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ABSTRACT OF THE DISSERTATION

Computing the Microbiome: Faster, More Accurate and More Efficient Methods for the Analysis
of Metagenomes

by

Rachid Ounit

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2017

Dr. Stefano Lonardi, Chairperson

Metagenomics is revolutionizing microbial ecology and has unlocked unprecedented opportunities

in many domains of Life Science. For instance, metagenomics has allowed the discovery of new

forms of life in unexplored habitats (e.g., in the marine environment). In medicine, metagenomics

is allowing doctors to diagnose and help patients that have diseases related to imbalances in their

microbial communities (e.g., gastrointestinal microbiota). In public health, metagenomics is be-

coming an invaluable instrument for pathogen surveillance and to monitor outbreaks in epidemic

areas.

As sequencing technologies have considerably improved in speed and cost over the past

decade, the number of reference sequences in public databases has grown exponentially. As a

consequence, faster, accurate and efficient computational methods are needed for analyzing these

large data. The research presented in this dissertation focuses on (i) how to build faster, more

accurate and more efficient sequence classification methods to determine the microbial composition

of metagenomic samples and (ii) how to infer and recover the microbial composition of a sample in

a large network of connected samples (e.g., in the context of a city-scale biosurveillance).
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Our classification system is composed of a family of tools, namely CLARK, CLARK-l

and CLARK-S, which are currently used by several research teams worldwide for metagenomics

and genomics analysis. While CLARK is able to perform with high accuracy sequence classification

and unprecedented speed, CLARK-S achieves the same precision and a much higher accuracy than

CLARK, at a cost of a slightly slower speed.
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Chapter 1

Introduction

It’s clear to me that if you wiped all multicellular life
forms off the face of the Earth, microbial life might
shift a tiny bit. [...] If microbial life were to disappear,
that would be it – instant death for the planet.

Carl R. Woese

With improved methods for analysis, funding stimu-
lated by recent triumphs in the field, and attraction of
diverse scientists to identify new problems and solve
old ones, metagenomics will expand and continue to
enrich our understanding of microorganisms.

Jo Handelsman

The microbiome is defined as “a characteristic microbial community occupying a rea-

sonably well defined habitat which has distinct physio-chemical properties. The term thus not only

refers to the microorganisms involved but also encompasses their theatre of activity.” [Whipps et al.,

1988]. Microorganisms live everywhere in the biosphere: they exist in areas of extreme conditions,

in oceans [Venter et al., 2004], urban areas (e.g., such as houses [Adams et al., 2015], city parks

[Reese et al., 2015], subway system [Afshinnekoo et al., 2015, Hsu et al., 2016]), soil [Fierer et al.,
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2012] and even in space [Vaishampayan et al., 2013]. Naturally, the human microbiome is of great

importance. It is estimated that 100 trillion microbial cells live on and inside the human body (e.g.,

mouth, skin, gut, etc.) [Ley et al., 2006]. Understanding the interactions of the human cells and

these non-human organisms is vital.

In 2008 the “Human Microbiome Project” (HMP) was initiated by the United States Na-

tional Institutes of Health to identify and characterize microorganisms which are found in asso-

ciation with both healthy and diseased humans. HMP had a budget of $115 million for 5 years.

HMP-funded researchers produced about 200 peer-reviewed articles. Several important discover-

ies were made. For example, microbes contribute more genes responsible for the human survival

than humans’ own genes [Qin et al., 2010]. HMP researchers also created a large public repository

of microbial genomes and human data samples [Human Microbiome Project Consortium , 2012,

Consortium et al., 2012], which is critically important to understand how the human microbiome

and the human host interact. While the microbes inside our body play an active role in our health,

microbes surroundings us, in urban areas or nature are likely to interact and impact our life as well.

In the context of epidemiology, understanding the interaction between our microbiome and other

microbiomes in the environment represents a major step to understand, cure and prevent the prop-

agation of infectious diseases. Indeed, about 60% of emerging infectious diseases in humans are

caused by zoonotic pathogens [Jones et al., 2008], (e.g., West Nile virus, avian influenza, or Ebola).

The highest concentration of infectious diseases per million square kilometres of land was found

between 30 and 60 degrees North and between 30 and 40 degrees South (including regions such as

Europe, Japan, Southeastern Australia and Northeastern US). The environment influences infectious

diseases but can also play a role in the resistance of bacteria to currents treatments (e.g., antibiotics).
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Some of the resistance genes in pathogens have evolved in response to the heavy use of antibiotics

and other interactions with the environment [Martı́nez, 2008][Allen et al., 2009]. The environment

is a source of resistance genes for lateral gene transfer in bacteria, many of which have never been

seen in human-associated bacteria [Martiny et al., 2011].

Because the majority of the human population lives in urban areas, the study of the ur-

ban microbiome is critical for understanding how the microbial environment can affect our health.

The “Metagenomics and Metadesign of the Subways and Urban Biomes” Consortium (MetaSUB)

(http://metasub.org/) have been created recently with the aim to improve city utilization

and planning through the detection, measurement, and design of metagenomics within urban en-

vironments [Consortium et al., 2016]. The data produced by MetaSub is expected to lead to the

discovery of global maps of antimicrobial resistance genes/markers. Given the importance of mi-

crobiomes and their impact in public health, in May 2016 the White House Office of Science and

Technology Policy announced the “National Microbiome Initiative” (NMI) with the aim “to ad-

vance understanding of microbiomes in order to aid in the development of useful applications in

areas such as health care, food production and environmental restoration” with federal investments

of more than $121 million [NMI, 2016].

At the core of the NMI is metagenomics, the gold standard methodology for the analysis

of environmental samples. Metagenomics is the culture-independent sequencing and analysis of

all DNA recovered from a sample. Unlike traditional procedures, for example performing multiple

targeted assays, each looking for a specific pathogen or organism, laboratories can use a single

sequencing based test that is able to identify all microorganisms in a sample without the need for

culture [Handelsman, 2004]. With metagenomics, once an environmental sample is sequenced, one

3
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of the first task is to determine the identities of the microbial species present in the sample.

When we started this work in the Summer of 2013, the most common and accurate ap-

proach was to compare all sequenced DNA fragments (called reads) by sequence-alignment (e.g.,

MegaBLAST [Zhang et al., 2000]) against the database of reference genomes and then label the

identified reads at the lowest taxonomy rank possible [Huson et al., 2007, 2011]. In [Qin et al.,

2010], MEGAN [Huson et al., 2007], another sequence-alignment based tool, was used for the tax-

onomic classification. The underlying computational problem is equivalent to the string matching

problem (i.e., queries of strings or short text are compared against a database of texts). Metage-

nomics has been used in the HMP, but also in the context of clinical diagnosis [Seth-Smith et al.,

2013], pathogen detection in urban spaces [Nicholas et al., 2015] and more (e.g., see the review in

[Miller et al., 2013]). However, unlike the HMP, the NMI is benefiting from improved technologies

such as the mobile and “real-time” sequencing machines, like the the MinION by Oxford Nanopore

Technologies. While other sequencing technologies (e.g. Illumina sequencing machines) are static

and require laboratory equipments, the MinION sequencer has about the same dimensions than a

USB stick, and only needs a laptop to run [Gardy et al., 2015]. These portable sequencers allow us

to imagine a future of “real-time” biosurveillance [Gardy et al., 2015], [Quick et al., 2016].

Nowadays, the sequencing cost is very low (about $150 to sequence a sample) and modern

sequencing machines can sequence billion of nucleotides in few days. As the number of known

bacterial, archaeal, eukaryotic and viral genomes is exponentially growing, the analysis of these

massive datasets is a computational challenge. Because a sequenced sample can contain millions

of reads and that a database can contain thousands of reference genomes, approaches based on

sequence alignment are too slow. Accurate, ultra-fast and efficient methods are needed to perform
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as these analyses. This is particularly critical in time-sensitive scenarios, e.g., when we are dealing

with clinical diagnoses or the safety of civilians (e.g., for Ebola surveillance [Quick et al., 2016]).

This dissertation aims to describe new computational methods for the taxonomic classi-

fication of metagenomic reads, and for the prediction of the microbial population in the context of

missing data. The dissertation is organized as follow:

• Chapter 2: I describe a new versatile, accurate, efficient and ultra-fast sequence classifica-

tion method called “CLARK”. CLARK is an alignment-free sequence comparison based on

“discriminative” k-mers sets (i.e., k-mers that belong specifically to a group of sequence or

taxon). In metagenomics, we show that CLARK, at the genus and species level, is as accurate

as the best state-of-the-art methods. However, compared to its closest competitor, CLARK

is five times faster, in its fastest mode of execution and single-threaded. The manuscript de-

scribing CLARK was published in BMC GENOMICS [Ounit et al., 2015] more than a year

ago and to the best of our knowledge, it is still the fastest metagenomic classifier among

all published read-level classifiers. Its performance has also been acknowledged by several

independent and international research groups such as MetaSUB or the Metagenomic Re-

search Group from the Association of Biomolecular Resource facilities (ABRF/MGRG) for

the “Extreme Microbiome Project”1, in which CLARK is used as a standard method in their

bioinformatics analysis. Finally, we also show that CLARK can be used in the analysis of

genomic data, specifically on the barley genome. We showed it was able to classify barley

BAC clones and unigenes with higher speed and accuracy than the state-of-the-art approach

[Muñoz-Amatriaı́n et al., 2015].
1The Extreme Microbiome Project focuses on developing and surveying metagenomic methods to help facilitate the

recovery of DNA and RNA from unique sample types (in areas with extreme conditions such as deep ocean, Arctic zones,
etc.) as well as develop bioinformatics tools for de novo assembly http://extrememicrobiome.org/

5

http://extrememicrobiome.org/


• Chapter 3: I describe a new classifier, derived from the CLARK framework, based on dis-

criminative spaced k-mers (instead of discriminative contiguous k-mers). The new tool based

on spaced k-mers called CLARK-S was tested on several simulated and real data and showed

higher accuracy than that of CLARK at the genus and phylum level [Ounit and Lonardi,

2015]. CLARK-S was presented in September 2015 at the 15th International Workshop for

Algorithms in Bioinformatics (WABI’15) in Atlanta, GA. After the conference, I carried out

additional research to demonstrate the performance of CLARK-S at a lower taxonomic rank

and through a large scale. Indeed, at the species-level, strong evidence is needed to demon-

strate the tool’s accuracy because of the high similarity between species [Stackebrandt and

Goebel, 1994, Mende et al., 2013]. The final version of CLARK-S was published in BIOIN-

FORMATICS [Ounit and Lonardi, 2016].

• Chapter 4: In the context of the pathogen surveillance at a city-scale, I present how to take

advantage of CLARK-S’ results as well as a Bayesian model to accurately predict the mi-

crobes present in a site of interest for which samples cannot be collected or samples are

lost/missing/contaminated. Our first results indicate that sites which are close to each other

show similar/correlated microbial composition. We asked ourselves if it is possible to infer

unknown microbes population of a given site using the known composition of its surround-

ings. Would it be possible to minimize the amount of sites to continuously monitor the micro-

bial composition without significant loss of detection and reduce the overall biosurveillance

cost of multiple sites? I have preliminary results indicating these questions can be answered

affirmatively.
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Chapter 2

CLARK, a faster and more precise

sequence classification method

The Nature’s book is written in mathematical language
and its symbols are triangles, circles and other geo-
metrical figures, without whose help it is impossible
to comprehend a single word of it.

Galileo Galilei

The first rule was never to accept anything as true un-
less I recognized it to be evident [...]. The second was
to divide each of the difficulties which I encountered
into as many parts as possible, and as might be re-
quired for an easier solution. The third was to think
in an orderly fashion, beginning with the things which
were simplest and easiest to understand, and gradually
and by degrees reaching toward more complex knowl-
edge, even treating as though ordered materials which
were not necessarily so. The last was always to make
enumerations so complete, and reviews so general, that
I would be certain that nothing was omitted.

René Descartes
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2.1 Introduction

The classification problem of determining the origin of a given DNA sequence (e.g., a

read or a transcript) in a given set of target sequences (e.g., a set of known genomes) is common to

several fields of computational molecular biology.

In metagenomics, the objective is to study the composition of microbial community in

an environmental sample. For example, sequencing of seawater samples has enabled discoveries in

microbial diversity in the marine environment [Venter et al., 2004]. Similarly, the study of samples

from the human body has elucidated the symbiotic relationships between the human microbiome

and human health [Human Microbiome Project Consortium , 2012, Consortium et al., 2012]. Once

a metagenomic sample is sequenced, the first task is to determine the identities of the microbial

species present in the sample.

In the Summer 20131, several tools were already available to classify metagenomic reads

against known bacterial genomes via sequence-alignment (e.g., Megan [Huson et al., 2007], [Liu

et al., 2011], MetaPhlAn [Segata et al., 2012] or PhymmBL [Brady and Salzberg, 2011]) or se-

quence composition (e.g., PhyloPythiaS [Patil et al., 2011], NBC [Rosen et al., 2011] or LMAT

[Ames et al., 2013]). The main comparative evaluation of these tools at the time was [Bazinet and

Cummings, 2012]. In that work, the authors demonstrated that NBC exhibits the highest accuracy

and sensitivity at the genus level among state-of-the-art methods such as Megan, PhymmBL, Meta-

Phyler and PhyloPhythiaS. This study also showed that NBC and other probabilistic methods (e.g.,

PhymmBL) as well BLAST-based methods (e.g., Megan, MetaPhyler) are computationally expen-

sive. In 2014, a faster method called Kraken was introduced, but it did not achieve the sensitivity of
1This is at this time that I have joined the Lonardi lab and started focusing on the topic of sequence classification in

Bioinformatics.
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NBC [Wood and Salzberg, 2014]. At that time, we observed that no tool had a sensitivity compa-

rable to NBC and a speed comparable to Kraken. In addition, few tools provided confidence scores

about their sequence assignment, which can be useful for downstream analysis; also some tools

were less user-friendly than others (e.g., dependencies with Jellyfish [Marçais and Kingsford, 2011]

for Kraken or sequence aligners for Megan, etc.), which did not facilitate its usage.

Another application of sequence classification is associated with de novo clone-by-clone

sequencing and assembly. Given a BAC clone (or a transcript), the classification problem is to

determine which chromosome (or chromosome arm) is the most likely origin of that clone/transcript.

The problem assumes that reads for each BAC/transcript as well as reads for each chromosome

arm are available, but that the fully-assembled reference genome is not. This was the situation in

barley, an organism whose complete genome is yet to be produced. The BAC/transcript assignment

problem was usually addressed using general-purpose alignment tools (e.g., BLAST [Altschul et al.,

1990] or BLAT [Kent, 2002]), as in described in [Lonardi et al., 2013].

Observe that in both of these applications the computational problem is the same: given a

set of DNA sequences to be classified (henceforth called “objects”) and a set of reference sequences

(e.g., genus-level sequences, chromosome arms, etc., henceforth called “targets”), identify which

target is the most likely origin of each object based on sequence similarity. Although this problem

has been extensively studied, it is still computationally challenging due to the rapid advances in

sequencing technologies: cheaper, faster, sequencing instruments can now generate billion of reads

in a few days [Levy and Myers, 2016, Goodwin et al., 2016]. As the number of objects grows, so

does the number of targets, as demonstrated by the exponential growth of GenBank [Benson et al.,

2012] of the National Center for Biotechnology Information (NCBI) database, see Figure 2.1.
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Figure 2.1: Data for twenty four year of growth: National Center for Biotechnology Information
(NCBI) data and User services. (Resource: NCBI website)

Given these demands, it is critical for software tools to minimize computational resources

(time, memory, I/O, etc.) required for analysis. This is why we introduced a new classification sys-

tem called CLARK (CLAssifier based on Reduced K-mers), which can accurately and efficiently

classify objects to targets, based on reduced sets of k-mers (i.e., DNA words of length k). CLARK is

the first method able to perform classification of short metagenomics reads at the genus/species level

with a sensitivity comparable to that of NBC, while achieving a comparable speed to Kraken. In

several situations, CLARK is faster and more precise than Kraken at the genus/species level. Unlike

tools like LMAT, MetaPhylAn, PhyloPythiaS, MetaPhyler or NBC, CLARK produces assignments

with confidence scores, which are critical to post-process assignments in downstream analyses. Ad-
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ditionally, CLARK is designed to be user-friendly, self-contained (i.e., does not depend on any other

tool or library), and multi-core-friendly. CLARK does not need as much disk space as Kraken or

PhymmBL. Finally, a “RAM-light” version of CLARK can be run on a memory-limited architecture

(such as a 4 GB RAM laptop).

2.2 Methodology

The following sections describe the sequence classification method implemented in the

CLARK framework.

2.2.1 The philosophy of lightweight algorithm

The philosophy of “lightweight” algorithms considers that only few rules and steps should

characterize a program or algorithm. In situations where there is a massive amount of data, whether

it is in the reference genomes2 or in sequenced samples, the problem of comparing sequences based

on similarity is intractable using naive or exhaustive approaches. While we are facing a continuous

deluge of data, we believe that lightweight algorithms can become standards solutions if they can

be fast, efficient and scalable. In the context of our system, we translate this philosophy into:

• The design and use of simple and efficient data-structures (e.g., Hash-tables).

• The preference of the basic/elementary operations (e.g., addition, multiplication, etc.) over

complex non-linear operations that are time-consuming (e.g., matrix inversion, etc.).

• The systematic use of data reduction techniques (e.g., Principal Component Analysis, Mul-

tiple Correspondence Analysis, etc.) or approximation algorithms, whether it is for the
2The size of all complete genomes in NCBI/RefSeq is higher than 700 GBytes of data in August 2016.
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database/input processing or the sequence classification.

2.2.2 Notations

Object and targets are described by their sequence which is a non-empty string over the

alphabet Σ = {A, T,G,C} of nucleotides (U can replace T in the case of mRNA). Observe that

two bits are sufficient to identify a nucleotide. Given a sequence s, we use s[i] to denote the ith

letter in s, and |s| to denote its length. A target is a sequence representing either a genome, or a

species (i.e., a set of genomes from different individuals), or a genus (i.e., a set of genomes). We use

the variable n to indicate the number of targets. An object is a sequence that is assumed to originate

from at most one of the n targets. We use the variable p to indicate the number of objects.

We say that a non-empty object s originates from target g if sequence s is a substring of

sequence g. Given n targets {g1, g2, . . . , gn} we say that a sequence s is specific to target gc (or

gc-specific) 1 ≤ c ≤ n, if s is a substring of gc and s is not a substring of any other target. We say

that a sequence s is a repeat of {g1, g2, . . . , gn} if it is a substring of more than one target.

Given a positive integer k, a k-mer is any sequence of k consecutive nucleotides. Given

that |Σ| = 4, there is a total of 4k possible k-mers, i.e., any k-mer can be then associated to a unique

dimension ranging from 1 to 4k. It is easy to observe that exactly N −k+ 1 k-mers (distinct or not)

can be extracted from a sequence of length N , when k ≤ N .

The k-spectrum T (s) of an object s is the vector of size 4k defined as follows: for any

1 ≤ i ≤ 4k, T (s)i is the number of occurrences in s of the k-mer with dimension i. Now consider

(Ek, ||.||1), where Ek = R4k is a normed vector space of dimension 4k and ||.||1 is the 1-norm.

