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ABSTRACT
Micro-macro models provide a powerful tool to study the relation-
ship between microscale mechanisms and emergent macroscopic
behavior. However, the detailed microscopic modeling may require
tracking and evolving a high-dimensional configuration space at
high computational cost. In this work, we present a parallel algo-
rithm for simulation a high-dimensional micro-macro model of
a gliding motility assay. We utilize a holistic approach aligning
the data residency and simulation scales with the hybrid CPU and
multi-GPU hardware. With a combination of algorithmic modifica-
tions, GPU optimizations, and scaling to multiple GPUs, we achieve
speedup factors of up to 27 over our previous hybrid CPU-GPU
implementation and up to 540 over our single-threaded implemen-
tation. This approach enables micro-macro simulations of higher
complexity and resolution than would otherwise be feasible.
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1 INTRODUCTION
Active gels exhibit macroscopic flow structures driven by the de-
tailed microscopic interactions of constituent elements. Pronuclear
centering and migration and cytoplasmic streaming are two such
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examples, both being critical cellular processes driven by filament-
motor mixtures. Reduced-component studies have found these sys-
tems to be highly sensitive to the microscopic interactions between
motors and filaments; for instance, the detachment time of a motor
protein at a filament end affects whether filaments form networks
of asters or vortices [12–14]. Additionally, the tens-of-nanometers
sized motor proteins bind, walk along, and detach frommicrometer-
length filaments on a faster timescale than the filament network
evolution. Simulating even a millimeter-sized system with such
disparate length and time scales and sensitivity to detailed interac-
tions thus poses a challenging computational problem. Tracking
interacting Lagrangian particles can become infeasible with large
quantities of microstructural elements.

A promising approach lies in micro-macro methods, which cou-
ple a kinetic theory model of the microstructure (here, the con-
figuration of the motors and filaments in the active gel) to the
macroscale continuum mechanical representation of a viscoelastic
fluid [11]. Kinetic theory models have been applied in the study
of biological active matter [9], self-propelled particles [18], and
networks of neurons [1]. They enable detailed microscale model-
ing that would otherwise be lost via closure approximations in
macroscopic modeling approaches, and are particularly useful at
scales where tracking individual particles and their interactions
would be prohibitive. Compared to purely macroscopic methods,
micro-macro methods are more computationally demanding, as
they require evolving the microstructure density in a potentially
high-dimensional configuration space.

[8] and [2] developed a micro-macro model for a gliding motility
assay, consisting of immersed rigid filaments that glide along mo-
tor proteins anchored to the substrate of a chamber immersed in
viscous fluid. This model includes hydrodynamic and steric inter-
actions between the filaments. A high-dimensional kinetic theory
describes the evolution of the filaments and motors. To make this
model computationally feasible, parts of the microscale computa-
tion were ported to the GPU using Nvidia’s CUDA C language [16].
In this work, we enable faster and significantly more detailed sim-
ulations through holistic restructuring of this algorithm, aligning
the computation and data flow with the underlying heterogenous
computational resources. Moreover, these changes facilitate scaling
to multiple GPUs across separate machines with MPI. We further
utilize a variety of CPU and GPU optimizations. Our work expands
the range of micro-macro models which can be simulated by direct
solution of the kinetic theory and coupling equations tomodels with
higher dimensional configuration spaces, at higher resolutions [11].
To our knowledge, [8] is the first GPU-accelerated micro-macro
kinetic theory-based simulation. [8] achieved up to 20x speedups
over a single-threaded CPU implementation, while the algorithm
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Figure 1: Gliding motility assay. Motor proteins (black) an-
chored to the substrate bind to filaments (green), walk along
them and exert forces, then detach.

presented here achieves a further 27x speedup over [8] and [2]. Key
to our approach is moving the microscopic scale and related tasks,
which are smaller scale in both space and time, to the GPU and
limiting CPU-GPU communications to the longer timescale of the
filaments and fluid. Such holistic approaches are recommended to
achieve scalability in heterogeneous environments [15], [6]. We
note that our method does not suffer from common GPU simulation
challenges encountered in various other approaches such as build-
ing adjacency lists [10], reordering storage based on cell location
[21], dynamic, irregular data accesses [22], thread divergence [5],
or neighbor exchanges of halo regions.

