CS130 Exam 1 Material Outline

All homework problems

Labs

- Lab 1: OpenGL basics
- Lab 2 : Rasterization: DDA, Midpoint algorithm
- Lab 3 : Transformations, matrix stack
- Lab 4 : Programmable shaders

Assignments

- Assignment 1: Mini Pipeline
- Barycentric coordinates
- Barycentric interpolation
- Rasterization
- z-buffer
- camera, projection, and viewport transformations

Lectures

- Lecture 1
- Areas of graphics: modeling, rendering, animation, simulation
- Global vs. Local Illumination
- General concepts:
- antialiasing
- flat vs. smooth shading
- texture mapping
- shadows
- motion blur and accumulation buffer
- OpenGL state machine
- OpenGL command syntax
- gl, glu, glut
- Math review
- points vs. vectors
- dot product
- cross product
- linear vs. affine
- Lecture 2
- Raster Devices and Images
- Transmissive vs. Emissive Display
- Images
- Monitor Gamma and gamma correction
- Additive vs. Subtractive color
- alpha channel
- Graphics pipeline
- z-buffering
- valid polygons
- pipelining
- Graphics pipeline and major steps (vertex proc, clipper and primitive assembler, rasterizer, fragment processor)
- Lecture 3
- object vs. image oriented rendering
- Rasterizer transforms primitives to fragments, interpolates attributes, and enumerates pixels
- eqtn of lines, parametric eqtns
- implicit line eqtn, decision variable d
- midpoint algorithm
- Barycentric Coordinates
- Lecture 4
- Triangle rasterization issues and shared edge conflicts
- Barycentric
- Transforms:
- -modelview
- transform, project, clip in geometric pipeline before rasterizers
- Orthographic projection
- Perspective viewing
- Clipping against view volume and planes (use intersection of line w/plane, then make new triangles)
- Lecture 5
- occlusion
- painters algorithm
- z-buffer
- backface culling (just one picture)
- Transformation Matrices: scaling (uniform/nonuniform), rotation, reflection, shear, translation
- matrixl mult is associative, but not noncommutative
- Lecture 6
- Viewing transformations (world to image space)
- CVV is always $-1,1$
- Viewport transform
- Orthographic transform
- Camera Transform (eye position, gaze direction, up vector) w, u, v formula
- Perspective viewing
- rigid transformations
- affine transformations
- perspective transformations
- clipping after perspective transformation problematic
- Lecture 7
- Shading
- General rendering
- surfaces either emit or reflect light
- Rendering equation
- local shading vs. global shading
- Global effects (translucency, multiple reflection, shadows)
- Specular, diffuse, ambient light
- Generalized light source
- Idealized light sources (ambient, point, spotlight, directional/dist light)
- Lambertian reflection model (reflectance, illumination, cosine proportionality)
- Ambient reflection
- Phong reflection model
- Lecture 8
- Flat, Smooth (Gourard) and Phong shading
- Mach band effect (makes flat shading look even worse)
- Smooth shading (once per vertex)
- Interpolating normals (must renormalize)
- Using barycentric coordinates for interpolation / Goureaud shading
- Phong shading (once per fragment)
- 3 way comparison
- Problems with interpolated shading
- Programmable shading
- Plane Normals
- Implicit function normals
- Parametric form