Although spectrums are vectors of integers, it is more convenient to consider the set R rather than Z

because the former is a field. Thus, (Ek, < ·|· >), where < ·|· > is the standard dot product, is an
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Euclidean space, on which useful notions such as projection and orthogonality can be defined. If ~ei

is the unit vector (entry i equal to 1 and 0 everywhere else), then (~e1, ~e2, . . . , ~e4k) is the canonical

basis of Ek.

The 1-norm of a vector ~v ∈ Ek is defined as ||~v||1 =
∑4k

i=1 |vi|. Since Ek is a vector

space of finite dimensions, all p-norms are equivalent in Ek. However, we prefer the 1-norm due

some of its properties. For instance, for any k-spectrum T (s) for a sequence s of length N , we have

||T (s)||1 = N − k + 1. In other words, sequences of same length have the same 1-norm.

2.2.3 Problem Definition

The assignment problem can be defined as follows. Given a set of targets {g1, g2, . . . , gn},

a set of objects {s1, s2, . . . , sp}, and a positive integer k, assign each object si to the target gc∗ ,

such that the number of gc-specific k-mers contained for si is the highest (where ties are broken

arbitrarily) for c = c∗, where 1 ≤ c ≤ n.

2.2.4 Probability of Two Sequences to Share the Same k-spectrum

We first observe that the mapping between a sequence and its spectrum is not one-to-

one (i.e., it is not invertible), because the spectrum ignores the order of k-mers in the sequence. The

consequence is that two or more sequences can have the same spectrum. For example, the spectrums

of all N − 1 circular rotations of a string of length N are identical to each other.

We now proceed to compute the probability that a pair of sequences (targets or objects) of

length N share the same k-spectrum. The problem of recovering a sequence from a set of k-mers is

one of the “flavors” of genome assembly. From the k-spectrum one can build the corresponding de

Bruijn graph (nodes are k-mers and edges connect two nodes if the two corresponding k-mers have
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a k − 1 overlap). Any Eulerian path of this graph recovers one of sequences having such spectrum

[Compeau et al., 2011]. Here we want to count the number of sequences with the same k-spectrum,

which is equal to the number of distinct Eulerian paths in the corresponding de Bruijn graph. Given

a sequence s, we call Bk,N the set of distinct sequences of length N whose k-spectrum is T (s).

Then, |Bk,N | is the number of Eulerian paths in the de Bruijin graph Gs built from the k-spectrum

of s.

Let us consider a set D of sequences of length N and an integer k. Let s, s′ be two

sequences in D. The probability that s and s′ have the same k-spectrum is

P
(
T (s) = T (s′)|s 6= s′

)
=
|Bk,N ∩D|
|D| − 1

Since we will be using spectrums for classification, we want the probability of a conflict

to be as small as possible. However, |Bk,N ∩ D| is not easy to evaluate for a generic set D of

sequences. We can compute this quantity when D is the set of all sequences of length N . In this

case, |D| = 4N and |Bk,N ∩D| = |Bk,N |.

The quantity |Bk,N | is an upper bound to the number of Eulerian paths in Gs for a se-

quence s of length N . Thus, we have |Bk,N | ≤ (N − k + 1)4N−k−3 · 3 · 2 · 1, because there are at

most (N − k+ 1) possibilities for choosing the first k-mer, then at most four distinct k-mers for the

second position, then at most four distinct k-mers for the third position, and so on and so forth. For

the last three positions there are three, then two, and one k-mer. Thus,

P
(
T (s) = T (s′)|s 6= s′

)
≤ (N − k + 1)4N−k−3 · 3 · 2 · 1

4N − 1
=

2(N − k + 1)

4k+2
(2.1)
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For instance, whenN is small (say,N = 1000), and k=12, we can estimate thatP (T (s) =

T (s′)|s 6= s′) ≤ 10−5. If N is bigger (say, N = 108, which is the size of a small genome) and k =

12, then P (T (s) = T (s′)|s 6= s′) ≤ 0.7451. For N = 108 and k = 19 we get P (T (s) = T (s′)|s 6=

s′) ≤ 4.547 10−5, and for N = 109 and k = 19, we get P (T (s) = T (s′)|s 6= s′) ≤ 4.547 10−4.

Inequality 2.1 can be used to determine the value of k that will make the probability of

a spectrum conflict small enough (given N ). Recall that we assumed that D contains all possible

sequences of length N . When |D| << 4N , it is reasonable to assume that Inequality 2.1 still holds

when k is large enough, since in this case |Bk,N ∩D| = 0 (e.g., consider the extreme case N = k).

2.2.5 Spectral decomposition

Now we describe how k-spectrums can be used to assign objects to targets. Given a target

gc, 1 ≤ c ≤ n, let T (gc) be its k-spectrum. Henceforth, we assume that vectors T (g1), T (g2), T (g3),

. . . , T (gn) are non-null and linearly independent, i.e., the determinant of the matrix obtained from

these vector is not zero:

det [T (g1), T (g2), T (g3), . . . , T (gn)] 6= 0 (2.2)

This assumption is met in practice and it is sufficiently general due to the fact that sequences from

distinct targets contain unique substrings. From Inequality 2.1, we can also choose k large enough

so the probability of two distinct sequences to share the same spectrum is as small as needed.

Let Bc be the basis of unit vectors such that these unit vectors are associated to non-

zero-count dimensions in the k-spectrum of T (gc), i.e., Bc = (~ei)i ∈ Ic , where Ic = {i, i ∈

{1, 2, 3, . . . , 4k} | T (gc).~ei 6= 0}. Since Bc contains all non-null dimensions from T (gc), we can
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define Ec
k = span(Bc), which is the space described by linear combinations of the unit vectors in

Bc. Ec
k represents the vector space associated to the k-spectrum of target gc.

Next we build another basis, but only for target-specific k-mers. Let B̃c be the basis of

unit vectors corresponding to the set of dimension of non-zero counts in the k-spectrum of T (gc),

which has at the same time, zero counts in the spectrum of other targets, i.e., B̃c = (~ei)i∈Ĩc , where

Ĩc = {i, i ∈ {1, 2, 3, . . . , 4k} | T (gc).~ei 6= 0 and for all c′ 6= c we have T (gc′).~ei = 0}. By

the Equation 2.2, we have for all c, B̃c 6= ∅ (if for some c, B̃c = ∅, then we need to increase

k). Therefore, we can define Ẽc
k = span(B̃c), which is the vector space built from all subspaces

specific to Ec
k. Ẽc

k is called target-specific k-mer space of gc or simply gc-specific k-mer space.

If the targets are chromosome arm sequences then these definitions can be extended to

infer centromeric regions (see [Ounit et al., 2015] and [Muñoz-Amatriaı́n et al., 2015] for more

details).

2.2.6 Orthogonal decomposition

The vector spaces Ẽc
k allow a decomposition of the k-mer vector space Ek. This section

explains the construction of this decomposition. First, we prove the fact that a k-mer from an object

s cannot belong to more than one target specific k-mer space.

Claim 1. For all (c, c′) ∈ {1, . . . , n}2, c 6= c′, we have Ẽc
k ⊥ Ẽc′

k .

Proof. By construction, for all ~u ∈ Ẽc
k, ∀~u′ ∈ Ẽc′

k , we have ~u =
∑

i∈Ĩc ui~ei and ~u′ =
∑

i∈Ĩc′
u′i~ei.

Then, < ~u | ~u′ >=
∑

i∈{1,2,3,...,4k} uiu
′
i =

∑
i∈Ĩc∩Ĩc′

uiu
′
i. By definition of the basis, Ĩc ∩ Ĩc′ = ∅

because c 6= c′, so < ~u | ~u′ >= 0.

Since we have established that spaces Ẽc
k are pairwise orthogonal, we can define Ẽk as
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the vector space resulting from the direct sum of all Ẽc
k, i.e.,

Ẽk =

n⊕
c=1

Ẽc
k (2.3)

Since Ẽk contains non-null spaces, Ẽk is not a null space. Also, since Ek is an Euclidean space and

Ẽk ⊂ Ek, we can define the orthogonal decomposition of Ek as

Ek = Ẽk ⊕ Ẽ⊥k (2.4)

where the vector space Ẽ⊥k represents the space of common k-mers within all targets.

The last two relations are useful when we consider the assignment of an object s to a target

sequence gc. Since T (s) ∈ Ek, Equation 2.4 suggests that there must exist two unique vectors ~u

and ~u⊥ such that T (s) = ~u + ~u⊥, where ~u is the orthogonal projection of T (s) to Ẽk, and ~u⊥ is

the orthogonal projection of T (s) to Ẽ⊥k . In order words, ~u = T (s)
/Ẽk

, and ~u⊥ = T (s)
/Ẽ⊥k

. Let us

now focus on ~u. Equation 2.3 allows us to decompose this vector by projecting it into each Ẽc
k:

~u = T (s)
/Ẽk

=
n∑

c=1

T (s)
/Ẽc

k

It follows that

‖~u‖1 =
∥∥∥T (s)

/Ẽk

∥∥∥
1

=

n∑
c=1

∥∥∥T (s)
/Ẽc

k

∥∥∥
1

(2.5)

where
∥∥∥T (s)

/Ẽc
k

∥∥∥
1

is the count of gc-specific k-mers in s. As a consequence, projecting the spec-

trum of any object s to each target-specific space Ẽc
k reveals the uniquely shared substring between

object s and target c.
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2.2.7 Orthogonal projections

Let us now introduce more properties based on the decomposition described above.

Claim 2. If an object s is not a substring of a target gc then
∥∥∥T (s)

/Ẽc
k

∥∥∥
1

= 0.

Proof. If s is not a substring of gc ∈ {g1, g2, . . . , gn} then any k-mer from s cannot be gc-specific.

Therefore, the count gc-specific k-mers contained in s is 0. The conclusion follows.

Claim 3. If s is a repeat of {g1, g2, . . . , gn} then for all c ∈ {1, 2, . . . , n}, we have
∥∥∥T (s)

/Ẽc
k

∥∥∥
1

= 0.

Proof. Recall that T (s) = ~u+~u⊥ and ‖~u‖1 =
∑

c∈{1,2,...,n}

∥∥∥T (s)
/Ẽc

k

∥∥∥
1
. For any c,

∥∥∥T (s)
/Ẽc

k

∥∥∥
1

is

the count of k-mers specific to gc contained in s. Now, let us assume for some c,
∥∥∥T (s)

/Ẽc
k

∥∥∥
1
6= 0,

this implies that s contains at least one k-mer that is specific to gc and no other target. So s contains

a substring that appears only in one target sequence. In other words, s is not repeated in its entirety,

so this contradicts the hypothesis that s is a repeat. This implies that for all c ∈ {1, 2, . . . , n}, we

have
∥∥∥T (s)

/Ẽk

∥∥∥
1

= 0.

Theorem 4. Given a set of targets {g1, g2, . . . , gn}, and a set of objects {s1, s2, . . . , sp}, if sl

originates from at least one target in {g1, g2, . . . , gn} then there exists at most one index c∗(1 ≤

c∗ ≤ n) such that for all c ∈ {1, 2, . . . , n}, c 6= c∗,
∥∥∥T (sl)/Ẽc

k

∥∥∥
1

= 0, where for each target c,

1 ≤ c ≤ n, Ẽc
k is the gc-specific k-mer space.

Proof. Let sl be a sequence in {s1, s2, . . . , sp}. If sl is a repeat of {g1, g2, . . . , gn} then Claim 3

holds. Then, the conclusion follows. Otherwise, if sl is not a repeat then sl is a substring of exactly

one sequence gc∗ . By Claim 2, for all c ∈ {1, 2, . . . , n}, c 6= c∗,
∥∥∥T (sl)/Ẽc

k

∥∥∥
1

= 0.
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When sl is a substring of exactly one target sequence gc∗ , if sl does not contain any gc∗-

specific k-mers then
∥∥∥T (sl)/Ẽc∗

k

∥∥∥
1

= 0. This may happen when the sequence s is too short to

capture any gc∗-specific k-mers or if k is too small. However, if
∥∥∥T (sl)/Ẽc∗

k

∥∥∥
1
6= 0 then the origin

of the sequence s is gc∗ .

Theorem 4 shows that, given an object s the projections of T (s) on all targets-specific

spaces are guaranteed to be null, except for the one that is related to the origin of s. As a conse-

quence, if a sequence s is known to be a substring of at most one target in {g1, g2, . . . , gn}, then the

problem of assigning s is reduced to the problem of studying non-null projections of T (s) on the n

specific vector spaces.

2.2.8 Classification overview

Theorem 1 lays the theoretical foundation of the CLARK’s classification method. Given

an object s, let us consider what are the possible situations when we compute the projections of

the spectrum T (s) on all target-specific spaces. Based on the theory developed so far, we either

expect that (a) the number of non-null projection is zero then there is no information to classify the

object s (in this case, one may need to increase the value of k and repeat the projections) or (b)

there is exactly one non-null projection, say
∥∥∥T (s)

/Ẽc
k

∥∥∥
1
6= 0, for some c, then the object s contains

gc-specific k-mers. In this case, the object s can be classified to target c.

In practice, however, real data are noisy and thus one can observe that the null projections

have instead low counts. The two previous cases can be summarized by the following rule: first

compute

c∗ = arg max
1≤c≤n

∥∥∥T (s)
/Ẽc

k

∥∥∥
1

(2.6)
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then the object s is assigned to target c∗ if
∥∥∥T (s)

/Ẽc∗
k

∥∥∥
1
> 0.

In other words, instead of expecting up to two non-null projections, we should expect up

to two projections having high 1-norm compared to all others. Given a object s, CLARK computes

the highest norm, namely
∥∥∥T (s)

/Ẽc∗
k

∥∥∥
1
, and the second highest norm, namely

∥∥∥T (s)
/Ẽc∗∗

k

∥∥∥
1
. Then,

CLARK evaluates the confidence of the assignment by using the following confidence score, which

ranges from 0.5 to 1.

confidence =

∥∥∥T (s)
/Ẽc∗

k

∥∥∥
1∥∥∥T (s)

/Ẽc∗
k

∥∥∥
1

+
∥∥∥T (s)

/Ẽc∗∗
k

∥∥∥
1

Another useful statistic is γ =
∑

1≤c≤n

∥∥∥T (s)
/Ẽc

k

∥∥∥
1
/ ‖T (s)‖1, which indicates the pro-

portion of k-mers hitting all targets.

2.2.9 Classification algorithm

Given a set of targets {g1, g2, . . . , gn}, a set of objects {s1, s2, . . . , sp} and an integer k,

CLARK’s computes for each object s (1) the top two target assignments, (2) the confidence score,

(3) the number of hits against each target and (4) γ.

To achieve efficient computations, we use a key-value storage (hash table) to store all k-

mers from the targets. Observe that each discriminative or target-specific k-mer can be associated to

at most one target. This data structure also allows one to remove all common k-mers and to perform

fast queries (constant time, on average). We have designed our own hash table of size L based on

a chaining structure. The hash function h is defined as follows. Given a k-mer km represented by

a number l, where l =
∑k

i=1 a[i]4i−1 (with a[i] = 0 if km[i] = A, a[i] = 1 for C, a[i] = 2 for

G and a[i] = 3 for T or U ), we define h(l) = l mod L, where L is defined below. To reduce the
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amount of bits to be stored per k-mer, we only save in the hash table the value l/L for bucket h(l).

Indeed, since L is known, h(l) and l/L contain enough information to compute back l because

l = (l/L) × L + h(l). If k = 31 and L > 415 then (l/L) can be stored in four bytes. As a

consequence, any 31-mer can be represented with only four bytes instead of eight. If k ≤ 23 and

L > 415 then two bytes are enough to store any k-mer; if k ≤ 19 and L > 415 then only one byte

is enough. The implementation of our algorithm using a hash table is illustrated in Table 2.1 below.

2.2.10 Full, Default and Express mode

CLARK offers several modes of execution. The first mode (henceforth named Full) out-

puts for each object the number of hits against all the targets and the confidence score of the assign-

ment.

The second mode (called Default) employs a pseudo-random sampling of the target-

specific k-mers to reduce the number the k-mers to load in memory for classification, and it outputs

assignments without any detailed statistics so that the output size is significantly reduced. Because

it uses less target-specific k-mers than in the Full mode, the default mode is slightly less accurate,

but it is faster (see Table 2.2 and 2.3).

The third mode (called Express) loads in memory all the target-specific k-mers, however

it outputs results in the same way than that of the Default mode. In addition, this mode is designed to

achieve high classification speed by performing a reduced number of k-mer queries to the database

(i.e., it queries only non-overlapping k-mers that are found in the object). This enables the Express

mode to be significantly faster compared to the Default mode or the Full mode, especially in the

case the objects are long sequences (see Table 2.2 and 2.3).
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2.2.11 Parallel computing

To process large input files in parallel and in a memory-scalable fashion, CLARK exploits

the following multithreading algorithm. In default (or express) mode for single-end reads, CLARK

partitions the input file into n bins of reads of equal size (where n is the number of parallel threads

requested by the user) and classifies the reads of each of these bins in parallel. Once all threads are

completed, the program writes the results in disk. In full mode, CLARK first selects a continuous

block of reads (up to two million), and then classifies the reads in a block as described in the default

(or express) mode. The full mode consumes more memory as it provides more information per read

(i.e., confidence and gamma scores or hit counts per target) and thus the reads extraction is needed

to control the memory used. In the case of paired-end reads, the two FASTQ files are first merged

(i.e., each read pair is concatenated with a spacer composed of several “N” in between them) before

partitioning the reads (in default or express mode) or extracting the reads (in full mode). Our multi-

threading algorithm assures that the RAM-usage remains constant independently of the size of the

sample file. A similar technique was used in the tool BRAT-NOVA for bisulfite-treated reads [Harris

et al., 2016].

2.2.12 CLARK-l, a RAM-light variant of CLARK

Often the memory needed by CLARK can exceed the RAM available for users with lim-

ited computational resources. For users with limited amounts of RAM, we have designed CLARK-l

(light). CLARK-l is a variant of CLARK that has a much smaller RAM footprint but can classify

objects with similar speed and accuracy.

The reduction in RAM is achieved by constructing a hash-table of smaller size and by
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selecting a smaller sets of discriminative k-mers. Instead of considering all k-mers in a target,

CLARK-l samples a fraction of them. CLARK-l uses k = 27 (27-mers appeared to be a good trade-

off between speed, low memory usage and precision) and skips four consecutive/non-overlapping

27-mers. As a result, CLARK-l’s peak RAM usage is about 3.8 GB during the index creation, and

2.8 GB when computing the classification (see next section of the chapter). CLARK-l has also the

advantage to be very fast in building the hash table.

As described in the next section of this chapter, we show that while the precision and

sensitivity are lower compared to CLARK, CLARK-l still achieves high precision and high speed

and represents a good solution for users with limited RAM machines.

2.3 Evaluation of the performance

We have evaluated CLARK on synthetic datasets and real metagenomes. The synthetic

datasets are composed of DNA sequences whose taxonomy (or “ground truth”) is known using

synthetic reads generator such as ART [Huang et al., 2012] (cf. [Escalona et al., 2016] for a com-

parison of the standard synthetic reads simulators) and thus enable us to estimate the performance

in accuracy and running time (or speed). While the ground truth for real metagenomes is unknown,

it is nonetheless possible to evaluate the speed and whether or not the results are consistent with

published results.