The paper is organized as follows. A description of the model
and implementation is presented in Section 2, algorithmic, data
flow, GPU, and MPI modifications are discussed in Section 3, results
are discussed in Section 4, and we conclude in Section 5.

2 MOTILITY ASSAY MODEL
Figure 1 illustrates a gliding motility assay. The geometry consists
of top and bottom plates separated by a narrow vertical gap, which
is filled with a viscous fluid containing ATP fuel. At the bottom plate,
motor protein tails are anchored to a substrate. The motor protein
heads diffuse in solution, tethered to their tail by a flexible stalk.
When a filament enters the capture radius of a motor protein head,
the head may bind to the filament. As the bound motor head walks
toward the filament plus end, it exerts force, causing the filament
to glide in the opposite direction, until the motor head detaches.
When many filaments are present, the underlying microscopic
mechanism coupled with hydrodynamic and steric interactions
give rise to a variety of emergent macroscopic behaviors such as a
lattice of vortices [19]. Through our modeling and simulation, we
aim to better understand the relationship between the microscale
interactions and the macroscopic phenomena. Related problems
of emergent self-organization from simple interactions include
flocking and swarming of birds, fish, and bacteria.

The model equations are presented in simplified, nondimension-
alized form in Table 1. The filament density is parameterized by
center-of-mass location x, orientation p, and time t as Ψ(x, p, t ).

The configuration space of bound motors is higher dimensional,
as we need to track the center-of-mass position x and orienta-
tion p of the filament a bound motor with tail anchored at r0 is
bound to, along with its arclength parameter along that filament s .

This yields the high-dimensional den-
sityMb (r0, x, p, s, t ) of bound motors
per filament, illustrated in the figure to
the right. A key observation is that mo-
tors with tail anchored at position r0
on the assay substrate can only bind to
filament sections that are within the capture radius of the motor
stalk rc . This greatly reduces the feasible configurations a motor
protein head may be bound in, and obviates the need to track con-
figurations |x + sp − r0 | > rc . We denote by Brc (r0) all feasible
x, p, s configurations such that |x + sp − r0 | ≤ rc . We do not track
unbound (free) motor heads, only their tail position r0, so the den-
sity of free motorsMf (r0, t ) is two-dimensional. We model the
filament and bound motor protein densities as distributed by a
smooth Dirac delta function in z about a plane a small distance
z0 above the bottom plate, i.e., Ψ(x, . . .) = Ψz0 (x2, . . .)δ (z) and
Mb (r0, x, · · · ) =Mb,z0 (r0, x2, · · · )δ (z) . We thus evolve the lower-
dimensionalMb,z0 and Ψz0 in our simulation. We drop the z0 from
Ψ andMb in the remainder of the paper for brevity.

Filament equations

∂tΨ + ∇2 · (ẋ2Ψ) + ∂θ (θ̇Ψ) = 0 (1)

ẋ2 = −Vspp2 + u2 +U 0
t, ∥p2p2 : ∇2D2,z0 − Dt, ∥∇2 lnΨ (2)

θ̇ = ∇2u2 +U 0
r D2,z0 : p

⊥
2 p2 − Dr ∂θ lnΨ (3)

Motor equations

∂tMb + ∂sMb = −koffMb + konMf 1Drc
(4)

Mb,coarse =

$
MbΨds dx2 dθ (5)

Mf =M −Mb,coarse (6)

Fluid equations

− ∇22u2 −
1
ε2
∂zzu2 + P0∇2q = σf ∇2 · σ

f − σt∇2 · σ
t + F2 (7)

− ∇22w −
1
ε2
∂zzw + P0∂zq = 0 (8)

∇2u2 + ∂zw = 0 (9)

Motor force

F2 = F

&
p2δ (y2 +

l

L
sp2 − x2)ΨMb ds dr0 dy2 dθ (10)

Table 1: Summary of model equations for the filament and
motor protein densities, the macroscopic fluid equations,
and the motor force that couples them.

