CS130 Exam 1 Material Outline

All homework problems

Labs

- Lab 1 : OpenGL basics
- Lab 2 : Rasterization: DDA, Midpoint algorithm
- Lab 3 : Transformations, matrix stack
- Lab 4 : Programmable shaders

Assignments

- Assignment 1: Mini Pipeline
 - Barycentric coordinates
 - Barycentric interpolation
 - Rasterization
 - z-buffer
 - camera, projection, and viewport transformations

Lectures

- Lecture 1
 - Areas of graphics: modeling, rendering, animation, simulation
 - Global vs. Local Illumination
 - General concepts:
 - antialiasing
 - flat vs. smooth shading
 - texture mapping
 - shadows
 - motion blur and accumulation buffer
 - OpenGL state machine
 - OpenGL command syntax
 - gl, glu, glut
 - Math review
 - points vs. vectors
 - dot product
 - cross product

- linear vs. affine
- Lecture 2
 - Raster Devices and Images
 - Transmissive vs. Emissive Display
 - Images
 - Monitor Gamma and gamma correction
 - Additive vs. Subtractive color
 - alpha channel
 - Graphics pipeline
 - z-buffering
 - valid polygons
 - pipelining
 - Graphics pipeline and major steps (vertex proc, clipper and primitive assembler, rasterizer, fragment processor)
- Lecture 3
 - object vs. image oriented rendering
 - Rasterizer transforms primitives to fragments, interpolates attributes, and enumerates pixels
 - eqtn of lines, parametric eqtns
 - implicit line eqtn, decision variable d
 - midpoint algorithm
 - Barycentric Coordinates
- Lecture 4
 - Triangle rasterization issues and shared edge conflicts
 - Barycentric
 - Transforms:
 - -modelview
 - transform, project, clip in geometric pipeline before rasterizers
 - Orthographic projection
 - Perspective viewing
 - Clipping against view volume and planes (use intersection of line w/plane, then make new triangles)
- $\bullet~$ Lecture 5
 - occlusion

- painters algorithm
- z-buffer
- backface culling (just one picture)
- Transformation Matrices: scaling (uniform/nonuniform), rotation, reflection, shear, translation
- matrixl mult is associative, but not noncommutative
- Lecture 6
 - Viewing transformations (world to image space)
 - CVV is always -1,1
 - Viewport transform
 - Orthographic transform
 - Camera Transform (eye position, gaze direction, up vector) w, u, v formula
 - Perspective viewing
 - rigid transformations
 - affine transformations
 - perspective transformations
 - clipping after perspective transformation problematic
- Lecture 7
 - Shading
 - General rendering
 - surfaces either emit or reflect light
 - Rendering equation
 - local shading vs. global shading
 - Global effects (translucency, multiple reflection, shadows)
 - Specular, diffuse, ambient light
 - Generalized light source
 - Idealized light sources (ambient, point, spotlight, directional/dist light)
 - Lambertian reflection model (reflectance, illumination, cosine proportionality)
 - Ambient reflection
 - Phong reflection model
- Lecture 8

- Flat, Smooth (Gourard) and Phong shading
- Mach band effect (makes flat shading look even worse)
- Smooth shading (once per vertex)
- Interpolating normals (must renormalize)
- Using barycentric coordinates for interpolation / Goureaud shading
- Phong shading (once per fragment)
- 3 way comparison
- Problems with interpolated shading
- Programmable shading
- Plane Normals
- Implicit function normals
- Parametric form