2.3.1 Synthetic and real datasets

We used three microbial synthetic metagenomics datasets called “HiSeq”, “MiSeq” and

“simBA-5” that were introduced in [Wood and Salzberg, 2014]. According to [Wood and Salzberg,
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2014], “the HiSeq and MiSeq metagenomes were built using twenty sets of bacterial whole-genome

shotgun reads. These reads were found either as part of the GAGE-B project [Magoc et al., 2013]

or in the NCBI Sequence Read Archive. Each metagenome contains sequences from ten genomes

(see Additional file 1: Table S1 in [Wood and Salzberg, 2014] for the list of genomes). For these

metagenomes, 10% of their sequences were selected from each of the ten component genome data

sets (i.e., each genome had equal sequence abundance)”. The set simBA-5 included “simulated

bacterial and archaeal reads, and was created with an error rate five times higher than” the default

[Wood and Salzberg, 2014]. We also analyzed the set simHC of synthetic reads [Mavromatis et al.,

2007], which simulates high complexity communities lacking dominant populations. SimHC con-

tains 113 sets of reads from various microbial genomes. From simHC, we selected arbitrarily twenty

distinct genomes, and extracted the first 500 reads for each genome to build a total of 10,000 reads

(see Table 2.10 for the list of genomes). We called this latter dataset simHC.20.500. HiSeq and

MiSeq can be considered set of read of low/medium complexity while simBA-5 and simHC.20.500

can be considered set of reads of high complexity. Each of these datasets contains 10,000 reads.

The average read length in HiSeq was 92 bp, 156 bp in MiSeq, and 951 bp in simHC.20.500. In

simBA-5, all reads are 100 bp long.

We have arbitrarily chosen three real metagenomic samples selected from the Human

Microbiome Project [Consortium et al., 2012, Human Microbiome Project Consortium , 2012]. The

three samples we used were SRS015072 (mid-vagina) containing 572 thousand paired-end reads,

SRS019120 (saliva) containing 4.3 million paired-end reads, and SRS023847 (nose) containing 5.2

million paired-end reads. The microbial abundance and composition of these samples have been

determined by using standard and sequence-alignment based methods, such as MetaPhlAn.
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2.3.2 Comparison against the best state-of-the-art methods

We have run CLARK on the four synthetic datasets described above and compared its

classification results against the state-of-the-art methods, namely NBC [Rosen et al., 2011], which

we chose for its high accuracy (currently the most sensitive metagenomics classifier, according to

[Bazinet and Cummings, 2012]), and Kraken, which we chose due to its high speed 3 and its high

precision at the genus level.

2.3.3 Evaluation of the speed and accuracy

Database in metagenomics

We have tested CLARK using the set of bacterial and archaeal genomes from NCBI/RefSeq.

At the time we carried out the experiments the NCBI/RefSeq database was composed of 2,752 com-

plete bacterial genomes, distributed into 695 distinct genera, or 1,473 species. The total length of

all these bacterial genomes was about 9.5 Gbp. The average size of a genome was about 3.5 Mbp.

HiSeq, MiSeq, simBA-5 and simHC.20.500

For a given level in the taxonomy tree (e.g., genus), we define precision as the fraction

of correct assignments over the total number of assignments, and sensitivity as the ratio between

the number of correct assignments and the number of objects to be classified. In order to have a

fair comparison against KRAKEN’s assignments, when KRAKEN produces an assignment that is not

available at or below the genus or species level, it is then considered as not assigned.
3According to [Wood and Salzberg, 2014], Kraken’speed was unmatched among the standard and best state-of-the-art

read-level classifiers available the time such as NBC, PHYMMBL[Brady and Salzberg, 2011] and MEGABLAST [Zhang
et al., 2000], when it was published in 2014.

25



Table 2.2 reports precision, sensitivity and processing speeds (in 103 reads per minute) ob-

tained by NBC, KRAKEN and CLARK on the HiSeq, MiSeq, simBA-5 and simHC.20.500 datasets,

for several values of the k-mer length. The table illustrates how the performance of these tools is

affected by the choice of k. By increasing k one generally increases precision, but can lower sen-

sitivity (also see Figure 2.2). To carry out a fair comparison between tools, we decided to first

determine NBC’s and KRAKEN’s optimal k-mer length, and then run CLARK with a value of k

that would match either sensitivity or precision.

NBC was tested with k = 11, 13, 15. We observed that k = 15 produced the highest

sensitivity on all datasets. The value k = 15 is the highest possible value, which is recommended

by the authors of [Rosen et al., 2011] for datasets composed of short reads. Since NBC produces

detailed statistics on the assignments, we executed CLARK in Full mode for a fair comparison.

Using k = 20 for CLARK (Full mode) we obtained a similar sensitivity to NBC (CLARK is

actually more sensitive than NBC on HiSeq and simHC.20.500). At the same level of sensitivity of

NBC, CLARK achieves a higher precision and it is thousands of times faster.

In the case of KRAKEN, k = 31 was the value used in [Wood and Salzberg, 2014] for

HiSeq, MiSeq and simBA-5 and it is supposed to achieve the highest precision. We also tried to run

KRAKEN for other values of k. As expected, Table 2.2 shows that k = 31 produces the best preci-

sion for all the datasets. For this comparison, we also ran CLARK with k = 31. Observe that CLARK

(Default mode) is slightly less sensitive than KRAKEN but is more precise and faster. The difference

in speed is significant for all datasets of short reads (300− 800 thousand additional reads/min). On

simHC.20.500, KRAKEN and CLARK achieve the same speed due to the fact that these datasets

contain longer reads. Finally, CLARK has better sensitivity than KRAKEN on simHC.20.500.
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The same comparisons were carried out between the two variants of KRAKEN and CLARK

optimized for speed, called KRAKEN-Q and CLARK-E (E for “Express”). As indicated in Ta-

ble 2.2, KRAKEN-Q achieves the best precision for all the datasets when k = 31, which is con-

sistent with [Wood and Salzberg, 2014]. However, when k = 31 CLARK-E runs four–five times

faster than KRAKEN-Q and is also more precise. In addition, observe that as we decrease k, both

variants gets faster but CLARK-E maintains a precision above 90% while KRAKEN-Q produces

progressively lower precisions. In the last row of Table 2.2, we report the performance of CLARK-l,

another variant of CLARK designed for low RAM architectures that runs only for k = 27 (see Meth-

ods section). CLARK-l performs assignments with a lower precision than CLARK (the difference

is at most 3.5% in these experiments) but can process more than 1.5 million of reads per minute on

HiSeq or simBA-5, and only uses about 4% of the memory used by CLARK (cf. Table 2.5).

All experimental results reported so far were obtained in single-threaded mode. If a multi-

core architecture is available, CLARK and KRAKEN can take advantage of it. In Table 2.6, we sum-

marize the classification speed of the two tools using 1, 2, 4 or 8 threads for k = 31. Observe that

using eight threads, CLARK achieves a speed-up of 5.2x compared to one thread, while KRAKEN

only achieves a speed-up of 1.2x. When comparing CLARK-E to KRAKEN-Q, we can make sim-

ilar observations. In general, note that CLARK-E is at least five times faster than KRAKEN-Q,

independently of the number of threads used.

For the analysis at the species level, we repeated the classification of the objects in the four

datasets described above against species-level targets. This time we used values of k that allowed

best sensitivity for NBC (k = 15) and best precision for KRAKEN (k = 31). Observe in Table 2.3

that NBC achieves the best sensitivity on all datasets. However, when CLARK is ran in Full mode
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using k = 20, it achieves a higher precision than NBC on HiSeq, MiSeq and simHC.20.500, and

is several orders of magnitude faster. In addition, CLARK in Default mode using k = 31 achieves

higher precision than KRAKEN on all datasets (as much as 10% higher on HiSeq and MiSeq) when

k = 31. CLARK also outperforms the speed of KRAKEN on HiSeq, MiSeq and simBA-5. On

simHC.20.500, since the reads are much longer, the speed of KRAKEN and CLARK are comparable.

But, CLARK has higher sensitivity than KRAKEN on HiSeq, MiSeq and simHC.20.500. Finally, the

fast variant CLARK-E, as previously observed for the experiments at the genus level, outperforms

KRAKEN-Q in both speed and precision.

Human microbiome samples

In the second experiment, we used CLARK to classify Human Microbiome Project reads

against 695 genus-level targets described above. This time, however, the “ground truth” was not

available.

Using k = 31, CLARK was able to assign 42.1% of the reads in SRS015072 (mid-vagina),

30.8% of the reads in SRS019120 (saliva) and 49.8% of the reads in SRS023847 (nose). KRAKEN

achieved similar rates of assigned reads using k = 31. Reducing k would increase the number of

assignments, at the cost of increasing the probability of misclassification. We investigated whether

we could take advantage of CLARK’s confidence scores to compensate for a smaller value of k, and

improve the fraction of assigned reads.

Figure 2.2-a to Figure 2.2-d show that CLARK’s sensitivity on the four datasets is the

highest for k = 20 or k = 21. However, the precision for k = 20 and k = 21 is about 15%

lower than for k = 31, which implies that a large proportion of assignments may be incorrect.

We have strong experimental evidence that shows that the higher is CLARK’s confidence score for
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an assignment, the more likely that assignment is correct (see next paragraph). In addition, we

observe in Figure 2.2-a to Figure 2.2-d that the precision of high confidence assignments is higher

than the average precision of all assignments, and is relatively constant for all k-mer length. The

idea is to use k = 20 to maximize the number of assigned reads, but only consider high confidence

assignments to increase the precision. We call an assignment high confidence if the confidence score

is higher than 0.75, low confidence otherwise.

Observe in Table 2.4 that the number of high confidence assignments for k = 20 is

significantly higher than for k = 31. The relative increase in assignments is about 40% (from 42.1%

to 62.3% in SRS015072, 30.8% to 55.1% on SRS019120, and 49.8% to 68.3% on SRS023847).

Table 2.4 also reports the most frequent five genera in high confidence assignments. For the saliva

sample, the dominance of Streptococcus, Haemophilus and Prevotella is consistent with findings in

[Human Microbiome Project Consortium , 2012] and [Wood and Salzberg, 2014]. Study [Said et al.,

2013], which focused on salivary microbiota of 35 inflammatory bowel disease patients, also reports

Streptococcus, Prevotella, Neisseria, Haemophilus and Veillonella as dominant genera. Concerning

the mid-vagina sample, we have found that Lactobacillus is the dominant genus, in agreement

with findings reported in [Antonio et al., 1999, Hyman et al., 2005, Human Microbiome Project

Consortium , 2012]. The proportion of Lactobacillus we have identified (64.7%) is very close to

the reported proportion (69%–71%) in [Antonio et al., 1999, Hyman et al., 2005]. The presence of

Pseudomonas and Gardnerella is expected because some individuals who lack Lactobacillus have

instead Gardnerella or Pseudomonas as the predominant bacteria [Antonio et al., 1999, Hyman

et al., 2005]. In the nose sample, the high presence of Propionibacterium and Staphylococcus is

consistent with the results in [Human Microbiome Project Consortium , 2012].
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2.3.4 Applications in genomics: Barley BACs and unigenes

In this section, we show that CLARK can be also applied to another problem in genomics,

namely BACs/unigenes assignment to chromosomes or chromosomes arms/centromeres. We car-

ried out this classification on the barley genome.

Inputs to this classification task were (1) barley chromosome arms (targets) and (2) barley

BACs or unigenes (objects). Samples of each barley chromosome arm were obtained using flow-

sorting [Doležel et al., 2012]. The procedure to obtain gene-rich barley BACs was described in

[Lonardi et al., 2013]. Sequences for chromosome arms and BACs were generated on an Illumina

HiSeq 2000 at UC Riverside.

For the targets, we processed thirteen datasets of shotgun sequenced reads: one for barley

chromosome 1H and twelve for barley chromosome arms (namely, 2HL, 2HS, 3HL, 3HS, 4HL,

4HS, 5HL, 5HS, 6HL, 6HS, 7HL, and 7HS). After quality-trimming the reads, we had a total of

about 181 Gbp of sequence data. The cumulative size of the assembled barley chromosome arms

obtained via SOAPDENOVO [Luo et al., 2012] resulted in about 2 Gbp (about 40% of the barley

genome).

The objects were 50,938 barley unigenes (transcript assembly from ESTs) obtained from

[Close et al., 2007] for a total of about 222.4 Mbp. Additionally, we trimmed short reads for 15,721

BACs obtained from [Lonardi et al., 2013], for a total of about 1.73 Gbp. We also had access to

15,697 BAC assemblies (not all BACs had a sufficient number of reads for an assembly) for a total

of about 1.80 Gbp. While the genomic location for the majority of these “objects” was unknown,

we had 1,652 unigenes for which a location was derived from the Golden Gate oligonucleotide

pool assay (OPA) [Close et al., 2009], which allowed us to determine a presumed location of 2,252
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BACs [Lonardi et al., 2013]. We should point out that although we have used these locations as the

“ground truth” to establish the accuracy of the classification, our observations indicate about 5%

errors in these OPA assignments [Lonardi et al., 2013].

As stated above, the most critical parameter in CLARK is the length of the k-mer used

for classification. By assuming that the subset of the unigenes that have a location via OPA were

correct, we were able to estimate CLARK’s precision and sensitivity for various choices of k. Fig-

ure 2.2-e shows these statistics, along with the assignment rate (fraction of unigenes assigned) and

the average confidence score for all assignments. Observe that as k increases, the number of assign-

ments decreases but the precision/sensitivity increases. Based on this analysis we determined that

k = 19 represents a good tradeoff for this dataset.

Table 2.8 summarizes CLARK’s assignment of barley unigenes (assemblies) to barley

chromosomes arms (assemblies) using k = 19. When both targets and objects are assemblies, we

call this an “A2A” assignment. Observe that most of the assignments have high confidence and they

are relatively evenly distributed among barley chromosome arms (the seven barley chromosomes

are believed to be relatively similar in length). Observe in Figure 2.2-e that CLARK’s precision and

sensitivity for this classification task is very high (both at 98.49%) while the average confidence

score is above 0.96, and 99.44% of unigenes are assigned.

Table 2.7 presents a summary of CLARK’s assignment of barley BACs (assemblies) to

arms (assemblies), while Table 2.9 refers to the same assignments based on the reads instead of

the assemblies (“R2R” assignment). The consistency between these results (same distribution of

BACs assignments over chromosome arms, and similar proportion of high and low confidence as-

signments) demonstrates the robustness of our approach. The agreement with OPA-based locations
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is 92.9% for R2R assignments, and 93.2% for A2A assignments. Observe that the agreement for

BAC/arm assignments is lower than unigene/arm assignments (98.49%).

Running time analysis

All experiments presented in this study were run on a Dell PowerEdge T710 server (dual

Intel Xeon X5660 2.8 Ghz, 12 cores, 192 GB of RAM). CLARK-l was also run on a Mac OS X,

Version 10.9.5 (2.53 GHz Intel Core 2 Duo, 4 GB of RAM). When comparing KRAKEN to CLARK

in their Default mode, and KRAKEN-Q to CLARK-E, we always set KRAKEN to “preload” its

database in main memory and print results to a file (instead of the standard output) to achieve the

highest speed. For consistency, CLARK was also run under the same conditions. For the results

in Table 2.2, CLARK, NBC (v1.1), and KRAKEN (v0.10.4-beta) were run in single-threaded mode,

three times on the same inputs in order to smooth fluctuations due to I/O and cache issues (the

reported numbers are best values). We have also run the latest versions of Kraken (v0.10.5-beta

abd v0.10.6-beta), and we did not observe a significant variation of accuracy and usage of RAM.

However, we observed a 15% decrease in the classification speed compared to version v0.10.4-beta.

2.3.5 Impact of the choice of k on the accuracy

To determine the optimal value of k for a particular dataset one can take advantage of prior

knowledge, as we did in the case of unigene/BAC assignment to chromosomes. In that case, we had

1,657 unigenes for which the correct assignment (approximately 95% accuracy) was experimentally

determined via the use of two Illumina GoldenGate assays (BOPA1 and BOPA2) to assign genes

to BACs. Given these known assignments, we estimated precision and sensitivity, as well as the

average confidence score for all assignments and the assignment rate (see Figure 2.2-e). Observe
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that k=19 maximizes all of the four measurements. Higher precision and average confidence score

can be achieved by using higher k but at the cost of decreasing sensitivity and assignment rate.

Similar evaluation were carried out on the metagenomic datasets. Figure 2.2-a to Fig-

ure 2.2-d show precision, sensitivity, as well as assignment rate and average confidence score as a

function of k. In both cases we observe that as we increase k, precision and the average confidence

score are increasing, while the sensitivity is decreasing. We observe that the maximum sensitivity

is achieved for k in the range 19–22 for all metagenomic datasets, independently of the reads length

or complexity.

As a consequence, users interested in high sensitivity (or high number of assignments)

must choose k between 19 and 22, and user interested in high precision (or high confidence score)

must choose k higher than 26. The largest value of k supported in the CLARK implementation4 is

32.

2.3.6 Confidence score analysis

CLARK, unlike most other sequence classifiers, provides confidence scores. Here we

want to study the relation between confidence scores and correctness of results.

Figure 2.3 shows the distribution of the number of assignments as a function of the con-

fidence score for all the datasets presented in this study, namely barley BACs and unigenes (A2A),

barley BACs (R2R and A2A), and the four metagenomic datasets (“HiSeq”, “MiSeq”, “simBA-5”,

and “simHC.20.500”). Observe the high density of high confidence assignments in all cases, es-

pecially for “HiSeq” and “MiSeq” datasets. For all these datasets, when running CLARK in Full

mode, we observe that at least 95% of all assignments have confidence score higher or equal than
4The current version of CLARK is v1.2.3.
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0.98. This is clear evidence that, in the Full mode, conflicts (due to sequencing errors and/or other

noises) in the classification rarely occur.

Figure 2.4 shows the proportion of correct assignments (y-axis) as a function of confi-

dence score ranges (x-axis). Observe that at least 95% of assignments having confidence of 0.90 or

higher are correct.

2.4 Conclusion

We have presented CLARK, a new method for sequence classification that is ultra-fast,

accurate and versatile. Experimental results demonstrate that CLARK has several advantages over

previous methods. (i) CLARK is able to classify short metagenomic reads with high accuracy at

multiple taxonomic ranks (i.e., species and genus level) and its assignments on real metagenomic

samples are consistent with findings published in the literature. (ii) It achieves the same or better

accuracy than the best state-of-the-art metagenomic classifiers. (iii) The classification speed of

CLARK, in the context of metagenomics, is unmatched, with 32 million metagenomic short reads

per minute using one CPU (five times faster than KRAKEN). In addition, CLARK scales better

on a multi-core architectures: the speed-up one can obtain by adding more threads is higher than

Kraken. (iv) CLARK is able to output statistics for each assignment, is user-friendly and self-

contained (unlike most of other classifiers, it does not require external tool such as BLAST or

MEGABLAST, etc). (v) it can be executed with relatively small amounts of RAM (unlike LMAT) or

disk space (unlike PHYMMBL or KRAKEN). Indeed, LMAT can use about 500 GB of RAM, while

the maximum amount of RAM needed by CLARK is less than 165 GB (see Table 2.5). PHYMMBL

or KRAKEN require respectively about 120 GB and 140 GB of disk space to run, while CLARK
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requires less than 40 GB for classification. (vi) In the context of genomics, CLARK can classify

with high speed BACs, which are much longer sequences than reads from metagenomics (∼150 kbp

[Schulte et al., 2011, Lonardi et al., 2013]), and transcripts with better accuracy than previously used

BLAST-based method [Lonardi et al., 2013], and it can infer centromeric regions (see [Ounit et al.,

2015, Muñoz-Amatriaı́n et al., 2015], for more details). Although in this chapter we focused the

attention on genus and species level classification, CLARK can also accurately classify at higher

taxonomic levels such as phylum (see next chapter) and still achieve high accuracy and speed at the

same time. After its publication in March 2015, the CLARK tool has been intensively evaluated,

by several independent groups (for example [Lindgreen et al., 2016, Galata et al., 2016]) and is now

a standard tool in various international research groups using metagenomics.