We represent the fluid velocity in three dimensions, with peri-
odic boundary conditions in the x and y dimensions and no-slip
conditions in the z dimension at the top and bottom plates. The
system evolves on two timescales; the motors bind to, walk along,
and unbind from the filaments on a faster timescale than the fila-
ments and fluid evolve. Bound motor heads generate forces that are
spread onto the fluid in an immersed boundary method fashion [17].
Together with stress terms arising from filament inextensibility and



Enabling High-Dimensional Biophysical Models ScalA’17, November 2017, Denver, CO USA

steric interactions [4], the motor forces (Eq. (10)) couple the densi-
ties Ψ andMb to the fluid velocity (Eq. (7)). The x andy dimensions
are discretized over a regular square grid, and the z dimension is
discretized over an adaptive grid that is finely resolved around
z = z0 near the bottom plate and becomes coarser moving toward
the upper plate. Allowable filament orientations are constrained to
the (x ,y) plane, so we can represent p = (cosθ , sinθ , 0)T . Orienta-
tion θ and arclength parameter s are discretized uniformly with the
same resolution.

Algorithm 1 summarizes the process for evolving the filaments,
motor proteins, and fluid velocity as in [8], [2]. First, we compute
the adaptive time steps based on their stability conditions, with
outer time step dt restricted by the advective fluxes in Eq. (1),
and the inner time step dt∗ restricted by the motor speed and
binding/unbinding rates in Eq. (4). Next, Ψ(t + dt ) is solved us-
ing Crank-Nicolson for the diffusive terms and Adams-Bashforth
2 with upwinding for the advective terms (line 4). The bound
motor density evolution routine in lines 7-9 performs the mo-
tor protein advection (bound motor heads walking along the fil-
aments toward their plus-ends) and applies a Superbee flux lim-
iter, as well as simulates the binding and unbinding of free and
bound motor proteins respectively. After every configuration of
Mb (r0x,θ , s, t ) for a particular r0 has been updated, the integral
Mb,coarse (r0, t ) =

#
Mb (r0, x,θ , s, t )Ψ(x,θ , t )dxdθds is calcu-

lated at the same r0 to ensure that the number of bound motors
does not exceed the total number of motors at r0. If so, all Mb
configurations with that r0 are scaled down to conserve the total
number of motors beforeMf is calculated. We next update the free
motor density in line 9. The extra stress terms σ f,σ t arising from
filament inextensibility and steric interactions [2] are computed
as moments of Ψ in line 13. We perform a two-dimensional FFT
and solve the transformed system of fluid equations for the three
velocity components and pressure û, v̂, ŵ, q̂ at every position on the
z grid, then perform an inverse FFT to obtain the three-dimensional
fluid velocity u in line 13.

In a single-threaded implementation, the high dimensionality of
Mb makes the computations in lines 7-9 and line 11 prohibitively
expensive for even moderate grid resolutions and experiment times.
Fortunately,Mb can be computed explicitly and easily parallelized
over r0. Thus in [2, 8], the Mb and F computations are ported
to the GPU. On the other hand, the Ψ equation is stiff due to the
diffusion terms and is computed semi-implicitly on the CPU. This
decomposition of work is similar to several hybrid reactive flow
solvers [15].

To perform the integral in line 11, [2, 8] use independent GPU
threads to compute the integral at each r0 accumulating the partial
results in thread-local storage, limiting the use of atomic opera-
tions to the final reduction over nearby r0 at each x. Extra stress
tensor calculation, forward and reverse fast Fourier transforms, and
computation of the independent semispectral systems are all mul-
tithreaded on the CPU. In this work, we expand upon this hybrid
computational approach as described below.

