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Design considerations
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What is a curve!

intuitive idea:
draw with a pen
set of points the pen traces

may be 2D, like on paper
or 3D, space curve
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How do we specify a curve!

Implicit
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Implicit
f(x,y) =x2+y2-1=0
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A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin t),
tin [0,2pi)

Same curve (set of points),
but different mathematical representation!




A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin t),
tin [0,2pi)

We will focus on parametric representations
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Parameterization, re-parameterization

fa(s)

trace out
the curve
more quickly

s=0.5




Parameterization, re-parameterization

t=0

s=0

relationship:

t=10"s

fi(t) = f1(10%s)
= f1(f(s))
= fa(s)
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Natural parameterization

note: points
uneven
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piecewise parametric representation

sometimes easy
to find a parametric
representation

e.g., circle, line segment

\




piecewise parametric representation

in other cases, not obvious

/
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strategy: break into simpler pieces




piecewise parametric representation

strategy: break into simpler pieces

T

switch between functions that represent pieces:

f1(2u) u<0.5
fu) = { f,(2u—1) u>0.5




piecewise parametric representation

strategy: break into simpler pieces

T

switch between functions that represent pieces:

Flu) — f1(2u) u<0.5 map the inputs to
() = f2u—1) uw>05 fi and fo
to be from 0 to 1




Curve Properties

Local properties:
continuity
position
direction
curvature

Global properties (examples):
closed curve
curve crosses itself

Interpolating vs. non-interpolating




Continuity: stitching curve segments together

parametric geometric

continuity continuity
Top
CO: the curves are continuous, but have discontinuous first derivatives
Bottom

Left: At the knot, the curve has C1 continuity: the curve segments have common point and first derivative
Right: At the knot, the curve has G1 continuity: the curve segments have a common point, and parallel first derivatives of different magnitude



Finding a Parametric
Representation




Polynomial Pieces

<whiteboard>




Interpolating polynomials

® Given nt+| data points, can find a unique interpolating
polynomial of degree n

® Different methods:
® Vandermonde matrix
® Lagrange interpolation

® Newton interpolation




higher order interpolating
polynomials are rarely used

overshoots
2 4
1 5
non-local effects
1 3 5 4th order (gray) to 5th order (black)

These images demonstrate problems with using higher order polynomials:
- overshoots
- non-local effects (in going from the 4th order polynomial in grey to the 5th order polynomial in black)



