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•smoothness and continuity
•ability to evaluate derivatives
•stability

•small change in input leads 
to small change in output

•ease of rendering
approximate 

out of a 
number of 

wood strips
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- stability - small change in input values leads to small change in output



What is a curve?

intuitive idea: 
draw with a pen 
set of points the pen traces

may be 2D, like on paper 
or 3D, space curve
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Implicit 
f(x,y) = x2 + y2 - 1 = 0 
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t = 0
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Same curve (set of points), 
but different mathematical representation!
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A curve may have multiple
representations

t = 0

t = pi/2

We will focus on parametric representations

Parametric 
(x,y) = f(t) = (cos t, sin t), 
                     t in [0,2pi)



Parameterization, re-parameterization

t = 0

t = 10

t = 5

f1(t)



Parameterization, re-parameterization

s = 0

s = 1

s = 0.5

trace out  
the curve 
more quickly

f2(s)



Parameterization, re-parameterization

t = 0 
s = 0

s = 1 
t = 10

s = 0.5 
t = 5 

t = 10*s 
f1(t) = f1(10*s) 
       = f1(f(s)) 

= f2(s)

relationship:
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Parameterization, re-parameterization

t = 0 t = 10

s = s0 s = s1

t = f(s)

f2(s) = f1(f(s))



Natural parameterization

t = 0

t = 10

t = 5

note: points 
uneven
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piecewise parametric representation

sometimes easy 
to find a parametric 

representation 

e.g., circle, line segment



piecewise parametric representation

in other cases, not obvious
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piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:
map the inputs to  

f1 and f2  
to be from 0 to 1



Curve Properties

Local properties: 
continuity 
position 
direction 
curvature 

Global properties (examples): 
closed curve 
curve crosses itself 

Interpolating vs. non-interpolating 



parametric 
continuity

geometric 
continuity

Continuity: stitching curve segments together

knot

Top
C0: the curves are continuous, but have discontinuous first derivatives
Bottom
Left: At the knot, the curve has C1 continuity: the curve segments have common point and first derivative
Right: At the knot, the curve has G1 continuity: the curve segments have a common point, and parallel first derivatives of different magnitude



Finding a Parametric 
Representation 



Polynomial Pieces

<whiteboard>



Interpolating polynomials

• Given n+1 data points, can find a unique interpolating 
polynomial of degree n

• Different methods:

• Vandermonde matrix

• Lagrange interpolation

• Newton interpolation



higher order interpolating 
polynomials are rarely used

overshoots

non-local effects
4th order (gray) to 5th order (black)

These images demonstrate problems with using higher order polynomials:
- overshoots
- non-local effects (in going from the 4th order polynomial in grey to the 5th order polynomial in black)