3 ACCELERATION METHODOLOGY
Our primary focus in this work is significant performance improve-
ment through targeted algorithmic design enabling a multi-GPU

Algorithm 1: Evolution scheme for the coupled microtubule
density, motor protein density, and fluid velocity equations.
1 Initialize Ψ andMb
2 while t < tend do
3 Compute adaptive time steps dt ,dt∗

4 Compute filament density Ψ(t + dt ) (Eqs. (1)-(3))
5 set t∗end = t + dt

6 while t∗ < t∗end do
7 Compute bound motor densityMb (t

∗ + dt∗) (Eq. (4))
8 Update coarsened densityMb,coarse (Eq. (5))
9 Update free motor densityMf (Eq. (6))

10 end
11 Calculate motor force F2 (Eq. (10))
12 Calculate extra stresses σ f,σ t (Eq. (7))
13 Calculate fluid velocity u (Eqs. (7)-(9))
14 end

decomposition, as well as single-GPU optimizations, described in
detail below. Through these efforts we are able to scale to higher
resolutions than previously possible and achieve up to 27x total
simulation acceleration in a four GPU configuration. Use of addi-
tional GPUs is supported and should provide further speedup with
similarly excellent scaling, although we did not test this in this
work.

3.1 Holistic Algorithmic and Data Flow
Restructuring

A primary goal of our approach is to restructure the algorithm
so that the memory-intensive microscale motor protein data re-
sides solely on the GPU, and only the smaller, coarsened data is
transferred to/from main memory. A secondary goal is to support
a multi-GPU decomposition. Additionally, we remove synchroniza-
tion barriers and reduce GPU memory consumption by two-thirds.
Figure 2 summarizes the changes and details follow.

Independent Time Steps. The original algorithm calculated a
globaldt∗ and updated allMb configurations by this fixed time step
to time t +dt , hindering performance in several ways. First, it artifi-
cially limits the inherently independent per-cell update operations,
some of which may be able to complete in fewer steps as their local
configuration and stability restrictions allow. Second, it requires an
expensive reduction operation over the entire bound motor density
microstructure. Third, ifMb is distributed over multiple GPUs as
desired, the reduction creates an unnecessary synchronization bar-
rier. We instead compute a local dt∗ for each r0 at the beginning
of each inner time step and updateMb at each r0 asynchronously.
The most significant benefit of this change is enabling the multi-
GPU implementation. Stability and accuracy were not adversely
affected.

Numerical Integration Scheme. The algorithm in [2] used Adams-
Bashforth 2 for time integration of the motor densities, whhich
maintains theMb array at three distinct time points (tn+1, tn , tn−1).
We instead use Runge-Kutta 2, which only requires theMb array
at tn+1 and tn . This change reduces GPU memory requirements
by one-third while causing negligible impact on computation time.
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Figure 2: Data residency and computation before (left) and after (right) restructuring. Left, transfer of the microstructure
creates significant communication overhead. Right, the bound motor microstructure now fully resides on the GPU eliminat-
ing expensive transfers, and the coarse bound and free motor densities are calculated on GPU and transferred back to main
memory.

With these improvements, higher-resolutionMb density represen-
tations may reside in scarce GPU memory.

Mixed Precision.Wedeveloped amixed precision approachwhereby
we store and updateMb andMf in single precision floating point
while keeping the rest of the simulation as double precision. This
saves space and improves performance without causing appreciable
change in simulation behavior.

Data Residency. The algorithm in [2] updatedMb one piece at
a time due to GPU memory constraints, then transferred the com-
plete updatedMb to the GPU for the motor force calculation. With
the new numerical integration scheme and the use of mixed preci-
sion, we have enough GPU memory to store the high-dimensional
microstructure dataMb solely on the GPU. This eliminates the
overhead of transferring copies ofMb before, during, and after the
Mb update. SinceMb is required in order to calculateMb,coarse
and F, we also do those calculations on the GPU, and transfer results
to the CPU.Mb,coarse and F are both macroscale data structures,
and hence incur lower communication overhead. Finally, Ψ, which
is also stored on the macroscale, is transferred as before. The up-
dated data flow is shown in Figure 3.

Pseudocode describing the new GPU kernel is presented in Al-
gorithm 2. The result is one large kernel that fully updatesMb at
each independent r0 value to t + dt in as many steps as needed,
using a local adaptive time step. The new memory access pattern is
more amenable to caching as well, as each running block of threads
on each GPU reads the same contiguous memory for allMb config-
urations at a fixed r0 location repeatedly until those configurations
are fully updated before moving on.