The main strength of CLARK resides in its simplicity. The simplicity in the design of

CLARK’s algorithm allows it not only to run with unprecedented speed and accuracy, whether it

is in the context of metagenomics or genomics. We believe CLARK can be useful for a variety

of molecular biology applications. For instance, it can be used to analyze large number of se-

quenced BACs, for other large and repetitive genomes like bread wheat (Triticum aestivum), which

is currently being sequenced by International Wheat Genome Sequencing Consortium (https:

//www.wheatgenome.org/). In genome assembly project, CLARK can be used to detect

contaminants in raw reads or to identify chimeric reads. In the context of antimicrobial resistance

studies, it is crucial to understand the resistance of bacteria at the genomic scale and interactions be-

tween organisms [McArthur and Wright, 2015]. The detection of microbial resistance to antibiotics

in environmental samples can be carried out by CLARK based on, for example, the comprehensive

antibiotic resistance database (CARD) [McArthur et al., 2013, Jia et al., 2017].
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Table 2.1: Description of CLARK’s algorithm (“Full” mode).

Input: integer k, n target sequences (gc)1≤c≤n, p object sequences (sl)1≤l≤p
1 if hash table H related to (T (gc))1≤c≤n already exists then
2 load H
3 goto 15
4 create an empty hash table H
5 for all c, 1 ≤ c ≤ n :
6 for each (km,w) ∈ T (gc) : /* where km is a k-mer and w is the occurrence of km in gc */
7 if (km ∈ H) then
8 update the list of targets associated to km by adding c

and increase the occurrence of km by w
else

9 insert (km,w, c) in H
10 for each km ∈ H:
11 if the list of targets for km has more than three elements then
12 remove km from H

else
13 if the list of origins for km has exactly two elements

(c1, c2, c1 < c2) and from different chromosomes then
14 remove km from H

Store H in disk for future run
15 for all l, 1 ≤ l ≤ p:
16 if T (sl) = 0 then
17 output l, “not assigned”

continue
18 create n empty bins: b1, b2, . . . , bn, . . . , bn
19 for each (km,w) ∈ T (sl) :
20 if km ∈ H (in target c) then
21 bc = bc + w
22 c∗ = arg max{b1, b2, . . . , bn, . . . , bn}
23 c∗∗ = arg max{{b1, b2, . . . , bn, . . . , bn} − {bc∗}}
24 γ =

∑
1≤t≤n bt/T (sl)

25 If γ = 0 then
26 output l, “not assigned”

continue
27 confidence = bc∗

bc∗+bc∗∗

28 output l, b1, b2, . . . , bn, γ, c∗, c∗∗, confidence
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Figure 2.2: Classification performance of CLARK for several k-mer length and for various datasets.
CLARK’s precision, sensitivity, assignment rate, average confidence scores and precision of high
confidence assignments (HC) for several choices of the k-mer length on the “HiSeq” metagenomic
dataset (a), the “MiSeq” metagenomic dataset (b), the “simBA-5” metagenomic dataset (c), the
“simHC.20.500” metagenomic dataset (d), and barley unigenes (e). (a) - (d) are results of the
classification against the 695 genus-level targets.
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Table 2.2: Performance statistics for several choices of the k-mer length for NBC, KRAKEN,
CLARK and their fast variants on the classification of “HiSeq”, “MiSeq”, “simBA-5” and
“simHC.20.500” metagenomic datasets against the 695 genus-level targets; precision and sensitiv-
ity are expressed as percentages, while speed is expressed in 103 reads per minute; KRAKEN-Q and
CLARK-E are faster, but less accurate, variants of these tools; CLARK-l is a less memory-intensive
version of CLARK which runs only for k=27; experiments were carried out in single-threaded mode;
∗parameter k is referred as N in the NBC manuscript.

k
HiSeq MiSeq simBA-5 simHC.20.500

Prec Sens Speed Prec Sens Speed Prec Sens Speed Prec Sens Speed

NBC
15∗ 82.57 82.57 0.008 81.00 81.00 0.007 97.69 97.69 0.007 99.40 99.40 0.005
13∗ 78.85 78.85 0.011 77.70 77.70 0.009 92.41 92.41 0.010 98.57 98.57 0.006
11∗ 58.97 58.97 0.020 64.43 64.43 0.016 46.10 46.10 0.017 86.83 86.83 0.008

CLARK(Full)

31 99.26 77.78 541 95.33 77.69 435 98.88 89.67 591 99.68 99.42 121
27 98.98 79.88 538 93.50 78.57 433 98.90 93.09 585 99.67 99.42 122
23 97.33 81.97 530 90.06 80.02 426 98.71 94.54 559 99.59 99.42 119
20 87.00 82.87 532 82.45 80.19 420 97.38 94.80 549 99.43 99.41 115

KRAKEN

31 99.26 77.76 2,332 95.50 77.59 1,361 98.28 89.35 1,976 96.83 96.55 237
27 99.01 79.85 2,048 93.91 78.47 1,240 98.31 92.73 1,917 96.85 96.57 231
23 97.45 81.89 1,923 90.56 79.75 1,186 98.25 94.18 1,824 96.80 96.57 228
20 90.22 82.67 1,546 86.28 79.99 965 98.07 94.44 1,478 96.71 96.59 211

CLARK

31 99.31 77.25 3,116 95.66 77.44 1,670 98.91 88.62 2,855 99.68 99.42 251
27 99.07 79.37 2,796 93.90 78.29 1,522 98.90 92.26 2,554 99.67 99.42 241
23 97.85 81.36 2,679 90.98 79.57 1,482 98.75 94.26 2,394 99.60 99.42 244
20 88.60 82.26 2,567 83.35 79.77 1,456 97.73 94.49 2,306 99.43 99.41 239

KRAKEN-Q

31 99.20 76.84 6,224 95.81 74.13 5,308 98.17 87.46 7,023 91.17 85.79 3,809
27 98.79 78.19 6,410 94.12 73.73 5,555 98.11 89.89 7,992 90.99 83.71 4,196
23 96.67 78.48 7,015 90.57 72.35 6,329 97.21 89.07 8,989 90.46 79.27 4,574
20 82.07 70.11 9,437 80.05 65.25 9,537 90.02 77.04 10,961 70.86 57.40 5,819

CLARK-E

31 99.55 72.72 32,450 98.11 74.58 28,988 99.00 77.85 26,171 97.63 97.31 15,426
27 99.43 74.67 29,897 96.93 75.68 28,459 98.93 84.86 27,451 97.47 97.18 16,124
23 98.93 78.20 31,112 95.01 76.88 26,747 98.34 90.20 26,647 98.56 98.32 15,408
20 94.74 78.46 30,029 90.57 76.60 25,789 96.61 89.98 26,545 93.94 93.82 15,587

CLARK-l 27 98.45 62.30 1,525 92.11 69.64 861 95.96 52.00 1,705 99.49 98.94 143
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Table 2.3: Summary of performance statistics (precision, sensitivity are expressed as percentages,
while speed is expressed in 103 reads per minute) for NBC, KRAKEN, and CLARK on the classi-
fication of “HiSeq”, “MiSeq”, “simBA-5” and “simHC.20.500” metagenome datasets against the
1473 species-level targets, in single-threaded mode.

HiSeq MiSeq simBA-5 simHC.20.500
Prec Sens Speed Prec Sens Speed Prec Sens Speed Prec Sens Speed

NBC (k=15) 68.67 68.70 0.008 68.33 68.33 0.007 91.74 91.74 0.007 94.32 94.32 0.005
CLARK (k=20) 69.44 61.46 272 70.72 62.45 239 91.32 82.48 269 94.34 94.32 96
KRAKEN (k=31) 74.00 53.49 2,332 77.72 58.72 1,361 92.99 78.70 1,976 84.67 84.31 237
CLARK (k=31) 86.74 58.59 3,011 89.49 61.84 1,566 98.85 76.80 2,855 94.67 94.26 251
KRAKEN-Q (k=31) 75.88 50.78 6,224 78.07 53.68 5,308 92.67 74.39 7,023 82.40 74.84 3,809
CLARK-E (k=31) 90.08 55.18 30,976 94.31 58.36 24,029 98.92 66.02 24,996 92.78 92.38 15,583
CLARK-l (k=27) 85.35 53.95 1,676 85.89 64.91 904 85.55 46.28 1,702 94.06 93.53 141

Table 2.4: Summary of CLARK’s assignment (k = 20) for three Human Microbiome Project
datasets against the 695 genus-level targets. Columns: (1) short read sample ID; (2) percentage
of high confidence assignments; (3) percentage of low confidence assignments; (4) percentage of
unassigned reads; (5) average confidence score for all assignments; (6) five most frequent genera in
high confidence assignments (listed in decreasing order). An assignment is high confidence if the
confidence score is higher than 0.75, low confidence otherwise.

SRS ID high confidence low confidence no assignment average Most frequent genera (high
assignments (%) assignments (%) (%) confidence score confidence assignments)

015072 62.3% 25.9% 11.8% 0.868 Lactobacillus (64.7%)
(vagina) Pseudomonas (7.3%)

Desulfosporosinus (4.4%)
Clostridium (1.7%)
Gardnerella (1.2%)

019120 55.1% 28.2% 16.7% 0.842 Streptococcus (27.2%)
(mouth) Haemophilus (15.0%)

Prevotella (11.4%)
Neisseria (5.0%)
Veillonella (2.9%)

023847 68.3% 23.8% 7.9% 0.954 Propionibacterium (61.5%)
(nose) Staphylococcus (8.5%)

Achromobacter (7.5%)
Alteromonas (6.3%)
Desulfosporosinus (5.0%)
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Table 2.5: Details of the time and memory usage (RAM and disk) for the installation (or database
construction of the 2,752 bacterial genomes of NCBI/RefSeq), and the classification of NBC,
KRAKEN and CLARK, in Default mode. Measurements of the installation time and RAM peak
usage are done for NBC, KRAKEN and CLARK using default settings and single-thread. RAM
peak usage was obtained by the attribute “maximum resident set size” of the command
“/usr/bin/time -v” available on Linux.

Installation/Database construction Classification
Time (HH:MM) RAM Peak usage (GB) Memory Disk (GB) RAM Peak usage (GB)

NBC 19:10 < 1 52.0 < 1
KRAKEN 06:07 167.9 141.0 77.7
CLARK 02:45 164.1 42.4 70.1
CLARK-l 00:05 3.8 < 1 2.8

Table 2.6: Classification speed (expressed as 103 reads/min) as a function of the number of threads
(k = 31).

“HiSeq” dataset
Number of threads 1 2 4 8
KRAKEN 2,332 3,647 3,534 3,876
CLARK 3,116 5,484 9,626 15,807
KRAKEN-Q 6,224 7,712 7,693 7,506
CLARK-E 32,450 39,841 46,386 52,896

“MiSeq” dataset
Number of threads 1 2 4 8
KRAKEN 1,361 2,038 3,605 3,616
CLARK 1,670 3,040 4,905 8,120
KRAKEN-Q 5,308 5,553 8,362 8,642
CLARK-E 28,988 32,199 41,970 49,383
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Table 2.7: Summary of CLARK’s assignment of 15,695 BACs (represented as assemblies) to barley
chromosome arms (assemblies) and centromeres (k = 19). Columns: (1) barley chromosome 1H,
twelve chromosome arms, and six centromeres; (2) number of distinct k-mers in each target; (3)
number of discriminative k-mers present in target sequences (must occur at least once); (4) number
of assigned objects per target; (5) number of low confidence assignment per target; (6) number of
high confidence assignment per target; (7) percentage of low confidence assignment (as a fraction
of the total number of assigned objects per target); (8) percentage of high confidence assignment (as
a fraction of the total number of assigned objects per target).

Targets 19-mers discriminative 19-mers assignments low confidence high confidence
1H 180,176,713 108,894,740 2,111 7.1% 92.9%

2HC - 814,357 0 - -
2HL 103,679,920 64,700,161 1,424 3.4% 96.6%
2HS 90,912,314 54,449,430 1,071 3.5% 96.5%
3HC - 1,532,968 0 - -
3HL 123,140,951 78,158,244 1,411 3.3% 96.7%
3HS 111,951,787 70,473,478 897 5.5% 94.5%
4HC - 3,105,047 56 67.9% 32.1%
4HL 106,999,773 64,749,958 1,132 3.5% 96.5%
4HS 89,027,872 51,612,790 890 4.4% 95.6%
5HC - 604,030 0 - -
5HL 117,915,094 77,128,375 1,658 2.8% 97.2%
5HS 58,067,400 34,037,607 654 5.4% 94.6%
6HC - 469,530 0 - -
6HL 74,485,223 44,221,184 1,132 3.4% 96.6%
6HS 111,834,123 83,957,421 846 6.5% 93.5%
7HC - 795,923 0 - -
7HL 92,603,503 58,159,248 1,179 3.6% 96.4%
7HS 90,217,777 55,276,671 1,234 4.8% 95.2%
Total 1,351,012,450 853,141,162 15,695 4.6% 95.4%
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Table 2.8: Summary of CLARK’s assignment of 50,646 unigenes (EST assemblies) to barley chro-
mosome arms (assemblies) and centromeres (k = 19). Columns: (1) barley chromosome 1H,
twelve chromosome arms, and six centromeres; (2) number of distinct k-mers in each target; (3)
number of discriminative k-mers present in target sequences (must occur at least once); (4) number
of assigned objects per target; (5) number of low confidence assignment per target; (6) number of
high confidence assignment per target; (7) percentage of low confidence assignment (as a fraction
of the total number of assigned objects per target); (8) percentage of high confidence assignment (as
a fraction of the total number of assigned objects per target).

Targets 19-mers discriminative 19-mers assignments low confidence high confidence
1H 180,176,713 108,894,740 8,197 21.1% 78.9%

2HC - 814,357 15 93.3% 6.7%
2HL 103,679,920 64,700,161 4,776 15.8% 84.2%
2HS 90,912,314 54,449,430 3,334 17.3% 82.7%
3HC - 1,532,968 29 79.3% 20.7%
3HL 123,140,951 78,158,244 4,726 16.7% 83.3%
3HS 111,951,787 70,473,478 3,159 20.4% 79.6%
4HC - 3,105,047 54 50.0% 50.0%
4HL 106,999,773 64,749,958 3,531 14.4% 85.6%
4HS 89,027,872 51,612,790 2,468 16.4% 83.6%
5HC - 604,030 9 88.9% 11.1%
5HL 117,915,094 77,128,375 6,111 12.2% 87.8%
5HS 58,067,400 34,037,607 1,619 17.8% 82.2%
6HC - 469,530 9 100.0% 0.0%
6HL 74,485,223 44,221,184 2,973 12.4% 87.6%
6HS 111,834,123 83,957,421 2,721 24.4% 75.6%
7HC - 795,923 9 88.9% 11.1%
7HL 92,603,503 58,159,248 3,556 10.9% 89.1%
7HS 90,217,777 55,276,671 3,350 12.6% 87.4%
Total 1,351,012,450 853,141,162 50,646 16.5% 83.5%
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Table 2.9: Summary of CLARK’s assignment of 15,665 BACs (represented as reads) to barley chro-
mosome arms (reads) and centromeres (k = 19). Description of columns can be found in Table 2.8.

Targets 19-mers discriminative 19-mers assignments low confidence high confidence
1H 448,768,897 126,997,864 2,068 4.2% 95.8%

2HC - 1,738,722 0 - -
2HL 451,729,142 102,959,160 1,417 2.1% 97.9%
2HS 401,605,473 79,225,936 1,071 2.4% 97.6%
3HC - 4,631,639 0 - -
3HL 553,420,081 138,939,217 1,423 2.2% 97.8%
3HS 538,777,930 113,354,224 892 3.5% 96.5%
4HC - 6,428,726 70 14.3 85.7%
4HL 494,923,209 106,930,230 1,127 2.3% 97.7%
4HS 462,144,322 85,650,765 888 3.4% 96.6%
5HC - 1,643,194 0 - -
5HL 558,710,983 121,491,586 1,657 2.3% 97.7%
5HS 281,062,766 57,181,745 658 2.4% 97.6%
6HC - 1,287,133 0 - -
6HL 311,443,157 70,856,097 1,136 2.0% 98.0%
6HS 877,169,677 255,819,549 850 2.9% 97.1%
7HC - 1,697,991 0 - -
7HL 366,612,780 82,987,499 1,175 2.0% 98.0%
7HS 365,475,556 83,848,867 1,233 2.8% 97.2%
Total 6,111,843,973 1,443,670,144 15,665 2.7% 97.3%
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Table 2.10: List of genomes used for the “simHC.20.500” dataset (sequences downloaded from the
JGI database).

IMG Taxon ID Genome
640753002 Alkaliphilus metalliredigens QYMF
640427103 Bradyrhizobium sp. BTAi1
637000047 Burkholderia cepacia AMMD
637000160 Chelativorans sp. BNC1
640069309 Clostridium thermocellum ATCC 27405
637000088 Dechloromonas aromatica RCB
643348537 Desulfitobacterium hafniense DCB-2
637000116 Frankia sp. CcI3
637000119 Geobacter metallireducens GS-15
639633037 Marinobacter aquaeolei VT8
637000162 Methanosarcina barkeri Fusaro, DSM 804
637000192 Nitrobacter hamburgensis X14
639633046 Nocardioides sp. JS614
637000208 Polaromonas sp. JS666
637000216 Pseudoalteromonas atlantica T6c
637000221 Pseudomonas fluorescens Pf0-1
640069327 Rhodobacter sphaeroides 2.4.1, ATCC BAA-808
637000237 Rhodopseudomonas palustris BisB18
637000260 Shewanella sp. MR 7
639633063 Syntrophobacter fumaroxidans MPOB
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Figure 2.3: Distribution of the number of assignments as a function of the confidence score for (a)
barley BACs (R2R) and (A2A) (b) barley unigenes and BACs (A2A) and (c) the four simulated
metagenome sets (“HiSeq”, “MiSeq”, “simBA-5”, and “simHC.20.500”).
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Figure 2.4: Probability (y-axis) of a correct assignment for a particular range of CLARK’s confidence
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Chapter 3

A higher classification sensitivity for

short metagenomic reads

3.1 Introduction

In this chapter, we present a new approach to improve CLARK’s classification sensitiv-

ity. The new approach exploits the concept of (discriminative) spaced k-mers. We first describe the

notion of spaced k-mers, then discuss how these spaced k-mers are implemented into a new classifi-

cation tool called CLARK-S (S for “spaced”), then finally compare the performance of CLARK-S

against two of the most sensitive classifiers in the literature (i.e., NBC and KRAKEN), on several

simulated/real metagenomic datasets.

