

- overshoots
- non-local effects (in going from the 4th order polynomial in grey to the 5th order polynomial in black)

Piecewise Polynomial Curves

Example: blending functions for

 two line segments$$
\mathbf{f}(u)= \begin{cases}\mathbf{f}_{1}(2 u) & u \leq 0.5 \\ \mathbf{f}_{2}(2 u-1) & u>0.5\end{cases}
$$

[^0]
Cubics

$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- Allow up to C^{2} continuity at knots
- need 4 control points
- may be 4 points on the curve, combination of points and derivatives, ...
- good smoothness and computational properties

We can get any 3 of 4 properties

.piecewise cubic
2.curve interpolates control points
3. curve has local control
4. curves has C 2 continuity at knots

Cubics

- Natural cubics
- C 2 continuity
- n points -> n - I cubic segments
- control is non-local :(
- ill-conditioned x (

Cubic Hermite Curves

- Cl continuity
- specify both positions and derivatives

Cubic Hermite Curves

Hermite blending functions

$$
\begin{aligned}
& b_{0}(u)=2 u^{3}-3 u^{2}+1 \\
& b_{1}(u)=-2 u^{3}+3 u^{2} \\
& b_{2}(u)=u^{3}-2 u^{2}+u \\
& b_{3}(u)=u^{3}-u^{2}
\end{aligned}
$$

Example: keynote curve tool

Interpolating vs.Approximating Curves

Interpolating

Approximating (non-interpolating)

Cubic Bezier Curves

Cubic Bezier Curves

-The curve interpolates its first $(u=0)$ and last $(u=1)$ control points

- first derivative at the beginning is the vector from first to second point, scaled by degree

Cubic Bezier Curve Examples

Cubic Bezier blending functions

Bezier Curves Degrees 2-6

Bernstein Polynomials

-The blending functions are a special case of the Bernstein polynomials

$$
b_{\mathrm{kd}}(u)=\frac{d!}{k!(d-k)!} u^{k}(1-u)^{d-k}
$$

-These polynomials give the blending polynomials for any degree Bezier form
All roots at 0 and 1
For any degree they all sum to 1
They are all between 0 and 1 inside $(0,1)$

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry

- affine invariant
- efficient evaluation and subdivision

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Joining Cubic Bezier Curves

for C1 continuity, the vectors must line up and be the same length for G1 continuity, the vectors need only line up

Joining Cubic Bezier Curves

- for Cl continuity, the
 vectors must line up and be the same length
- for GI continuity, the vectors need only line up

Evaluating p(u) geometrically

Bezier subdivision

Recursive Subdivision for Rendering

Cubic B-Splines

Cubic B-Splines

Spline blending functions

$$
\begin{array}{r}
b_{0}(u)=\frac{1}{6}(1-u)^{3} \\
b_{1}(u)=\frac{1}{6}\left(4-6 u^{2}+3 u^{3}\right) \\
b_{2}(u)=\frac{1}{6}\left(1+3 u+3 u^{2}-3 u^{3}\right) \\
b_{3}(u)=\frac{1}{6} u^{3}
\end{array}
$$

General Splines

- Defined recursively by Cox-de Boor recursion formula

$$
\begin{gathered}
b_{j, 0}(t)= \begin{cases}1 & \text { if } \quad t_{j} \leq t \\
0 & \text { otherwise }\end{cases} \\
b_{j, n}(t):=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t)
\end{gathered}
$$

Spline properties

Surfaces

Parametric Surface

$$
\begin{aligned}
& x=x(u, v) \\
& y=y(u, v) \\
& z=z(u, v)
\end{aligned}
$$

Parametric Surface tangent plane

Bicubic Surface Patch

$$
\mathbf{f}(u, v)=\sum_{i} \sum_{j} b_{i}(u) b_{j}(v) \mathbf{p}_{i j}
$$

Bezier Surface Patch

$$
\mathbf{f}(u, v)=\sum_{i} \sum_{j} b_{i}(u) b_{j}(v) \mathbf{p}_{i j}
$$

Patch lies in convex hull

[^0]: $\mathrm{b} 1(\mathrm{u})=1-2 \mathrm{u}, 0<=\mathrm{u}<=.5$
 $0 \quad .5<=u<=1$
 $\mathrm{b} 2(\mathrm{u})=2 \mathrm{u}, 0<=\mathrm{u}<=.5$
 b3 (u) $\begin{aligned} & 2(1-\mathrm{u}), .5<=u<=1 \\ & 0,0<=u<=.5\end{aligned}$
 $\begin{aligned} \mathrm{b} 3(\mathrm{u})= & 0,0<=u<=.5 \\ & 2 \mathrm{u}-1, .5<=\mathrm{u}<=1\end{aligned}$