We use CPU parallelism via OpenMP to further accelerate the
simulation, specifically in the calculations of the fluxes and stress
tensors for the fluid solves, the outer global time step dt calculation,
and construction of the Ψ advection matrix. After moving the dt∗
calculation into the motor force update kernel and multithread-
ing the dt calculation, time step calculation becomes a negligible
component of the total computation time.

Figure 3: Residency and evolution of state from time step n
to time step n + 1 on CPU and GPUs in new algorithm. Red
indicates the quantity updated through computation or data
transfer.

3.2 GPU Optimizations
This section describes various optimizations of the GPU kernel
shown in Algorithm 2. Combined, these single-GPU optimizations
yield an average improvement of 4.7-7.5x depending on resolution.
The optimizations are described below and the individual effect of
each is listed in Table 3.

Mixed precision.As previously detailed, switchingMb ,Mb,coarse ,
andMf to single precision halves the GPU memory requirement.
In addition, it provides a 4.3x to 5.8x speedup in our bound motor
density evolution routine. This improvement will depend on the
clock cycle ratio between single and double precision arithmetic
for a given GPU family.

Fast Math. Compiling with CUDA’s fast math library provides ad-
ditional savings without noticeable change in simulation behavior.
Accelerations of 1.35x were typical.

Launch Bounds. The launch_bounds macro in CUDA may be
used to instruct the compiler to ensure a user-specified maximum
number of concurrent threads and threads per block running on
each GPU Streaming Multiprocessor (SM). Using a launch_bounds
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configuration of 128 threads/block and 8 simultaneous blocks per
SM gives the best performance of all configurations tested. Register
spilling to global memory does occur at this configuration as each
thread is limited to 32 registers. Newer architectures with more
registers per SM will likely see immediate improvement by both
reducing register spilling and enabling more threads per block.
Accelerations of 1.2x were typical at the higher inner resolution
and negligible at the lower inner resolution.

Dimension Mapping. CUDA threads are executed in simultane-
ous warps of 32 threads each, grouped first by their x-index then
by their y-index. Since coalesced memory accesses are desirable
for performance, the bound motor density evolution kernel was
modified so that a thread’s x-index maps to the s-index and the
y-index maps to the θ -index. With this mapping threads executing
in a warp will accessMb storage in a coalesced fashion since se-
quential s-indices are contiguous as the innermost array indices.
Accelerations of 1.16x to 1.57x were observed.

Reordering Storage. The Superbee flux limiter operates in the
arclength s dimension. Since threads in a warp operate on subse-
quent arclength indices, and the flux limiter has a neighborhood
access pattern of (s − 2, s − 1, s, s + 1, s + 2), this gives coalesced
memory accesses and pulls adjacent arclength data into the cache
for subsequent iterations. The layout of memory inMb was mod-
ified to make s the innermost variable instead of θ in the storage
ofMb (r0, x,θ , s ), where x,θ , s are represented as sequential flat
four-dimensional arrays within a flat two-dimensional array over
r0. This prevents strides between subsequent s accesses. Another
benefit to making s the innermost variable is that the value of
Ψ(x,θ ) can be read after the θ loop instead of in the innermost loop.
Reordering the loops in this fashion in the access-heavy motor
force code resulted in a 1.54x acceleration. For the bound motor
density update, accelerations of 1.1x were typical at the higher inner
resolution and negligible at the lower inner resolution.

Unrolling Reductions. For the reduction step, [7] recommends
manually unrolling a reduction when the number of remaining
threads is less than the warp size (32 for our Tesla M2075), and
performing part of a large reduction independently within each
thread to reduce synchronization. We already follow the latter sug-
gestion as each thread accumulates its contribution toMb,coarse
before storing this running sum in a shared memory array sized
to the number of threads for the reduction step. We did not find
meaningful performance improvements for the manual reduction.