We show that at the phylum, genus and species level CLARK-S outperforms the best state-

of-the-art methods, including the default variant of CLARK, NBC and KRAKEN on all metrics.
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3.2 Classification by discriminative spaced k-mers

3.2.1 Preliminaries

The concept and the utility of spaced seeds were initially described in context of sequence-

comparison [Burkhardt and Kärkkäinen, 2001, Ma et al., 2002]. A spaced seed s is a string over

the alphabet {1,*}, where ‘1’ indicates that one should sample that position while ‘*’ indicates that

position should be ignored. The number of symbols in s is the length |s| of s, while the number of

1s in s is the weight of s. A spaced k-mer is a spaced seed of length k. Let s be a spaced k-mer

and weight w, and let m be a text of length k. We define s(m) be the w-mer obtained from m using

only the positions in s denoted by a 1. For example, if the text m =AAGTCT and s =11*1*1

(k = 6, w = 4) then s(m) =AATT. The same text processed using the spaced 6-mer s =1*11*1

would give the 4-mer s(m) =AGTT.

The work of Ma et al. in [Ma et al., 2002, Li et al., 2004] demonstrated that the use of

single (and multiple) spaced seeds/k-mers significantly increased the chance of detecting a valid

sequence alignment between the query and the target compared to contiguous seeds/k-mers, while

incurring no additional computational cost. As a direct consequence of this work, spaced seeds

are now used in the state-of-the-art homology search methods (e.g., BLAST [Altschul et al., 1990],

MEGABLAST [Zhang et al., 2000]), but also protein alignment (e.g., DIAMOND[Buchfink et al.,

2015]), or estimation of phylogenetic distances (e.g., [Leimeister et al., 2014, Morgenstern et al.,

2015]). For more information about spaced seeds, we also refer the reader to [Brown et al., 2004,

Li et al., 2004, Choi et al., 2004, Li et al., 2006, Ilie and Ilie, 2007, Ilie et al., 2011] and references

therein.

Consider now the following problem: we are given a read r and two target sequences g1
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and g2, and we want to know whether r is more likely to originate from g1 or from g2. As it is done

in alignment-based homology search, we can use seeds/k-mers as “witnesses” of possible valid

alignments. A time-efficient solution is to count the number shared k-mers between r and targets g1

and g2, and assign r to the target that has the highest count. As said, spaced seeds/k-mers increases

the probability of detecting a valid alignment compared to contiguous seeds/k-mers. It is always

possible, however, that a shared seed/k-mer (whether it is spaced or not) may be a false positive. In

order to compensate for false positives, we use discriminative spaced k-mers, as described next.

3.2.2 Discriminative spaced k-mers

Given a set of reference sequences (or targets) {g1, g2, . . . , gp}, i ∈ {1, 2, . . . , p}, the set

Di of discriminative k-mers for target gi is the set of all k-mers in gi that do not appear in any other

reference sequences (as defined in previous chapter). Given a spaced seed s of length k and weight

w, we define Di,s to be the set of all w-mers obtained via s from k-mers in Di. We then define the

set Ei,s of discriminative spaced k-mers as the set of all w-mers of Di,s that do not appear in any

set Dj,s where j 6= i. Thus, any w-mer in Ei,s is a spaced k-mer of weight w that can be found in

one and only one target.

As stated earlier, the concept of spaced k-mers is not new. In metagenomics, several pop-

ular metagenome analysis tools, such as MEGAN [Huson et al., 2007, 2011], METAPHYLER [Liu

et al., 2011] or PHYMMBL [Brady and Salzberg, 2011], as BLAST-based methods, have been using

spaced seeds. In addition, other similarity-based methods that analyze genomic and metagenomic

sequences use spaced k-mers, such as SEED [Bao et al., 2011]. However, to the best of our knowl-

edge, the concept of “discriminative spaced k-mers” is novel and introduced only in this work.
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3.2.3 Selection of optimal spaced seeds and index creation

The selection of specific spaced seed is critical to achieve high precision and sensitivity

(see, e.g., [Ma et al., 2002, Brown et al., 2004, Li et al., 2004, Choi et al., 2004, Li et al., 2006,

Ilie and Ilie, 2007, Ilie et al., 2011]). In order to determine the optimal structure we proceeded to

model sequence similarly as it is done in alignments-based method (see, e.g., [Ma et al., 2002]).

We considered that the succession of matches/mismatches follows a Bernoulli distribution with

parameter p, where p represents the similarity level between the read and the reference sequence. If

a short read belongs to a known reference sequence, then the similarity level should be high since

the amount of mismatches dues to genomic variations or sequencing errors are low.

Finding an optimal set of spaced seeds through w, k and p is computationally difficult

[Li et al., 2004, Brown et al., 2004], thus we decided to reduce the space search by judiciously

setting w, k and p. For contiguous k-mers, the classification precision increases as we increase

k. However, the highest sensitivity occurs with somewhat shorter k-mers. CLARK is more precise

for long contiguous k-mers (e.g., k = 31), but the highest sensitivity occurs for k-mers of length

19–22 [Ounit et al., 2015]. As a consequence, we considered here spaced seeds of length k = 31

and weight w = 22. The choice of selecting a length of 31 is also motivated by a fair comparison

against CLARK and KRAKEN, which achieve high accuracy thanks to long 31-mers in their default

mode. Here our intent is to show the advantage of replacing discriminative contiguous seed with

discriminative spaced seed(s). Then, we set p=0.95 to reflect the expected high similarity between

genomic sequences at the species rank.

We searched exhaustively through all the spaced seeds of length k = 31 and weight

w = 22 (starting/ending with ‘1’) using a similarity level of 95%, and a random region of length

50



100bp, by using the dynamic programming approach from [Ma et al., 2002] and implemented in

[Ilie et al., 2011]. The spaced seed with the highest hit probability [Ma et al., 2002], 0.998113, is

1111*111*111**1*111**1*11*11111. In addition, we have also selected two additional

spaced seeds with the highest hit probability namely 11111*1**111*1*11*11**111*11111

(0.998099) and finally 11111*1*111**1*11*111**11*11111 (0.998093). We have shown

in [Hahn et al., 2016] that these three spaced seeds provides a high performance (in terms of pre-

cision, sensitivity and speed), which suggests that it is close to the optimal solution. Before a

read can be classified, CLARK-S builds a database of discriminative spaced k-mers for each target.

CLARK-S can take advantage of multiple spaced seeds, thus multiple databases can be created. For

each spaced seed, discriminative spaced k-mers were built from contiguous discriminative 31-mers.

Once the three databases of discriminative spaced k-mers were computed, they are stored in disk so

they can be loaded for classification.

The classification algorithm of the “Spaced” variant is identical to that of the “Full” mode

(extensively described in the previous chapter), except for two differences, namely (i) CLARK-S

queries against discriminative spaced k-mers instead of discriminative k-mers and (ii) CLARK-S

does three queries for each k-mer in a read, because there are three different databases. Finally,

as done in the default variant of CLARK, the read is assigned to the target that has the highest

amount of successful queries, and several statistics (such as the confidence score and gamma score,

see previous chapter) are computed as well.
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3.3 Results at the Genus and Phylum level

3.3.1 Datasets

To evaluate numerically the performance of the classifiers we used simulated datasets.

From the available literature, we have selected the following three simulated metagenomes, which

we made available at http://clark.cs.ucr.edu/Spaced/ The first dataset is “A1.10.1000”

which was derived from “A1”, the first group of paired-end reads in the dataset “A” from [Lindgreen

et al., 2016]. According to authors, this dataset closely mimics the complexities, size and charac-

terization of real metagenomes. The A1 dataset contains about 28.9 M reads, 80% of which corre-

spond to known sequenced genomes (from bacterial, archaeal and eukaryotes genomes), and 20%

of which are randomized reads (from real genomes) that should not be assigned to any taxa. We

have extracted 10,000 reads from A1 as follows. We have arbitrarily taken nine different genomes

from the list of genomes used to build “A1” (see Supplementary Table 1 in [Lindgreen et al., 2016]).

Then, we took the first 1,000 reads for each selected genome, and also 1,000 “random” reads. The

resulting dataset, called “A1.10.1000”, contains 10,000 reads (each 100 bp long) and can be consid-

ered as medium/high complexity.

The second dataset is “B1.20.500” which was derived from “B1”, the first group of reads

in the dataset “B”, from [Lindgreen et al., 2016]. Similarly as done for A1.10.1000, we have ex-

tracted 10,000 reads from B1 as follows. We have arbitrarily taken 19 different genomes from the

list of genomes used to build “B1” (see Supplementary Table 2 in [Lindgreen et al., 2016]). Note that

these 19 selected genomes are different from those selected in A1. Then we took the first 500 reads

for each selected genome, and also 500 “random” reads. The resulting dataset, called “B1.20.500”,

contains 10,000 reads (each 100 bp long) and can be considered as medium/high complexity.
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The third dataset “simBA-5” comes from the paper that describes KRAKEN. According

to the authors, it was created using bacterial and archaeal genomes, and with an error rate five times

higher than the default. It contains 10,000 reads, each read is 100 bp long, and can be considered as

high complexity.

To classify these metagenomic datasets, we use the entire set of bacterial/archaeal genomes

from NCBI/RefSeq as reference genomes. At the time of writing, they represent 2,644 genomes and

distributed in 36 phyla. The cumulative length of these genomes is 9.1 Gbp, and the average genome

length is 3.4 Mbp.

3.3.2 Comparison with other tools

A large set of metagenomic classifiers exists in the literature. However, a comparison

between CLARK and all existing classifiers is not necessary. An independent comprehensive eval-

uation of a wide range of metagenomics classifiers has been carried out recently using six large

datasets of short paired-end reads [Lindgreen et al., 2016]. On the data tested, KRAKEN is among

the most accurate methods at the phylum level compared to other popular and used methods, such as

MOTU [Sunagawa et al., 2013], METAPHLAN2 [Segata et al., 2012, Truong et al., 2015], META-

PHYLER or MEGAN. However, the experimental results in [Wood and Salzberg, 2014] shows that

NBC is more sensitive than KRAKEN, MEGABLAST and PHYMMBL at the genus level. In the

previous chapter, we have also shown that NBC is more sensitive than KRAKEN at the genus level.

In addition, NBC is more sensitive than CLARK, at the genus level, even when the latter is run in

its most sensitive settings (i.e., “Full” mode and k = 20) [Ounit et al., 2015]. Note that the study

[Bazinet and Cummings, 2012] also shows the high sensitivity of NBC. As a consequence of this

analysis, it appears sufficient to compare CLARK against NBC and KRAKEN, as they are the two
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most accurate classifiers among current published methods, at the phylum and genus level.

3.3.3 Classification accuracy

In this section, we present the performance of CLARK, NBC (v1.1) and KRAKEN (v0.10.5-

beta) on the three simulated datasets described above. Consistently with other published studies

(e.g., [Ounit et al., 2015],[Wood and Salzberg, 2014] or [Bazinet and Cummings, 2012]), the sen-

sitivity is defined as the ratio between the number of correct assignments at a given taxonomy rank

(e.g., phylum or genus) and the number of reads defined for that rank. The precision is defined

as the ratio between the number of correct assignments at a given taxonomy rank (e.g., phylum or

genus) and the number of assigned reads.

We present below results for the phylum and genus level. In Table 3.1 and Table 3.2, the

first three rows report results from KRAKEN, CLARK, and NBC, all ran with default/recommended

parameters. We ran KRAKEN and CLARK in the default mode, with k = 31, and NBC, with k = 15.

The last two rows report the performance of CLARK-S. In the last row we report the precision and

sensitivity when filtering only high confidence (HC) assignments (i.e., assignment with confidence

score ≥ 0.75 and gamma score ≥ 0.03).

Observe in Table 3.1 that (i) CLARK-S (HC) and NBC achieve very high sensitivity, (ii)

KRAKEN’s sensitivity is lower than NBC or CLARK-S for all datasets, (iii) CLARK-S outperforms

NBC’s sensitivity in A1.10.1000 and B1.20.500, (iv) both CLARK and KRAKEN have high preci-

sion and achieve more than 99.9% in all datasets (even though A1.10.1000 and B1.20.500 contain

reads that do not belong to any bacterial/archaeal genomes), but (v) CLARK-S (HC) is as precise as

them and outperforms NBC in all datasets. In Figure 3.1, 3.2 and 3.3 we report the performance of

the tools for the dataset A1.10.100, B1.20.500 and simBA-500 respectively.
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Table 3.1: Phylum-level accuracy (%) of KRAKEN, NBC, CLARK, CLARK-S and CLARK-S (HC)
on A1.10.1000, B1.20.500 and simBA-5

A1.10.1000 B1.20.500 simBA-5
Precision Sensitivity Precision Sensitivity Precision Sensitivity

KRAKEN 99.91 77.59 99.98 90.91 99.98 94.49
CLARK 99.93 76.87 100.00 90.12 99.99 93.46
NBC 79.86 79.86 94.91 94.91 99.89 99.89
CLARK-S 94.50 79.99 98.95 94.98 99.87 99.70
CLARK-S (HC) 99.63 79.97 99.99 94.93 100.00 99.29

Table 3.2: Genus-level accuracy (%) of KRAKEN, NBC, CLARK, CLARK-S and CLARK-S (HC)
on A1.10.1000, B1.20.500 and simBA-5

A1.10.1000 B1.20.500 simBA-5
Precision Sensitivity Precision Sensitivity Precision Sensitivity

KRAKEN 99.80 70.61 99.94 90.55 99.85 91.97
CLARK 99.80 69.98 99.95 89.69 99.82 90.77
NBC 77.94 77.94 94.76 94.76 98.97 98.97
CLARK-S 92.71 78.38 98.76 94.74 98.58 98.22
CLARK-S (HC) 99.35 76.41 99.95 94.52 99.61 97.24

Table 3.2 shows that (i) CLARK’s sensitivity is lower than NBC, (ii) CLARK-S (HC) and

NBC achieve the highest sensitivity and outperforms KRAKEN, (iii) CLARK-S is more NBC in

A1.10.1000, (iv) KRAKEN and CLARK show high precision and achieve both more than 99.8% in

our datasets, (v) CLARK-S (HC) is as precise as KRAKEN and CLARK, it outperforms NBC in all

datasets, especially for A1.10.100 or B1.20.500. For simBA-5, NBC achieves the best sensitivity

with 98.97, less than 2% more than the level performed by CLARK-S (HC).

Given the performance of CLARK-S (HC) over CLARK-S, henceforth have set CLARK-S

(HC) to be default implementation of CLARK-S.
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Figure 3.1: Precision and sensitivity of CLARK, NBC, Kraken and CLARK-S on the A1.10.1000
dataset

3.3.4 Real metagenomic samples

In this section, we evaluate the performance of CLARK-S (HC) on a real metagenomic

dataset. We have selected the dataset from [Mueller et al., 2015], which is a recently published study

on the population dynamics in microbial communities present in surface seawater in Monterey Bay,

CA.

This dataset contains 42M reads, and the average read length is 510 bp. We pre-processed

the dataset of raw reads using the following trimming steps: (i) we removed the first five bases and

kept the following 100 bases using FASTQ Trimmer1, (ii) we removed reads containing sequencing
1http://hannonlab.cshl.edu/fastx toolkit/index.html
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Figure 3.2: Precision and sensitivity of CLARK, NBC, Kraken and CLARK-S on the B1.20.500
dataset

adapters using Scythe2, (iii) we trimmed the read ends if contained bases with a quality score below

30 and discarded reads containing any Ns using Sickle3. The resulting dataset contained 37M short

reads.

We classified these 37M short reads using KRAKEN (default) and CLARK-S, using the

bacterial/archaeal genomes from NCBI/RefSeq. KRAKEN was able to classify only 1.1 M reads (or

3% of the total). CLARK in its default mode also classifies about 1.1 M reads. However, CLARK-S

classifies 20 M reads (or 54% of the total). Among these 20 M classified reads, there are 7 M high
2https://github.com/ucdavis-bioinformatics/scythe
3https://github.com/ucdavis-bioinformatics/sickle
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Figure 3.3: Precision and sensitivity of CLARK, NBC, Kraken and CLARK-S on the simBA-5
dataset

confidence assignments (or 19% of the total), which is about 6 times more than KRAKEN.

The fact that KRAKEN assigns only 3% of the reads can be explained by the fact that

(i) KRAKEN relies on matching exact k-mer, and (ii) the current database of bacterial/archaeal

likely contains only a limited fraction of the bacterial/archaeal diversity in seawater. Seawater

metagenomes are likely to contain a high proportion of organisms that are missing in NCBI/RefSeq

database because while the marine environment is one of the most biologically diverse on the planet

[Felczykowska et al., 2012], the culture in laboratory of bacteria from seawater is difficult [Pace,

2009]. Since CLARK-S allows mismatches on the k-mers, it can identify at least the phylum/genus

of unknown organisms.
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KRAKEN identified, as dominant phyla, Proteobacteria (57%) and Bacteroides (27%).

This is consistent with results reported in [Mueller et al., 2015], as well as phyla in low-abundance

such as Actinobacteria (1%) or Thaumarchaeota (2%). Within high confidence assignments of

CLARK-S, the two dominant phyla are, as expected by estimations from [Mueller et al., 2015],

Proteobacteria (56%) and Bacteroides (32%). Consistently with [Mueller et al., 2015], phyla in

low-abundance were correctly identified, for example, Actinobacteria (1%) and Thaumarchaeota

(2%).

Experimental results from KRAKEN and CLARK-S (HC) indicate the expected dominant

phyla in the dataset (with the expected abundance for each). While KRAKEN and CLARK-S (HC)

are consistent for this dataset, we do notice one significant disagreement. The expected abun-

dance of Cyanobacteria is 0–2%, according to [Mueller et al., 2015], but KRAKEN reports 9% and

CLARK-S (HC) reports 3%. Such discrepancies can be explained by our pre-processing to create

this dataset, however, the estimation by CLARK-S (HC) is more accurate than KRAKEN. As a con-

sequence, CLARK-S was able to assign about 20 times more short reads than KRAKEN, and its high

confidence assignments show stronger consistency with expected results than KRAKEN’s results.

3.3.5 Time and space complexity

All experiments presented in this study were run on a Dell PowerEdge T710 server (dual

Intel Xeon X5660 2.8 Ghz, 12 cores, 192 GB of RAM). NBC’s speed is the slowest at 8–9 reads

per minute, KRAKEN’s speed is 1.8–2M reads per minute, while CLARK (default mode) runs the

fastest, at 2.8–3M reads per minute. However, CLARK-S runs slower than CLARK, and classifies

about 150–200 thousand reads per minute. While CLARK is the fastest in the default mode, it

does not provide the same classification accuracy of NBC or CLARK-S. The fact that CLARK-S
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computes spaced k-mers and uses several spaced seeds explains this difference of speed. However,

CLARK-S is still several thousand of times faster than NBC.

NBC consumed less than 500MB of RAM, while CLARK and KRAKEN used 70 and

77GB respectively. Finally, CLARK-S used 110GB. This larger RAM usage is due to the multiple

databases corresponding to the three spaced seeds. However, this amount remains significantly

lower than 160GB, which is the amount needed to build/construct the database of discriminative

k-mers.

3.4 Results at the species-level

3.4.1 Introduction

The species-level is the most important taxonomic rank for the analysis of metagenomes,

and yet, because of the high similarity between several species (from the same genus or not), the

evaluation of the performance of metagenomic classifiers at the species-level requires a higher de-

gree of precaution and confidence than for higher taxonomy rank such as Phylum or Genus.

We evaluated the performance of CLARK-S against the state-of-the-art methods through

the use of i) a set of synthetic and real metagenomic samples from various microbial habitats, ii)

negative control samples iii) synthetic samples that can enable an accurate evaluation regardless of

the fact at the species-level, several targets can be locally identical even if they are globally different.

