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Abstract

Sensor networks frequently deploy many tiny and inex-
pensive devices over large regions to detect events of in-
terest. It can be easy to compromise sensors, enabling at-
tackers to use the keys and other information stored at the
sensors to inject false reports, forging fake events. Existing
approaches do not localize the impact of such node com-
promises, so that compromises in one sensing region may
compromise other parts of the system. In this paper, we pro-
pose two fault localized schemes for false report filtering. In
our basic scheme, sensors signal events using one-way hash
chains, which allows en-route nodes to verify the authentic-
ity of received reports based on commitments of detecting
sensors, but prevents them from forging events. We extend
this basic scheme to a collaborative filtering scheme using
commitment predistribution, making it more adaptable for
mobile sensor networks and high-density sensor networks.
Our scheme can also provide localized protection for areas
that require special protection. Our security analysis shows
that our schemes can offer stronger security protection than
existing schemes, and are efficient.
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1 Introduction

Sensor networks commonly deploy large numbers of
sensors over a large field to sense events or obtain readings
of various parameters. Such networks may be deployed,
for example, to detect forest fires, unusual traffic patterns,
environmental changes, or troop movements in battle. Typ-
ically, a sensor detecting an event sends a report to a special

node called a sink, which collects and processes such re-
ports. These reports must be delivered securely to the sink
in cases where node compromises are likely, or when the en-
vironment is hostile. Unfortunately, it is hard to secure sen-
sors physically, since they are prone to capture, and strong
cryptographic methods can require more resources than are
typically available. Upon compromising a node, the adver-
sary gains access to all data and cryptographic keys stored
therein, and may have enough key information to imperson-
ate the compromised node and mount a variety of attacks.

We present a mechanism to address false report gen-
eration attacks [13], which are mounted by an adversary
who compromises a node and generates false reports ap-
pearing to originate from it. False reports waste scarce
resources such as energy and bandwidth, but more impor-
tantly, they may trick the sink into making wrong deci-
sions, with serious high-level consequences. For example,
a fake report of an emergency might send first-responders
to the wrong location, depriving legitimate emergencies
of urgently-needed resources. Consequently, false reports
should be filtered as early as possible as they travel to the
sink.

Such a scheme must localize faults, and be efficient and
scalable. Fault localization requires that the compromise of
some sensors not render other parts of sensor network inef-
fective. As we will see, this issue has not been addressed
by current approaches. Efficiency requires the scheme to
consume few resources and to filter false reports as early
as possible. Scalability is important because sensor deploy-
ments can be very large.

1.1 Our Work

In this paper we present two efficient, scalable, and fault-
localized schemes for false report filtering. In our basic
scheme, each detecting sensor signals events using a one-
way hash chain, so that en-route nodes can verify the au-
thenticity of reports using key commitments by detecting



sensors. Unlike earlier work [13, 16], our scheme differ-
entiates between the roles of detecting nodes and en-route
nodes, and limits the impact of a node compromise to its
locale. As a consequence of fault localization, this scheme
also enables localized protection when some important ar-
eas require special protection. We develop a collaborative
false report filtering scheme using commitment predistri-
bution, which is suitable for mobile sensor networks and
adaptable to high-density sensor networks.

Our security analysis shows that more than 98% false
reports are dropped within 2 hops when false reports are
generated by a compromised cluster head. In the worst
case, where false reports are collusivly forged by a threshold
number of detecting nodes, more than 90% false reports can
be filtered within 8 hops. Further, although our scheme in-
troduces extra fields in report packet, it results in very con-
siderable energy savings by filtering most false reports very
quickly.

The rest of this paper is organized as follows. We de-
scribe the related work in Section 2. Section 3 motivates
our work. We present and analyze our basic fault-localized
scheme for false report filtering in Section 4, and present
and analyze an enhanced scheme for supporting mobile sen-
sor networks in Section 5. And we evaluate their perfor-
mance in Section 6. Finally, we make a conclusion in Sec-
tion 7.

2 Reated Work

Recent approaches [13, 16, 12] to false report filtering
have assumed that the sensor are densely deployed, and that
there are no more than some number ¢ of system-wide node
compromises. Forwarding nodes simply drop any report
with ¢ or fewer endorsements before it reaches the sink.

In [13], endorsements take the form of Message Authen-
tication Codes (MACs) generated using keys assigned ran-
domly to nodes from a global key pool divided into dis-
joint partitions. Keys from more than ¢ key partitions are
not assumed to be compromised, so that a report must in-
clude MACs using keys from more than ¢ different key par-
titions to be considered valid. Randomly assigning a suf-
ficient number of keys from the global pool to each node
leads to a high probability that en-route nodes share keys
with detecting nodes, and can verify endorsements. This
scheme is effective in filtering false reports when the num-
ber of key partitions that compromised keys come from is
no more than ¢. However, since each reporting region must
include keys from ¢+1 or more partitions, physical compro-
mise of any reporting region automatically yields keys from
at least ¢ + 1 partitions. Since the keys are drawn from the
same global pool, this creates a serious problem, since the
number of key partitions that compromised keys come from
now exceeds ¢, and an attacker can fabricate false reports

appearing to originate from arbitrary reporting regions, ren-
dering the entire network ineffective. This lack of fault lo-
calization causes serious security problems.