Block Shaping. To updateMb (r0, x,θ , s ) we assign one block of
threads to each r0 position and map those threads to the x,θ , s vari-
ables. For each x, a two-dimensional block of threads is launched,
with the threads’ x and y indices corresponding to the innermost
s and θ indices. Experimentation has shown 128 threads to be the
optimal number in our implementation. The “block shaping” row
of the optimizations table compares against running 256 threads in
a 16x16 configuration. How these 128 threads are configured is im-
portant: x = 8,y = 16 runs faster than x = 16,y = 8. Both caching
effects and memory coalescing play a role, and from our experience
it is worthwhile to experiment with various configurations. Accel-
erations of 1.15x were typical at the higher inner resolution and
accelerations of 1.65x were typical at the lower inner resolution.

Algorithm 2: Bound & free motor density update GPU kernel
1 Precondition: Ψ(t + dt ) and dt are loaded into GPU memory.
2 Set t∗end = t + dt

3 for r0 ∈ grid do
4 while t∗ < t∗end do
5 Compute adaptive dt∗

6 for x ∈ Brc (r0) do
7 for θ ∈ Brc (r0) do
8 for s ∈ Brc (r0) do
9 ComputeMb (r0, x,θ , s, t∗ + dt ∗

2 ) (Eq. (4))
10 ComputeMb (r0, x,θ , s, t∗ + dt∗) (Eq. (4))
11 end
12 end
13 end
14 ComputeMb,coarse (r0, t∗ + dt∗) (Reduction) (Eq. (5))
15 ifMtotal (r0) <Mb,coarse (r0, t∗ + dt∗) then
16 for x,θ , s ∈ Brc (r0) do
17 ScaleMb (r0, x,θ , s, t∗ + dt∗)
18 SetMb,coarse (r0, t∗ + dt∗) =Mtotal (r0)
19 end
20 end
21 ComputeMf (r0, t∗ + dt∗) (Eq. (6))
22 end
23 end

To analyze performance of theMb and FGPU kernels, the Nvidia
Visual Profiler v8.0 [3] was used. According to its output, arithmetic
operations constitute the largest share of operations. No functional
unit (load/store, arithmetic, control flow) is a bottleneck because of
the balance of operations. We run the maximum possible number
of simultaneous blocks per SM (8), but cannot run more threads
per block without exhausting the available registersper SM. The
result is a GPU occupancy of 66%, for which the profiler’s heuristics
report that increasing occupancy is unlikely to improve execution
time. Our experience confirms this, as attempts to launch more
threads per block to increase occupancy means decreasing registers
per thread to keep the simultaneous blocks per SM maximized at 8,
resulting in longer execution times. GPU occupancy is one of many
factors that contributes to kernel performance, and it is possible to
obtain high throughput at low occupancy levels [20].

3.3 Scaling to Multiple GPUs
As the spatial resolution of the r0 grid increases, two factors limit
the performance of a single GPU. The first is that the number of
blocks (each updating an independent r0) that can run concurrently
on the GPU is limited by the number of SMs on the card, as we are
running the maximum 8 simultaneous blocks per SM. Using two
equivalent cards simultaneously doubles the throughput at which
we can update the motor densities and calculate the motor force.
The second factor is that once GPU memory is exhausted by the
bound motor density (and scratch space for the intermediate values
needed for numerical routines), additional large memory transfers
to and from main memory become necessary every time step.
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Figure 4: MPI control flow for multiple GPUs across multi-
ple nodes. We acheive nearly ideal scaling of our GPU com-
putation acrossmultiple GPUs, indicating that theMPI over-
head is negligible.

We expand our implementation to multiple GPUs using simulta-
neous CUDA streams and to multiple machines using MPI. After
Mb is initialized at the beginning of the simulation, subsections
ofMb are transferred to the memory of each GPU. The outer two-
dimensional array ofMb (over r0) is distributed among available
GPUs by rows, which are contiguous in memory. Before invocation
of theMb and F kernels on the GPUs, the newly updatedΨ is broad-
cast to each with an MPI_BCAST from process rank 0. After the
bound motor density update and motor force kernels complete, The
Mf andMb,coarse values computed by each GPU are collected
by process rank 0 using an MPI_GATHER operation. The motor
force output F from each GPU contains overlapping force vectors
that need to be summed together, so an MPI_REDUCE operation
is used to combine them in process rank 0. From here on the fluid
velocity update proceeds as normal. The process is summarized in
Figure 4. OpenMPI 2.1 was used for this work.