3.4.2 Experimental setup

As said, a recent independent evaluation of several published taxonomic binning methods

showed that CLARK and Kraken are the two most accurate tools at the genus and phylum level
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[Lindgreen et al., 2016]. Instead of comparing CLARK-S to all published binning methods, it is

therefore sufficient to compare it against CLARK and Kraken. In collaboration with the Mason

group at Cornell, we have compared CLARK-S against seven state-of-the-art reads classifiers (in-

cluding KRAKEN, LMAT, MEGAN or NBC) and we have showed that CLARK-S outperforms all

other tools in the majority of the datasets used.

To guarantee a consistent and fair evaluation, we ran CLARK-S, CLARK and Kraken on

the same set of reference genomes, namely all microbial genomes in the NCBI/RefSeq database

(total of 5,747 species: 1,335 bacteria, 123 archaea and 4,289 viruses). Evaluations were carried

out on simulated datasets and real metagenomic data.

We created six synthetic datasets, each representing a distinct microbial habitat and con-

taining reads from the related dominant organisms. We included samples from the human mouth

(characterized by 12 dominant species), city parks (48 species), human gut (20 species), household

(two datasets, 31 and 21 species) and soil (50 species). A seventh dataset included reads from 525

randomly chosen bacterial/archaeal species. All these datasets are composed of 100bp reads gener-

ated by ART [Huang et al., 2012] using the Illumina error model (HiSeq) with default settings. We

have chosen the Illumina HiSeq because it is a leading sequencing technology [Levy and Myers,

2016]4 at the time of writing. Since two distinct species i and j can have sequence similarity as high

as 98.8% [Stackebrandt and Goebel, 1994], a short read r generated from genome gi may appear in

another genome gj for a given error rate or number of mismatches. Ignoring he possibility of am-

biguity in reads classification is likely to lead to incorrect conclusions on precision and sensitivity.

In order to carry out an unbiased evaluation, we created additional datasets (called “unambiguous”,
4According to authors of [Levy and Myers, 2016], “the Illumina HiSeq X system remains the highest-output platform

and the only sequencing technology available that can generate highly accurate data that allow sequencing at the human
genome scale at reagent costs under USD 1,000.”
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see next paragraph for details) in which no read can be mapped to more than one species with the

same error rate or number of mismatches. We tested the three tools on fourteen datasets containing

a total of 23.5 M reads from 647 species (see Table 3.3). We also added three negative control

samples containing short reads that do not exist in any genome in the NCBI/RefSeq database (see

next paragraph). We used the precision and sensitivity metrics defined in the previous chapter to

evaluate the classification performance.

For experiments on real metagenomes, we chose a large dataset from a recent study on the

microbial profile of the NY City subway system, the Gowanus canal and public parks [Afshinnekoo

et al., 2015]. We selected twelve datasets containing a total of 105 M reads from various microbial

habitat (e.g., bench, garbage can, kiosk, stairway rail, water, etc.), subway stations and riders usage

(see Table 3.4). While the ground truth for these data is unknown, the abundance of bacteria,

eukaryotes and viruses present in these samples were provided in Afshinnekoo et al., 2015. We

trimmed5 raw reads as it was done in Afshinnekoo et al., 2015 (see Table 3.4), then compared the

results of CLARK-S with the findings in Afshinnekoo et al., 2015 (see Table 3.5 and 3.6).

Generation of synthetic datasets and negative controls

In this paragraph, we describe how we created the synthetic datasets used for the evalua-

tion of the three tools we tested. To produce synthetic reads we considered organisms reported to

be present in real microbial habitats by different published studies. We consider the habitats related

to mouth, city parks/medians, gut, indoor and soil (listed below).

• Buc12: As reported in [Franzosa et al., 2015, Human Microbiome Project Consortium , 2012],
5Raw reads were trimmed as done in [Afshinnekoo et al., 2015]: the first/last 10 bp each read were removed (reads

longer than 100 bp were truncated and the first 100 bp were kept); trimmed reads with more than 10 bp with quality
scores less than 20 were removed.
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the dominant genus found in the oral cavity is Streptococcus. [Franzosa et al., 2015] also

reports the presence of the Haemophilus influenzae, Haemophilus parainfluenzae, Neisseria

subflava and Veillonella dispar. Thus, we chose these four species along with eight species

selected from the Streptococcus genus.

• CParMed48: Forty-eight species were selected from Proteobacteria, Acidobacteria, Bac-

teroides, Actinobacteria and Planctomycetes. These are the dominant phyla reported in

[Reese et al., 2015] in city parks and medians in Manhattan.

• Gut20: This dataset contains the twenty species described in the Supplementary Table 1 of

[Kuleshov et al., 2016].

• Hous31: Bacteria typically found indoor are Streptococcaceae, Lactobacillaceae, and Pseu-

domonadaceae (due to human activities), and also Intrasporangiaceae and Rhodobacteraceae

(due to the environment), as reported in [Ruiz-Calderon et al., 2016]. We selected randomly

thirty-one species from these microbial families.

• Hous21: We selected twenty-one species from the dominant organisms reported in [Adams

et al., 2015] found in the bathroom and kitchen, namely Propionibacterium acnes, Corynebac-

terium, Streptococcus and Acinetobacter.

• Soi50: We selected fifty species from the dominant genera reported in [Fierer et al., 2012],

namely Acidobacteria, Actinobacteria, Bacteroides, Proteobacteria and Verrucomicrobia.

• A seventh dataset called simBA-525 containing reads randomly selected from 525 bacte-

rial/archaeal species was also added.
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Datasets generation. We obtained reference genomes from the NCBI/RefSeq database (about

650 billion of nucleotides, containing more than 57,000 genomes distributed in 14,675 species,

downloaded on February 9, 2016), then we used the ART read simulator [Huang et al., 2012] to

create synthetic reads from the list of species listed above. We ran ART with default quality base

profile and error parameters, length 100 bp, and coverage 30x. These seven datasets represent a

total of 647 species (see Table 3.3 for statistics on these datasets).

Negative control samples. To generate negative controls, we created three datasets (named “LM”,

“MH1”, “MH2”) composed of reads that do not exist in any genomes in the NCBI/RefSeq database

(see Table 3.3). To build these datasets, observe that if a DNA fragment of 100 bps contains at

least one k-mer that does not appear in any genomes in the full NCBI/RefSeq database then it does

not exist in any of these genomes. In other words, if each read contains one unassigned k-mer for

the full NCBI/RefSeq database then the read does not map without mismatches (we used k = 17).

Based on this idea, we generated 10 M 100 bp random reads, using a uniform random distribution

for each of the four nucleotides (i.e., each nucleotide has probability 1/4). We also built an index

of 17-mers from all genomes in the complete NCBI/RefSeq database. Using this index, we counted

the number of unknown 17-mers in each random read. Then, we stored 1 M read that contained at

least five unknown 17-mers in dataset “LM”, one million read that contained exactly four unknown

17-mers in dataset “MH1”, and one million read that contained exactly three unknown 17-mers in

dataset “MH2”.

Datasets of unambiguously mapped reads. To create datasets of unambiguously mapped for

each of these seven datasets, we used the method described next.
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Generating datasets of unambiguously mapped reads

In this paragraph, we describe how we identified and removed ambiguously mapped read

from the set of reads generated by ART.

Definitions and notations. Given a string x, let |x| denote its length. In the following definitions,

we assume that k is a positive integer (length of the k-mers), r is a read, andG is a genome. Given a

set of genomes {G1, G2, . . . , Gm}, a k-mer T is specific toGi if T occurs inGi (exactly) but T does

not occur (exactly) in any other genome Gj , when j 6= i (see [Ounit et al., 2015]). Given a set K of

k-mers specific toG, the number of nucleotides of read r covered by at least one k-mer inK is called

the coverage of r to G which we denote by cov(r,G). Given a position l ∈ [1, |G| − |r| + 1], we

denote byM(r,G, l) the number of mismatches (Hamming distance) between read r and a substring

of G of length |r| starting at position l. We denote by OPT (r,G) = minl∈[1,|G|−|r|+1]M(r,G, l),

i.e., the minimum number of mismatches for all possible positions of r inG. Given a set of genomes

{G1, G2, . . . , Gm}, read r is unambiguously mapped to Gi if and only if for all j 6= i we have that

OPT (r,Gi) < OPT (r,Gj). In other words, there is no pair of genomes (Gi, Gj) such that the

two optimal alignments of r to Gi and Gj achieves the same number of mismatches.

Lemma 5. Given a read r and a set of genomes {G1, G2, . . . , Gm}, if there exists an index i ∈

[1,m] and a position l ∈ [1, |Gi| − |r| + 1] such that bcov(r,Gi)/kc > M(r,Gi, l) then for all

j 6= i, we have that OPT (r,Gj) > OPT (r,Gi).

Proof. By the definition of k-mer specific to a genome: for each non-overlapping block B of k

nucleotides that are covered by at least one k-mer specific to Gi in r, there exists at least one

mismatch between blockB and any block of k nucleotides inGj where i 6= j. Since there is at least
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bcov(r,Gi)/kc non-overlapping block(s) of k nucleotides covered by at least one k-merGi-specific

in r, for all j 6= i we have that OPT (r,Gj) ≥ bcov(r,Gi)/kc.

By the hypothesis of the Lemma, there exists l ∈ [1, |Gi| − |r|+ 1] so bcov(r,Gi)/kc >

M(r,Gi, l). By the definition of OPT , we always have OPT (r,Gi) ≤ M(r,Gi, l). Then,

for all j 6= i, OPT (r,Gj) ≥ bcov(r,Gi)/kc and bcov(r,Gi)/kc > M(r,Gi, l) imply that

OPT (r,Gj) ≥ bcov(r,Gi)/kc > M(r,Gi, l) ≥ OPT (r,Gi). Thus, for all j 6= i, we have

that OPT (r,Gj) > OPT (r,Gi).

In other words, if bcov(r,Gi)/kc is higher than the number of mismatches between r and

Gi then read r is unambiguously mapped to Gi.

Generating unambiguously mapped reads. We used the ART read simulator to create simulated

datasets. We considered the species rank, so genomes of the same species were considered together

as a unique sequence. We set k = 19 to determine sets of k-mers specific to each species (i.e.,

14,675 sets), then we created a hash-table to extract all 19-mers from all species and removed all

19-mers that were common to at least one pair of species. To create a dataset of unambiguously

mapped reads, we filtered reads as follows. For each species G of a given dataset, and for each

read r created, we used the alignment (provided by ART) of r to its reference sequence of origin.

We computed the number of mismatches M between r and G, and we estimated the specificity-

coverage C of r to G. Using the previous lemma, r was added to the unambiguous variant of the

dataset (because it is unambiguously mapped to G) if the value C/k was higher than M + 1.

In this step, we addressed the issue of reads that were generated from a genome A but

could also occur in another genome B. If a tool assigns those reads to B, should this be considered

an incorrect classification? The amount of ambiguity depends not only on the dataset, but also
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Table 3.3: Number of reads and species in each synthetic datasets (default and unambiguous) and
for the negative controls.

Synthetic datasets Buc12 CParMed48 Gut20 Hou31 Hou21 Soi50 simBA-525
Species 12 48 20 31 21 50 525
Reads (default) 600,000 1,200,000 500,000 775,000 525,000 2,500,000 5,666,143
Reads (unambiguous) 600,000 1,200,000 500,000 750,000 500,000 2,500,000 5,727,654

Synthetic datasets HM1 HM2 LM
Species 0 0 0
Reads 1,000,000 1,000,000 1,000,000

Table 3.4: Metadata of the selected real samples from [Afshinnekoo et al., 2015]: Sample ID,
number of raw reads, number of reads after trimming, object swabbed, location of the sample,
borough name, and the number of weekly riders in 2013.

Sample ID Raw reads Trimmed reads Object swabbed Location Borough Weekly riders
GC01 29,282,945 28,739,916 Water Sample Gowanus Canal Brooklyn NA
P00090 3,161,196 3,085,871 Stairway rail Times Sq-42 St/42 St Manhattan 197,696
P00302 12,206,080 11,700,388 Bench 59 St-Columbus Circle Manhattan 72,236
P00306 7,536,640 7,194,993 Kiosk 34 St-Penn Station Manhattan 90,042
P00454 7,872,512 7,555,783 Bench Fulton St Manhattan 64,461
P00589 3,129,344 3,015,949 Turnstile Broadway-Lafayette St/Bleecker St Manhattan 38,799
P00720 6,833,000 6,536,830 Bench Franklin St Manhattan 5,825
P00945 7,530,914 7,257,415 Bench Forest Av Queens 4,103
P01041 1,171,456 1,160,282 Bench Van Siclen Av Brooklyn 2,974
P01136 6,417,114 6,220,889 Garbage Can Jefferson St Brooklyn 6,612
P01270 17,072,185 16,471,331 Seats F Train Brooklyn NA
P01324 2,686,976 2,594,672 Garbage Can Whitlock Av Bronx 1,685

on the set of reference genomes used to classify. This ambiguity introduces reference-dependent

bias that can affects precision and sensitivity. While we are aware that these datasets might not be

considered realistic, removing ambiguous reads allow us to have an unambiguous ground truth that

allows to compare across tools without bias.
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3.4.3 Experimental Results

Synthetic samples

Observe in Table 3.8 that the sensitivity achieved by CLARK-S on the fourteen simulated

datasets is consistently higher than other tools, while maintaining high precision (the increase in

sensitivity is even higher on unambiguous datasets).

Observe that the increase of sensitivity is sometimes followed by a decrease in precision,

especially on the default datasets. However, several facts should be taken into consideration. Ob-

serve that while increasing precision is relatively easy (it is sufficient to be very strict in assigning

a read), increasing sensitivity is much harder. That’s why here we focus on the sensitivity because

this metric is much more difficult to maximize than precision. We show that CLARK-S achieves

higher sensitivity than CLARK or KRAKEN sometimes at the cost of a slightly lower precision

(because in order to achieve a higher sensitivity, CLARK-S must assign more reads than the other

tools, which can lead to more wrong assignments). The fact that CLARK-S achieves higher sen-

sitivity than CLARK or KRAKEN implies that it can classify reads that the other tools are unable

to identify. We hypothesize that the reads that CLARK and KRAKEN fail to identify are likely to

be ambiguous reads (i.e., they can be assigned to multiple species). High sequence similarity can

often exists between two species (more than 98% similarity [Mende et al., 2013]). This is why

we have designed the datasets of unambiguously mapped reads. As shown in Table 3.8, CLARK-

S outperforms CLARK and KRAKEN in both sensitivity and precision for several unambiguous

datasets.

Also, note that CLARK-S did not classify any reads from the negative control samples

as expected. Table 3.9 shows that CLARK-S classifies about 200 thousand short reads per minute
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(using one CPU), while CLARK classifies about 3.5 M short reads per minute. If one can take

advantage of eight cores, CLARK-S classifies about 1 M short read per minute, which is sufficiently

fast to process large metagenomic datasets in few minutes. Finally, consistently with our previous

experimental results at the Genus and Phylum level, CLARK-S requires more time to build the

database than CLARK or Kraken, and its RAM usage is comparable to the other tools.

Real samples

Observe in Table 3.9 that CLARK-S classifies more reads than CLARK or Kraken. On

average, CLARK-S classifies 10% more reads than Kraken, and 27% more reads than CLARK.

Table 3.6 indicates the reads count assigned by each tool to each species listed in Afshinnekoo

et al., 2015 and present in the database. CLARK-S achieves consistently the highest agreement

with Afshinnekoo et al., 2015 on all samples. For instance, in P00589 and P00720, CLARK-S

detected the presence of the virus Enterobacter phage HK97 but CLARK/KRAKEN did not; in

sample P01136, CLARK-S detected Brucella ovis but CLARK/KRAKEN failed to do so.

In general, CLARK-S identified more relevant organisms than the other tested tools. A

recent independent study [Thompson et al., 2017] showed that CLARK-S classifies more reads and

detects more relevant organisms than other standard tools such as GRAFTM6 or KRAKEN.

3.5 Conclusion

In this chapter, we have introduced for the concept of discriminative spaced k-mers for

the classification problem of short metagenomic reads. To the best of our knowledge, CLARK-
6GraftM is a reads classifier available at https://github.com/geronimp/graftM. GRAFTM classifies

reads based on HMM profiles and a reference phylogeny.
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S is the only metagenome classifier using (multiple) discriminative spaced k-mers. Our extensive

experiments on several realistic metagenomic samples show that i) CLARK-S can be as precise as

(or more precise than) KRAKEN and as sensitive as NBC, ii) while CLARK-S is slower than CLARK

because its uses multiple spaced seeds, it is still faster than NBC by several order of magnitude and

it can classify a million short reads per minute with 8 CPU.

Finally, in the context of real metagenomic data (from seawater samples to urban sam-

ples), we showed that CLARK-S can classify with high accuracy a much higher proportion of short

reads than CLARK or KRAKEN. This finding was corroborated by an independent study [Thompson

et al., 2017] that showed that CLARK-S can detect more relevant organisms than other classifica-

tion tools.

70



Table 3.5: List of species detected in [Afshinnekoo et al., 2015] which are also present in the
database (i.e., bacteria/archaea/viruses genomes from NCBI/RefSeq) for each of the twelve samples.