4 RESULTS
We present results at different resolutions, scaling both the outer
resolution of the x ,y variables and the inner resolution of the θ , s
variables. Increasing the outer resolution (x ,y) affects the two-
dimensional grid over which Ψ,Mf ,Mb , and u are defined, and
thus increases the workload across all steps of the simulation. Dou-
bling the resolution of x and y increases by a factor of four the total
workload of theMb and F kernels. Increasing the inner resolution
(θ , s) affects Ψ andMb through their dependence on θ andMb
through its dependence on s . Doubling the resolution of θ and s in-
creases by a factor of four the number of update tasks per thread in
the motor density and force kernels, and adds two more iterations
to the reduction step in the motor density kernel.

Simulations were run on one or more servers configured with
2 Tesla M2075 GPUs, 64 GB RAM, and dual AMD Opteron 6272
processors. Speedup factors for the algorithmic modifications and
GPU optimizations vs. the original implementation in a single-
node, single-GPU configuration are shown in Table 2. An average
performance increase of between 5.75x and 9.98x per full simulation
step is observed versus the original implementation. The bulk of the
improvement comes in the bound motor update and motor force
computations. Additionally, the dt computation is accelerated, the
dt∗ computation is moved onto the GPU, and the Ψ solve noticeably
benefits from CPU acceleration.

We individually disable each GPU optimization and compare
the running time for a single invocation of theMb update ker-
nel in Table 3. We see the largest performance improvement from
switching from double precision to single precision, which affects
both floating point arithmetic performance as well as cache and
memory demand. The 2562 × 322 resolution could not be tested
with double precision on a single GPU asMb exceeded GPU mem-
ory. The launch_bounds and storage reordering optimizations see
their biggest impact when the inner variable resolution is increased.
When this optimization was originally applied it showed a small
improvement, but when it alone is removed from the final imple-
mentation, no discernable impact is observed.

Figure 5 shows that scaling theMb and F kernels to multiple
GPUs and across nodes is effective, with nearly ideal linear acceler-
ation at the higher resolutions where acceleration is most needed.
This demonstrates that the overhead to merge output between
GPUs on the same machine plus the MPI overhead among multiple
machines is small compared to execution time. As the inter-node
communication consists of MPI broadcast, reduction, and gather
operations, it is expected that scaling to 8 or more GPUs would
likewise involve minimal overhead cost.

Table 4 summarizes overall performance of our optimized imple-
mentation using one, two, and four GPUs vs. the original single-
GPU only implementation. We obtain higher accelerations for
higher inner resolution sizes, which is desirable as we find the
inner resolution of 162 too coarse at outer resolutions over 642.
Our maximum speedup factor over the original implementation
was over 27x, obtained at the highest resolution. The simulation
was previously limited to the 1282 × 322 configuration given the
running times involved. Reducing a day’s worth of computation
to less than one hour greatly facilitates the iterative exploration
of the model’s parameter space. Sample simulation results at the
previously infeasible 2562 × 322 resolution are shown in Figure 6.

5 CONCLUSIONS
Mapping the different scales of a simulation to different compu-
tational hardware, minimizing data transfers, and removing syn-
chronization points like a global time step calculation allows us to
explore the parameter space of our high-dimensional micro-macro
simulation up to 540 times faster than a single-threaded implementa-
tion when using four GPUs simultaneously. This holistic approach
significantly outperforms the commonly employed approach of
accelerating individual functions in isolation [8]. Multi-node, multi-
GPU overhead is minimal and the approach is expected to scale



Enabling High-Dimensional Biophysical Models ScalA’17, November 2017, Denver, CO USA

outer × inner resolution 642 × 162 642 × 322 1282 × 162 1282 × 322 2562 × 162 2562 × 322
total 332 (7.16) 854 (8.76) 2054 (6.37) 5026 (9.55) 8980 (7.36) 21408 (9.25)

Ψ solve 24 (6.17) 49 (5.37) 88 (6.44) 171 (7.88) 389 (7.28) 722 (9.19)
Mb and F 193 (6.26) 682 (6.42) 1492 (6.03) 4366 (7.51) 7050 (6.65) 19125 (4.72)
fluid solve 107 (2.50) 112 (2.21) 447 (1.63) 456 (1.96) 1437 (2.00) 1438 (2.42)

Table 2: Effect of single-node, single-GPU optimizations. Average time per full outer time step (milliseconds) and speedup
factors (bold) for original simulation vs. optimized simulation on a single machine with one GPU. Simulations with varied
resolutions run to a fixed end time. The expensive dt∗ calculation in the original simulation is now negligible, contributing to
the increased overall speedup reported in the total time step row.

outer × inner resolution 642 × 162 642 × 322 1282 × 162 1282 × 322 2562 × 162 2562 × 322
optimization removed:
none 350 710 1490 3560 5960 15660
mixed precision 1520 (4.34) 4140 (5.83) 7390 (4.96) 19190 (5.39) 30170 (5.06) X (X)
-fast-math 470 (1.34) 870 (1.23) 2010 (1.35) 4530 (1.27) 8050 (1.35) 19710 (1.26)
launch_bounds 340 (1.97) 860 (1.21) 1490 (1) 4270 (1.2) 5890 (99) 18200 (1.16)
dimension mapping 440 (1.26) 1120 (1.58) 1820 (1.22) 5210 (1.46) 8200 (1.38) 22420 (1.43)
reorder storage 350 (1) 820 (1.15) 1490 (1) 3960 (1.11) 6010 (1.01) 16950 (1.08)
unroll reduction 370 (1.06) 700 (0.99) 1510 (1.01) 3630 (1.02) 5920 (0.99) 15350 (0.98)
block shaping 550 (1.57) 820 (1.15) 2460 (1.65) 4330 (1.22) 9800 (1.64) 18070 (1.15)

Table 3: GPU optimizations. Time (milliseconds) and slowdown factors (bold) for theMb evolution kernel at different resolu-
tions with various optimizations individually disabled.

outer × inner resolution 642 × 162 642 × 322 1282 × 162 1282 × 322 2562 × 162 2562 × 322
1 node,1 GPU 7.16 8.76 6.37 9.55 7.36 9.25
1 node, 2 GPU 9.70 14.04 9.73 16.50 11.98 16.60
2 node, 4 GPU 11.98 20.23 13.59 26.69 17.69 27.41

Table 4: Overall speedup resulting from our optimized, multi-GPU approach, as compared with original single-GPU simula-
tion, as the number of nodes & GPUs is increased.

Figure 5: Multi-GPU scaling of the boundmotor density and
motor force computations is nearly ideal. The overhead of
inter-node communication viaMPI arising in the 4GPU con-
figuration does not have an appreciable effect.

well to a greater number of GPU accelerators. This approach capi-
talizes on the increasing prevalence of GPUs in high performance
computing.

As the number of GPUs used increases the semispectral fluid
solve and filament evolution update steps will become the next
bottlenecks. Further adjustment of simulation flow to offload more
of the fluid solve computations onto the otherwise idle CPU cores
of non-root processes may then become cost effective.

It is our hope that our algorithmic design and breakdown of the
various CPU and GPU optimizations will provide a useful reference
for prioritizing optimizations in HPC software development and in
porting of existing applications, where there is often an expectation
that porting time should be recovered by faster runtimes. While
the specific improvement will vary for different programs, quan-
tifying the improvements corresponding to various optimizations
contributes to the growing information in the literature regarding
their efficacy [15].
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Figure 6: Sample simulation output at equally spaced timing intervals of the evolution of a lattice of overlapping filament rings
from an overhead view of the assay, with periodic boundary conditions. Top row: filament density Ψ in blue with predominant
orientation vector plotted every 8th cell in red. Bottom row: coarse bound motor density plotted in red with fluid velocity
plotted as a black arrow every 8th cell.
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