Sample ID Species in [Afshinnekoo et al., 2015] and present in the default NCBI/RefSeq database (bacteria/archaea/viruses)
GC01 Bifidobacterium adolescentis, Bifidobacterium longum, Desulfobacterium autotrophicum, Erwinia billingiae,

Eubacterium eligens, Eubacterium rectale, Methanocorpusculum labreanum, Parabacteroides distasonis
P00090 Acinetobacter baumannii, Cronobacter turicensis, Enterobacter cloacae, Enterococcus casseliflavus,

Enterococcus faecalis, Klebsiella pneumoniae, Lysinibacillus sphaericus, Macrococcus caseolyticus,
Micrococcus luteus, Pseudomonas putida, Pseudomonas stutzeri, Stenotrophomonas maltophilia,

Streptococcus suis
P00302 Achromobacter xylosoxidans, Acinetobacter baumannii, Bacillus megaterium, Dickeya dadantii,

Enterobacter cloacae, Enterococcus casseliflavus, Enterococcus faecalis, Enterococcus faecium,
Enterococcus hirae, Finegoldia magna, Klebsiella pneumoniae, Lactococcus lactis, Leuconostoc mesenteroides,

Lysinibacillus sphaericus, Micrococcus luteus, Propionibacterium acidipropionici, Propionibacterium acnes,
Pseudomonas putida, Pseudomonas stutzeri, Staphylococcus epidermidis, Staphylococcus haemolyticus,

Stenotrophomonas maltophili
P00306 Acinetobacter baumannii, Acinetobacter oleivorans, Enterobacter cloacae, Enterobacteria phage IME10,

Enterococcus casseliflavus, Enterococcus faecium, Klebsiella pneumoniae, Propionibacterium acnes,
Pseudomonas stutzeri, Stenotrophomonas maltophilia

P00454 Acinetobacter baumannii, Chlorobium phaeobacteroides, Enterobacter cloacae, Enterococcus casseliflavus,
Enterococcus mundtii, Klebsiella pneumoniae, Lysinibacillus sphaericus, Pseudomonas stutzeri,

Solibacillus silvestris, Stenotrophomonas maltophilia
P00589 Acinetobacter baumannii, Enterobacter cloacae, Enterobacteria phage HK97, Enterococcus casseliflavus,

Lactococcus lactis, Pseudomonas putida, Pseudomonas stutzeri, Streptococcus suis
P00720 Corynebacterium variabile, Enterobacter cloacae, Enterobacteria phage HK97, Enterococcus casseliflavus,

Lactococcus lactis, Leuconostoc citreum, Lysinibacillus sphaericus,
Pseudomonas stutzeri, Stenotrophomonas maltophilia

P00945 Bacillus megaterium, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium,
Lysinibacillus sphaericus, Pseudomonas putida, Pseudomonas stutzeri, Stenotrophomonas maltophilia,

Stenotrophomonas phage phiSMA7
P01041 Enterobacter cloacae, Enterobacteria phage HK97, Enterococcus casseliflavus, Enterococcus faecalis,

Pseudomonas stutzeri, Stenotrophomonas maltophilia
P01136 Brucella ovis, Corynebacterium variabile, Enterobacter cloacae, Enterobacteria phage HK97,

Enterococcus casseliflavus, Leuconostoc mesenteroides, Pseudomonas putida, Pseudomonas stutzeri,
Stenotrophomonas maltophilia, Streptococcus suis

P01270 Achromobacter xylosoxidans, Enterobacter cloacae, Enterococcus casseliflavus, Enterococcus faecalis,
Enterococcus faecium, Enterococcus hirae, Lactococcus lactis, Lysinibacillus sphaericus, Propionibacterium acnes,

Pseudomonas putida, Pseudomonas stutzeri, Stenotrophomonas maltophilia
P01324 Cronobacter sakazakii, Enterobacter cloacae, Enterobacteria phage HK97, Enterococcus casseliflavus,

Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Kocuria rhizophila, Lactococcus lactis,
Leuconostoc mesenteroides, Micrococcus luteus, Pseudomonas stutzeri, Rhodopseudomonas palustris,

Stenotrophomonas maltophilia, Stenotrophomonas phage phiSMA7, Streptococcus parauberis,
Streptococcus suis, Streptococcus thermophilus
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Table 3.6: Column A lists the reads count reported by KRAKEN, CLARK, and CLARK-S on the
species listed in Table 3.5. For each species, a count is reported as a triplet (KRAKEN, CLARK,
CLARK-S). Column B reports the agreement rate between [Afshinnekoo et al., 2015] and results
reported by KRAKEN (first line), CLARK (second line), and CLARK-S (third line), in this order.
For example, for the sample GC01, the agreement rate between KRAKEN and [Afshinnekoo et al.,
2015] was 75% because KRAKEN detected the presence of 6 species out of the 8 species reported
in [Afshinnekoo et al., 2015]. Column C reports the percentage of species for which CLARK-S
reports a higher reads count than both KRAKEN and CLARK. For example, for the sample P00090,
CLARK-S reports a higher number of reads count than both KRAKEN and CLARK for 12 species
out of 13 (i.e., 92.3%).

Sample ID A B C
GC01 Bifidobacterium adolescentis (1238, 1218, 1307), Bifidobacterium longum (1106, 1093, 1217), 75% 100%

Desulfobacterium autotrophicum (88171, 84690, 142189), Erwinia billingiae (8774, 8651, 9443), 75%
Eubacterium eligens (0, 0, 0), Eubacterium rectale (0, 0, 0), 75%

Methanocorpusculum labreanum (429, 400, 1091), Parabacteroides distasonis (1028, 1011, 1340)
P00090 Acinetobacter baumannii (8482, 8143, 14783), Cronobacter turicensis (2108, 2078, 1471), 100% 92.3%

Enterobacter cloacae (44220, 41877, 64974), Enterococcus casseliflavus (14731, 14535, 16365), 100%
Enterococcus faecalis (2481, 2472, 2563), Klebsiella pneumoniae (49647, 49011, 49772), 100%

Lysinibacillus sphaericus (4, 4, 11), Macrococcus caseolyticus (1904, 1891, 2110),
Micrococcus luteus (2686, 2646, 2990), Pseudomonas putida (8944, 8405, 12327),

Pseudomonas stutzeri (1243301, 1228384, 1349618),
Stenotrophomonas maltophilia (15162, 14732, 19712), Streptococcus suis (26495, 25484, 41016)

P00302 Achromobacter xylosoxidans (417007, 396787, 798804), Acinetobacter baumannii (53782, 51650, 84481), 100% 86.4%
Bacillus megaterium (1291, 1263, 1619), Dickeya dadantii (8574, 8893, 6470), 100%

Enterobacter cloacae (328816, 303503, 497288), Enterococcus casseliflavus (9735, 9517, 12275), 100%
Enterococcus faecalis (20903, 20844, 21109), Enterococcus faecium (773, 757, 1045),

Enterococcus hirae (1506, 1500, 1557), Finegoldia magna (314, 305, 505),
Klebsiella pneumoniae (32826, 30878, 31901), Lactococcus lactis (911, 873, 1483),
Leuconostoc mesenteroides (1890, 1853, 1965), Lysinibacillus sphaericus (1, 1, 1),

Micrococcus luteus (781, 785, 879), Propionibacterium acidipropionici (379, 385, 413),
Propionibacterium acnes (770, 767, 812), Pseudomonas putida (3493, 3452, 4770),

Pseudomonas stutzeri (987112, 980445, 1011820), Staphylococcus epidermidis (661, 650, 771),
Staphylococcus haemolyticus (1066, 1028, 1320), Stenotrophomonas maltophilia (50279, 48597, 72008)

P00306 Acinetobacter baumannii (540511, 520987, 731225), Acinetobacter oleivorans (67230, 66304, 72904), 90% 100%
Enterobacter cloacae (171685, 159913, 272355), Enterobacteria phage IME10 (0, 0, 0), 90%

Enterococcus casseliflavus (54313, 53029, 67794), Enterococcus faecium (2675, 2649, 2910), 90%
Klebsiella pneumoniae (20732, 19474, 22448), Propionibacterium acnes (931, 925, 948),

Pseudomonas stutzeri (533478, 525799, 585020),
Stenotrophomonas maltophilia (564888, 560201, 586129)

P00454 Acinetobacter baumannii (46223, 45761, 48612), Chlorobium phaeobacteroides (1, 1, 147), 100% 100%
Enterobacter cloacae (21652, 20137, 32217), Enterococcus casseliflavus (6931, 6852, 7405), 100%

Enterococcus mundtii (1112, 1101, 1151), Klebsiella pneumoniae (22895, 22507, 22950), 100%
Lysinibacillus sphaericus (1, 1, 3), Pseudomonas stutzeri (4711283, 4652107, 5004594),

Solibacillus silvestris (2555, 2407, 4990), Stenotrophomonas maltophilia (43004, 41930, 53308)
P00589 Acinetobacter baumannii (7513, 7362, 9684), Enterobacter cloacae (2471, 2380, 3334), 87.5% 100%

Enterobacteria phage HK97 (0, 0, 10), Enterococcus casseliflavus (11906, 11742, 13533), 87.5%
Lactococcus lactis (1743, 1699, 2578), Pseudomonas putida (6062, 5822, 8554), 100%

Pseudomonas stutzeri (777233, 765277, 850289), Streptococcus suis (8506, 8201, 13373)
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Table 3.7: (Cont’d) Column A lists the reads count reported by KRAKEN, CLARK, and CLARK-
S on the species listed in Table 3.5. For each species, a count is reported as a triplet (KRAKEN,
CLARK, CLARK-S). Column B reports the agreement rate between [Afshinnekoo et al., 2015]
and results reported by KRAKEN (first line), CLARK (second line), and CLARK-S (third line),
in this order. For example, for the sample GC01, the agreement rate between KRAKEN and [Af-
shinnekoo et al., 2015] was 75% because KRAKEN detected the presence of 6 species out of the
8 species reported in [Afshinnekoo et al., 2015]. Column C reports the percentage of species for
which CLARK-S reports a higher reads count than both KRAKEN and CLARK. For example, for
the sample P00090, CLARK-S reports a higher number of reads count than both KRAKEN and
CLARK for 12 species out of 13 (i.e., 92.3%).

P00720 Corynebacterium variabile (1302, 1262, 1487), Enterobacter cloacae (82530, 75880, 125426), 88.9% 100%
Enterobacteria phage HK97 (0, 0, 48), Enterococcus casseliflavus (25280, 25059, 26621), 88.9%

Lactococcus lactis (2437, 2430, 2614), Leuconostoc citreum (498, 496, 511), 100%
Lysinibacillus sphaericus (26, 25, 49), Pseudomonas stutzeri (2738041, 2698911, 2989300),

Stenotrophomonas maltophilia (516748, 501500, 671902)
P00945 Bacillus megaterium (760, 754, 771), Enterobacter cloacae (44780, 41433, 69336), 100% 100%

Enterococcus faecalis (8984, 8954, 9128), Enterococcus faecium (1219, 1217, 1278), 88.9%
Lysinibacillus sphaericus (2, 0, 2), Pseudomonas putida (2505, 2340, 2920), 100%

Pseudomonas stutzeri (4149, 4157, 4849), Stenotrophomonas maltophilia (1258848, 1230418, 1589727),
Stenotrophomonas phage phiSMA7 (397, 391, 637)

P01041 Enterobacter cloacae (13726, 12754, 20206), Enterobacteria phage HK97 (0, 0, 11), 83.3% 100%
Enterococcus casseliflavus (5196, 5082, 6395), Enterococcus faecalis (2571, 2567, 2607), 83.3%

Pseudomonas stutzeri (611583, 608607, 626318), Stenotrophomonas maltophilia (58910, 58591, 60892) 100%
P01136 Brucella ovis (0, 0, 12), Corynebacterium variabile (974, 965, 1005), 80% 100%

Enterobacter cloacae (41486, 38925, 60976), Enterobacteria phage HK97 (0, 0, 16), 80%
Enterococcus casseliflavus (8871, 8783, 9460), Leuconostoc mesenteroides (896, 886, 909), 100%

Pseudomonas putida (49887, 47305, 56607), Pseudomonas stutzeri (1140608, 1101902, 1627874),
Stenotrophomonas maltophilia (6588, 6425, 9192), Streptococcus suis (7045, 6768, 10659)

P01270 Achromobacter xylosoxidans (9129, 9013, 10142), Enterobacter cloacae (464185, 438737, 712806), 100% 91.7%
Enterococcus casseliflavus (204915, 203223, 215280), Enterococcus faecalis (454647, 453560, 458843), 100%

Enterococcus faecium (5058, 4972, 6434), Enterococcus hirae (7299, 7264, 7588), 100%
Lactococcus lactis (2155, 2119, 2684), Lysinibacillus sphaericus (7, 6, 12),

Propionibacterium acnes (341, 366, 351), Pseudomonas putida (1722194, 1623230, 3097829),
Pseudomonas stutzeri (3177433, 3126518, 3511417),

Stenotrophomonas maltophilia (1281605, 1248952, 1619141)
P01324 Cronobacter sakazakii (4237, 4016, 4891), Enterobacter cloacae (15067, 13986, 22082), 94.4% 100%

Enterobacteria phage HK97 (0, 0, 2), Enterococcus casseliflavus (4685, 4553, 6638), 94.4%
Enterococcus faecium (533, 514, 783), Escherichia coli (2797, 2694, 4119), 100%
Klebsiella pneumoniae (2859, 2702, 3091), Kocuria rhizophila (84, 70, 178),

Lactococcus lactis (1088, 1071, 1322), Leuconostoc mesenteroides (1042, 1036, 1089),
Micrococcus luteus (162, 166, 173), Pseudomonas stutzeri (323280, 319408, 343408),

Rhodopseudomonas palustris (370, 354, 422), Stenotrophomonas maltophilia (72640, 70301, 105826),
Stenotrophomonas phage phiSMA7 (2, 2, 4), Streptococcus parauberis (1477, 1473, 1526),

Streptococcus suis (378, 359, 582), Streptococcus thermophiles (369, 367, 389)
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Table 3.8: Precision and sensitivity for KRAKEN, CLARK, and CLARK-S on the synthetic
datasets (default, unambiguous). The highest value for precision and sensitivity are indicated in
bold. The second table reports the count of classified reads for KRAKEN, CLARK and CLARK-S
for the negative controls.

Synthetic datasets KRAKEN CLARK CLARK-S
Default Precision Sensitivity Precision Sensitivity Precision Sensitivity
Buc12 93.43% 69.42% 93.61% 69.05% 90.36% 71.38%
CParMed48 99.08% 92.31% 99.09% 92.18% 99.08% 93.15%
Gut20 99.21% 82.45% 99.24% 82.23% 98.19% 86.06%
Hou31 94.25% 83.46% 94.30% 83.30% 93.94% 84.32%
Hou21 98.66% 87.00% 98.72% 86.81% 98.51% 88.30%
Soi50 99.49% 92.48% 99.51% 92.37% 99.32% 93.51%
simBA-525 91.17% 57.57% 91.27% 57.19% 87.50% 58.53%
Unambiguous
Buc12 95.02% 73.18% 95.26% 72.82% 92.67% 75.61%
CParMed48 99.50% 94.07% 99.51% 93.91% 99.64% 95.18%
Gut20 98.87% 84.82% 98.92% 84.60% 98.68% 86.06%
Hou31 97.26% 87.57% 97.36% 87.45% 97.09% 88.21%
Hou21 99.16% 87.12% 99.19% 86.88% 99.27% 89.23%
Soi50 99.49% 92.96% 99.51% 92.86% 99.44% 93.66%
simBA-525 98.57% 88.75% 98.69% 88.63% 98.43% 89.20%

Negative control KRAKEN CLARK CLARK-S
MH1 0 0 0
MH2 0 0 0
LM 0 0 0
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Table 3.9: Classification speed of KRAKEN, CLARK and CLARK-S on the synthetic datasets (de-
fault and unambiguous), the negative control samples and the real samples. CLARK and KRAKEN

were run with default settings (i.e., 31-mers), and, for KRAKEN, the database was loaded with the
option “–preload” to assure the highest speed. Each tool was run three times to smooth I/O and
cache issues (the reported numbers are the best values). The values are in thousands of read per
minute. Values in bold are the highest for each dataset.

Default KRAKEN (1 CPU) CLARK (1 CPU) CLARK-S (1 CPU) CLARK-S (8 CPUs)
Buc12 2,206.0 4,839.5 214.4 1,220.8
CParMed48 2,060.9 3,691.4 204.3 913.6
Gut20 1,792.6 3,369.5 196.1 1,077.8
Hou31 2,111.6 3,465.5 201.4 1,067.7
Hou21 2,011.5 3,308.9 199.2 1,124.6
Soi50 2,008.6 3,193.3 169.5 1,074.7
simBA-525 1,955.7 3,194.5 203.1 1,092.5
Unambiguous
Buc12 2,307.8 4,160.5 217.7 1,101.5
CParMed48 2,299.3 4,057.7 201.3 874.1
Gut20 2,028.0 2,954.0 134.3 1,083.7
Hou31 2,109.3 3,912.9 142.0 964.0
Hou21 2,057.8 3,801.1 157.8 1,003.8
Soi50 2,131.6 2,868.9 141.4 1,024.7
simBA-525 1,936.1 3,359.0 141.7 1,076.3

Negative control KRAKEN (1 CPU) CLARK (1 CPU) CLARK-S (1 CPU) CLARK-S (8 CPUs)
HM1 1,924.7 2,619.1 146.2 1,033.1
HM2 1,901.6 2,932.1 131.9 937.9
LM 2,145.8 2,654.2 134.2 957.3

Sample ID KRAKEN (1 CPU) CLARK (1 CPU) CLARK-S (1 CPU) CLARK-S (8 CPUs)
GC01 2,572.8 3,142.3 290.7 1,315.9
P00090 2,543.3 2,587.7 230.7 1,355.7
P00302 2,310.9 3,330.3 326.7 1,432.1
P00306 2,596.5 3,553.6 332.5 1,428.1
P00454 2,709.9 3,668.7 364.7 1,569.5
P00589 2,805.0 4,929.9 312.2 1,373.8
P00720 2,457.0 5,203.0 312.2 1,545.8
P00945 2,683.1 4,758.7 324.2 1,390.9
P01041 2,311.6 4,348.5 313.9 1,381.2
P01136 2,643.1 4,893.1 315.0 1,371.2
P01270 2,390.5 3,548.8 341.8 1,531.8
P01324 2,660.8 3,513.6 320.1 1,363.9
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Table 3.10: Assignment rate (i.e., ratio in percent between the number of assigned/classified reads
and the total number of reads) on real samples for KRAKEN, CLARK and CLARK-S. Values in
bold are the highest.

Sample ID KRAKEN CLARK CLARK-S
GC01 1.74% 1.36% 2.55%
P00090 54.22% 49.59% 56.16%
P00302 29.07% 23.70% 29.89%
P00306 39.37% 33.82% 40.47%
P00454 70.02% 66.37% 71.50%
P00589 31.84% 29.46% 34.24%
P00720 59.49% 55.59% 64.35%
P00945 26.26% 23.21% 35.65%
P01041 67.87% 50.28% 64.35%
P01136 31.01% 26.36% 35.65%
P01270 65.20% 50.28% 64.35%
P01324 27.65% 23.29% 27.23%
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Chapter 4

Predicting microbial profiles by spatial

locality

4.1 Introduction

In this final chapter, we focus on a microbiome of major importance: the urban micro-

biome. Indeed, more than half of the human population (54%) live in cities, and by 2050 66% of

the human population will live in urban areas [U. N. Report, 2014]. New York City (NYC) stands

as a striking example of a city with high very density and human-environment interactions. Its pop-

ulation is more than 8.2 M, and its subway system is one of the busiest in the world (1.7 billion

riders per year commuting through 466 stations spread over 252 miles) [APTA Ridership Report,

2014]. This large urban system is an ideal framework to study disease transmissions (e.g., by disease

outbreaks or bioterrorism acts). Since contaminated surfaces in public transport systems can prop-

agate diseases [Otter and French, 2009], a constant/continuous biosurveillance of the NYC subway
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system would insure the safety of riders and allow adaptive/fast actions in case of outbreaks.

The culture-independent sequencing and analysis of all DNA recovered from a sample

embodied in the metagenomics discipline is revolutionizing the analysis of environmental samples.

Unlike traditional procedures, which require performing multiple targeted assays each looking for

a specific pathogen or organism, laboratories can use a single sequencing based test that is able

to identify all microorganisms in a sample without the need for culture [Handelsman, 2004]. Fast

sequencers are able to run in few hours and have a relatively low cost [Quick et al., 2015]. Thus,

with the introduction of fast and mobile sequencing instruments (e.g., MinION by Oxford Nanopore

Technologies) as well as fast and accurate metagenome analysis tools (e.g., CLARK [Ounit et al.,

2015]), we can envision a real-time city-scale biosurveillance: at each of the N sites of interest

(e.g., bus/subway stations) in a dense city (e.g., NYC), technicians collect environmental samples,

perform sequencing (in laboratory or directly on site with a mobile sequencer) and send the results

to a secure database accessed by public health authorities. Authorities can monitor the microbial

composition across the city, track abnormal profile changes, alert targeted populations in case of

outbreaks.

Such a “constant city-scale bio-surveillance” would have tremendous benefits for the

health of individuals, but it has several challenges. First, at the time of writing, the cost is pro-

hibitive. Collecting and sequencing a sample cost about $150. For a weekly bio-surveillance at a

city-scale (e.g., NYC) at least a thousand of samples are needed [Afshinnekoo et al., 2015], which

brings the total cost to more than $7.8 million per year. Second, it is very likely that some of the

data will be missing and contaminated. Samples may be misplaced, lost, contaminated, or wrongly

annotated. Consequently, the monitoring can be incorrect or incomplete. Even if a robot was col-
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lecting samples and carrying out the sequencing, there is a non-zero probability of a robot to break

down or being damaged.

Here we address the problem of the missing/contaminated data at a site of interest s and

propose an efficient computational solution to recover the presence of microbes at s. To the best of

our knowledge, there is no solution for this problem in the public literature. First, in the context of

NYC subway system we demonstrate that there exist a strong correlation or high similarity of the

microbial population between subway stations close of each others in data collected in [Afshinnekoo

et al., 2015]. Second, we propose a Bayesian method to determine accurately the microbes present

in a subway station given the microbial composition of subways stations surrounding it.

Such a model can alleviate to the missing information due to data contamination/loss,

and help to minimize the cost of bio-surveillance by metagenomics at a city-scale with limited loss

of detection. Finally, it can also be a solution to analyze quickly and at a high-level a city-scale

microbiome without the need to process all samples at once but rather thanks to a fraction of it.

4.2 Statistical Method

4.2.1 Data collection

The dataset in [Afshinnekoo et al., 2015] contains 1,457 sequenced samples, representing

a total of 4.882 B reads (a cumulative length of 1.367 1012 bp, or 2.988 TB in disk space). The

average length of the reads is 280 bp. Samples were collected at all open subway stations and all

subway lines of the NYC subway system, but also the Staten Island Railway, the Gowanus canal

and public parks. Areas swabbed include various objects (e.g., garbage can, bench, water, turnstile,

kiosk, stairway rail or water) [Afshinnekoo et al., 2015]. Each sample was annotated by several
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attributes (e.g., sample ID, station name, GPS coordinates of the swabbed object, etc.)

4.2.2 Taxonomic classification

In [Afshinnekoo et al., 2015], the authors used MegaBLAST [Zhang et al., 2000], BWA [Li

and Durbin, 2009], MEGAN and MetaPhlAn2 in order to classify sequences against a database of

reference sequences. Here we used CLARK-S (v1.2.3) because it can classify more reads and with

higher accuracy than other state-of-the-art tools as described previously. We compared the taxo-

nomic classification of CLARK-S against the findings from the original study [Afshinnekoo et al.,

2015] and found that the CLARK-S’s results are consistent with them. The top bacterial species

(and viruses) detected by CLARK-S match the list of top species detected in [Afshinnekoo et al.,

2015].

4.2.3 Post-processing of CLARK-S results

Classification results were post-processed in order to filter low-confidence assignment.

CLARK-S provides statistics for each classified read, namely a confidence score and a gamma

score (see previously chapter). A low confidence score means that the read may be mapped to

several species (ambiguous read) and a low gamma score indicates that the read was classified with

low evidence.

A cut-off of 0.75 on the confidence score is sufficient to select high confidence assign-

ments [Ounit et al., 2015]. However, it is critical to set a high cut-off for the gamma score to insure

that reads were assigned with sufficient evidence. Based on distribution of the gamma score, we

decided to filter out reads that had a confidence score lower than 0.75 or with a gamma score lower

than 0.50. We obtain 1.363 B classified reads (27.9% of the total).
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4.2.4 Taxonomic analysis of the samples

We have analyzed the microbial composition at the sample level and subway station level.

Using the metadata of each sample (indicating the sample ID-subway station associations) provided

by [Afshinnekoo et al., 2015], the microbial composition was identified for each sample. Then, for

each subway station swabbed with T samples, we computed for each species i its abundance ratio,

which is the ratio between the number of reads classified as species i in all T samples and the total

number of classified reads in all T samples.

Table 4.1 and 4.2 report the top dominant bacteria and viruses identified by CLARK-

S through all the samples, for different minimum abundance ratio thresholds. In Table 4.1, the

top three dominant bacteria Pseudomonas stutzeri, Stenotrophomonas maltophilia and Enterobac-

ter cloacae are in this order also the top three dominant bacteria reported in [Afshinnekoo et al.,

2015]. In addition, the presence of the viruses Enterobacteria phage phiX174, Enterobacteria

phage mEp235 and Erwinia phage ENT90 is consistent with the top ten viruses/phages reported

in the [Afshinnekoo et al., 2015]. Observe also the concomitant presence of bacteriophages with

their bacterial hosts, which suggests a consistency in the microbial profile as also observed in [Af-

shinnekoo et al., 2015]. However, several species detected in [Afshinnekoo et al., 2015] as domi-

nant are missed by CLARK-S (e.g., Acinetobacter radioresistans, Acinetobacter nosocomialis or

Lysinibacillus sphaericus). Similarly, several viruses were not detected by CLARK-S. In both

cases, the reason is due to the fact the reference sequence of these organisms was not included in

the CLARK-S database. We can make similar observations in Table 4.2 although fewer viruses

were detected because of a higher abundance threshold. These results show that CLARK-S was
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Table 4.1: Summary of the ten most dominant bacterial species (Top) and viral species (Bottom)
detected by CLARK-S with an abundance ratio higher than 0.1%. For each species, we reported
the related rank, the number of samples in which the species is detected, the species names, and the
corresponding NCBI taxonomy ID.

Rank Number of samples Bacteria name (species) NCBI Taxonomy ID
1 991 Pseudomonas stutzeri 316
2 785 Stenotrophomonas maltophilia 40324
3 665 Enterobacter cloacae 550
4 630 Acinetobacter baumannii 470
5 517 Pseudomonas aeruginosa 287
6 511 Pseudomonas putida 303
7 483 Escherichia coli 562
8 473 Enterococcus casseliflavus 37734
9 447 Salmonella enterica 28901
10 433 Klebsiella pneumoniae 573

Rank Number of samples Virus name (species) NCBI Taxonomy ID
79 45 Enterobacteria phage phiX174 sensu lato 374840
96 33 Escherichia phage HK639 906669
151 17 Enterobacteria phage mEp235 1147150
169 13 Salmonella phage SSU5 1177632
189 11 Enterococcus phage EF62phi 977801
230 7 Erwinia phage ENT90 947843
242 6 Enterobacterial phage mEp390 1147158
267 5 Staphylococcus phage phiRS7 1403390
341 3 Human endogenous retrovirus K 45617
346 3 Stenotrophomonas phage S1 573591

able to retrieve all dominant microbes found in [Afshinnekoo et al., 2015].

4.2.5 Bayesian inference model

In this section, we first introduce some notations and then present the probabilistic model.

Each subway station has a GPS coordinate. In order to define the distance between two subway

stations, we assume that stations of the NYC subway system are on a 2D plane and that the latitude

and longitude coordinates can be viewed as the standard (x, y) coordinates. Since the NYC subway
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Table 4.2: Summary of the ten most dominant bacterial species (Top) and viral species (Bottom)
detected by CLARK-S with an abundance ratio higher than 1%. For each species, we reported the
related rank, the number of samples in which the species is detected, the species names, and the
corresponding NCBI taxonomy ID.

Rank Number of samples Virus name (species) NCBI Taxonomy ID
1 809 Pseudomonas stutzeri 316
2 574 Stenotrophomonas maltophilia 40324
3 430 Enterobacter cloacae 550
4 310 Acinetobacter baumannii 470
5 231 Enterococcus casseliflavus 37734
6 160 Klebsiella pneumoniae 573
7 157 Pseudomonas putida 303
8 133 Enterococcus faecalis 1351
9 127 Escherichia coli 562
10 119 Exiguobacterium sp. MH3 1399115

Rank Number of samples Virus name (species) NCBI Taxonomy ID
50 17 Enterobacteria phage phiX174 sensu lato 374840
168 1 Enterococcus phage EF62phi 977801
180 1 Escherichia phage phAPEC8 1229753
184 1 Erwinia phage ENT90 947843
186 1 Salmonella phage SSU5 1177632
192 1 Escherichia phage HK639 906669

system spans an area of few miles in both direction (i.e., North-South and East-West), the distance

between two stations is approximatively equivalent to the Euclidean distance.

We use ρ to denote a distance radius. Let s be a subway station and let N(s, ρ) be the

set of subway stations located within ρ distance from s. In other words, N(s, ρ) is the neighbor-

hood of s in a radius ρ. The number of elements in the neighborhood is |N(s, ρ)|. We define the

“abundance ratio” of a species i for a given station s (that was swabbed and from which M reads

were sequenced), as the number of reads assigned to i by CLARK-S divided by the total number of

reads assigned by CLARK-S. A species i is present in the microbiome of station s (and we write

i ∈ s) if the abundance ratio of i in s is higher than some predefined threshold (e.g., 1% or 0.1%).
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Similarly, we can define the presence of a species in the neighborhood of a station. We

say that the species i is present in the neighborhood of s (and we write i ∈ γN(s, ρ)) if and only if

i is present in at least γ × |N(s, ρ)| stations of N(s, ρ), where γ is a value between 0 and 1.

Bayesian model

For a given station s, a distance ρ, a species i and γ ∈ [0, 1], let us formulate probabilities

P (i ∈ s|i ∈ γN(s, ρ)) and P (i ∈ s|i /∈ γN(s, ρ)) using the Bayesian theorem:

P (i ∈ s|i ∈ γN(s, ρ)) =
P (i ∈ γN(s, ρ)|i ∈ s)× P (i ∈ s)

P (i ∈ γN(s, ρ)|i ∈ s)× P (i ∈ s) + P (i ∈ γN(s, ρ)|i /∈ s)× P (i /∈ s)
(4.1)

P (i ∈ s|i /∈ γN(s, ρ)) =
P (i /∈ γN(s, ρ)|i ∈ s)× P (i ∈ s)

P (i /∈ γN(s, ρ)|i ∈ s)× P (i ∈ s) + P (i /∈ γN(s, ρ)|i /∈ s)× P (i /∈ s)
(4.2)

Because probabilities P (i ∈ s) and P (i ∈ γN(s, ρ)|i ∈ s) (as well as P (i /∈ s) and

P (i ∈ γN(s, ρ)|i /∈ s)) can be easily precomputed from a history of observations, P (i ∈ s|i ∈

γN(s, ρ)) can be quickly estimated. Similarly, we can estimate P (i ∈ s|i /∈ γN(s, ρ)).

To infer the microbial composition of the station s, we use thresholds 0 ≤ θ1 ≤ 1 and

0 ≤ θ2 ≤ 1 for P (i ∈ s|i ∈ γN(s, ρ)) and P (i ∈ s|i /∈ γN(s, ρ)), respectively. If P (i ∈ s|i ∈

γN(s, ρ)) > θ1 then we consider species i present in s. Similarly, if P (i ∈ s|i /∈ γN(s, ρ)) > θ2

then we consider species i present in s.
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4.2.6 Training and testing

Data cleaning

We removed samples that were partially annotated (e.g., missing GPS coordinates, or

unknown associations between sample ID and stations), as well as any non-subway stations (e.g.,

no canal and parks). The final dataset contained 1,064 samples covering 412 subway stations.

Cross-fold validation

In order to evaluate the performance of the model, we applied a five-fold cross validation.

We divided the set of stations into five subsets. We used four subsets for inferring the probabilities

P (i ∈ s), P (i /∈ s), P (i ∈ γN(s, ρ)|i ∈ s), P (i ∈ γN(s, ρ)|i /∈ s) and P (i /∈ γN(s, ρ)|i ∈ s)

and P (i /∈ γN(s, ρ)|i /∈ s) and we tested the model on the remaining fifth subset. We repeated

this procedure four more times, each time using a different subset for testing. During these five

evaluations, we computed True Positive (TP), True Negative (TN), False Positive (FP) and False

Negative (FN). Based on TP, TN, FP and FN, we computed precision TP
TP+FP , recall TP

TP+FN and

accuracy TP+TN
TP+TN+FP+FN . While the accuracy provides an overall performance of the predictor, the

precision indicates how often predictions are correct and the recall measures the fraction of species

correctly predicted. We also tried 10-fold cross validation but we did not observe a significant

change in precision/recall/accuracy. We also trained and tested the model on several thresholds of

abundance ratio (see Table 4.3).
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4.3 Experimental Results

In order to analyze the spatial locality of the microbiome of the NYC subway system, we

analyzed all pairs of stations (i.e., 84,666 pairs from 412 stations) and for each pair, we compared

the microbial composition computed by CLARK-S between the two stations. To compare two

microbial composition, we computed the Pearson correlation coefficient on the log value of the

abundance ratios. High correlation values (≥ 0.9) but also negative/null correlation values (≤ −0.2)

were found in the analysis of these pairs.

In Figure 4.1, we show the dependencies between the pairwise distance and the corre-

sponding correlation intervals. For each correlation interval we plotted the first quartile, average

and third quartile of all associated pairwise distance. The figure clearly shows that stations closer to

each other have higher correlation of the microbial composition than stations that are far away from

each other.

4.3.1 Evaluation of the model

The performance of our model depends on parameters ρ, γ, θ1, θ2. In order to optimize the

performance, we conducted a grid search of the parameter space. We considered ρ = [0.005, 0.02]

with step 0.001, γ = [0, 1] with step 0.05, θ1 = [0, 1] with step 0.05, θ2 = [0, 1] with step 0.05.

For each choice of ρ, γ, θ1, θ2 we carried out the five-fold cross validation, computed pre-

cision, recall and accuracy and selected the parameters values producing the highest performance.

We decided to maximize the sum of the three metrics (i.e., precision+recall+accuracy), with the

constraint that each metric had to be at least higher than 0.50 to avoid trivial solutions, e.g., preci-

sion=1.0, accuracy=1.0, and recall=0.0.
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Figure 4.1: Dependencies between the pairwise distance of subway stations and the Pearson correla-
tion coefficient of the microbial composition of corresponding pair of stations. The x-axis represents
intervals of Pearson correlation values. The y-axis represents the pairwise distance between stations.
For each correlation group, the first quartile, average and third quartile of all related pairwise dis-
tance are plotted.

In Table 4.3, we present the best performance over the parameter space for different

threshold value for the abundance ratio. Observe that for a threshold of 1%, the model can achieve

high accuracy and high precision.

4.3.2 Perspective for biosurveillance

In the context of a city-scale biosurveillance, any missing data due to samples being con-

taminated or lost can prevent a complete analysis and overview of the dynamics of targeted micro-

biomes. A predictive model such the one we presented can help to dealing with missing information.
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A strategy to reduce the high cost of biosurveillance would be to sample, sequence and

analyze a carefully chosen subset of stations based on their proximity and then use a predictive

model (trained on previous observations) to determine the microbial composition of the missing

stations.

4.3.3 Running time and database

As explained in the method section, CLARK-S was run for the taxonomic classifica-

tion of samples. We used the default database of bacterial, archaeal and viruses genomes from

NCBI/RefSeq (a total of 5,747 species). The 4.882 billion raw reads were classified, at the species

rank, with 8 CPU, in only 6.2 days on a Dell PowerEdge T710 server (dual Intel Xeon X5660 2.8

GHz, 12 cores and 192 GB of RAM). The RAM usage for the classification was about 110 GB.

Once the microbial composition is obtained, our probabilistic model can be trained in

few minutes, as it only requires to compute distances and perform look-ups of organisms. The

computational complexity of our model is O(N2) where N is the number of stations/samples.

Table 4.3: Performance of the Bayesian model for several threshold of abundance ratio. For each
threshold of the abundance ratio, a five-fold cross-validation was performed to train and test the
model, and estimate the precision, recall and accuracy. For each threshold, the values of the model
parameters ρ, µ, γ, θ1 and θ2 that allow the highest classification performance are reported.

Abundance threshold (%) ρ µ γ θ1 θ2 Precision (%) Recall (%) Accuracy (%)
1.0 0.013 5 0.90 0.20 0.45 77.7 53.6 85.8
0.9 0.013 5 0.90 0.20 0.45 78.5 51.6 85.5
0.8 0.013 5 0.55 0.35 0.45 74.9 55.1 85.7
0.7 0.014 6 0.50 0.35 0.45 73.4 55.5 84.7
0.6 0.013 5 0.55 0.30 0.5 75.5 50.3 86.4
0.5 0.015 6 0.60 0.15 0.35 68.9 55.4 86.6
0.4 0.015 6 0.55 0.05 0.35 69.6 50.2 87.1
0.3 0.016 6 0.50 0.25 0.25 51.7 63.9 82.7
0.2 0.012 7 0.65 0.30 0.3 51.5 73.0 73.8
0.1 0.012 5 0.70 0.30 0.4 64.1 50.1 82.7
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4.4 Conclusion

We have presented a probabilistic model capable of predicting microorganisms present in

a given subway station using the known microbial composition of the surrounding stations. Using

real data from the NYC subway system, our model was able to achieve high accuracy (83% and

86% for an abundance threshold of 0.1% and 1% respectively), and high precision (64% and 78%

for an abundance threshold of 0.1% and 1% respectively). However, the relatively low recall (50%

and 54% for an abundance threshold of 0.1% and 1% respectively) is a weakness of the approach.

These preliminary findings suggest for the first time that it is possible to design a predic-

tive model for the microbial composition of geographically-related samples. While our model was

trained on static data, we expect that the performance would improve by including time-dependent

observation. The authors of [Afshinnekoo et al., 2015] analyzed the temporal evolution of the mi-

crobiome for one station (Penn Station) and observed that some organisms are detected constantly

and others with fluctuation over time (likely due to variation of temperature). We speculate that this

phenomenon can also be observed in several other subway stations, and hypothesize that the low

recall of our model could be attributed to an out-of-synch sampling.

We understand the technical challenges of collecting metagenomic samples for the entire

NYC subway at multiple time points, considering the entire NYC microbiome swabbing in [Afshin-

nekoo et al., 2015] took about 18 months. However, our model could be easily extended to take into

account temporal dependencies.
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Chapter 5

Conclusions

Within the past decade, the improvement of the sequencing technologies has enabled

major discoveries in molecular biology, but it also has created several computational challenges

in the analysis pipeline. In metagenomics, faster, more accurate and more efficient algorithms are

needed to analyze environmental or clinical samples that are sequenced more and more quickly. In

genomics, fast and efficient algorithms are required to process massive amount of data from large,

complex and repetitive genomes.

This dissertation presents new computational methods for solving the problem of super-

vised sequence classification for metagenomics and genomics applications. We have designed and

implemented a family of software tools (i.e., CLARK, CLARK-l and CLARK-S) that are accu-

rate, efficient and faster than previously published methods. Our tools are already considered state-

of-the-art and currently used by several research teams world-wide. We have also described a new

statistical approach for pathogen detection and biosurveillance at a city-scale, which allows one to

infer/inpute the presence of microbes in order to compensate the loss/contamination of data/samples.
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Recent progress in sequencing techniques allow to foresee future computational chal-

lenges. For example, quantum tunneling is expected to allow a much higher output than any existing

sequencing platform [Di Ventra and Taniguchi, 2016]. If hundreds of samples could be sequenced

in only few hours then much faster sample analysis methods and more efficient storage/compression

solutions for these data would be needed.

Recently it has been shown that DNA sequencing in space has several advantages com-

pared to sequencing on the ground [Castro-Wallace et al., 2016]. If sequencing was routinely per-

formed on the International Space Station, efficient and inexpensive solutions for data transfer be-

tween ground and space would be crucial to process larger and larger samples.

Constant innovation in sequencing technologies will create continuing pressure on com-

putational methodologies to keep the pace in the analysis of genomic and metagenomic data. Cre-

ativity and ingenuity will be needed for solving new computational problems.
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