Zhu et al [16] present an interleaved hop-by-hop authen-
tication scheme, in which each node is associated with two
other nodes on the path from the cluster head to the sink,
called the lower association node and upper association
node, respectively. An en-route node will forward received
reports if successfully verified by its lower association node.
The security of this scheme depends mainly on the correct
creation of associations, which cannot be guaranteed. In the
worst case, t compromised nodes can force a false report to
bypass verification by as many as O(#?) uncompromised
nodes. Besides, as pointed out in [12], the work in [13, 16]
uses symmetric keys allowing compromised nodes to abuse
compromised symmetric keys to generate false reports.

Yang et al. [12] propose a commutative cipher based
scheme, in which en-route nodes simply check whether a
report originates at one of the cluster heads specified by
the sink, letting the sink eventually verify the correctness
of the cluster heads. When cluster heads are compromised,
en-route nodes cannot detect false reports, and will forward
them to the sink. This is inefficient and wastes considerable
energy. Further, when this scheme is extended to deal with
general queries that do not specify location, it requires the
sink to flood a probe message before an event occurs. This
is unreasonable since events are unpredictable.

3 Motivation and Assumptions

We will now discuss two ideas that are central to our
work: fault localization and localized protection.

3.1 Fault Localization

Sensors are prone to physical capture or compromise,
and keys and other information stored at the nodes become
available to adversaries upon such compromise. Without
fault localization, the compromise of some sensors can
compromise others.

In SEF [13], a valid report must include ¢ + 1 MACs,
computed with keys drawn from different key partitions of
a global pool. Since reports are certified by other nodes
in the physical neighborhood of a reporting node, each re-
porting neighborhood must contain nodes whose keys come
from more than ¢ such partitions. SEF remains safe only if
attackers can not compromise keys in more than ¢ key parti-
tions. However, in hostile environments, this assumption is
unrealistic, and it may be possible for an adversary to com-
promise an entire reporting region. Since the nodes in each
such region must have keys from more than ¢ partitions, the
adversary will immediately acquire keys from more than ¢
partitions. These keys may be used to compute more than
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Figure 1. Fault Localization and Localized
Protection

t valid MACs, enabling the adversary to fake reports any-
where in the system. Even worse, these false reports will
not be filtered either by en-route nodes or by the sink, since
they include ¢ + 1 valid MACs. Therefore, node compro-
mise in one small detecting area may lead to compromise of
the whole network. In Figure 1, let ¢ = 2 and let nodes n1,
no and ng, holding keys from different partitions, be com-
promised. Now, the attacker can not only fake a false report
notifying the occurrence of an event in n,’s detecting area,
but also fake reports from anywhere.

In contrast, our scheme is safe as long as no more than ¢
sensors are compromised in any one detecting area. Further,
the compromise of more than ¢ sensors in any detecting area
only allows the attacker to fabricate events in that detecting
area. The security of other detecting areas will remain un-
affected.

In LEAP [16], reports include MACs computed with
keys shared either between detecting sensors and en-route
sensors or between a pair of en-route sensors, enabling com-
promised en-route sensors to forge false reports and col-
lusivly forward them through up to O(¢%) uncompromised
en-route sensors. Although these false reports will be even-
tually detected by the sink, they consume scarce energy at
en-route sensors. In contrast, we distinguish between the
functions of detecting nodes and en-route nodes, so such
collaborations are impaossible.

3.2 Localized Protection

This feature is a consequence of fault localization. In
wireless sensor network applications such as military de-
ployments, there may be important regions that need spe-
cial protection. A scheme with localized protection allows
protection of such selected areas, enabling the best use of
resources of entire network.

In Figure 1, for example, let node n; ’s detecting area re-
quire special protection, and be specially hardened against
compromises. In a scheme such as SEF [13], nodes are

assigned keys from randomly selected partitions. Suppose
nodes in each of the pairs (n1,n4), (n2,ns), and (ns, ng)
are assigned keys from the same key partition. Although the
special protection may make it hard to compromise nodes
ny, ng and ng, it suffices instead to compromise nodes n.4,
ny and ng outside this protected area. An adversary can now
fabricate reports from n’s detecting area without being de-
tected. Thus to ensure the safety of n,’s detecting area,
protection should be performed uniformly across the entire
network, requiring an unacceptable amount of resources in
current schemes. For a large scale sensor network, offering
localized protection will be a great challenge.

The schemes in [13, 16] are not able to achieve fault
localization and localized protection, because they do not
differentiate between the roles of detecting nodes and en-
route nodes. Detecting nodes are used to generate valid
reports, while en-route nodes are used to forward verified
reports to the sink, and to filter false reports as early as pos-
sible. While both [13] and [16] enable en-route nodes to use
shared keys with detecting nodes to both verify and gener-
ate reports, they also make it possible for compromised en-
routing nodes abuse their shared keys to fabricate reports.
In contrast, our schemes enable en-route nodes only to ver-
ify received reports based on commitments from detecting
sensors, but not to generate reports.

3.3 Replay Attacks

The schemes in [13, 16] are all vulnerable to replay at-
tack, in which compromised nodes record and replay legiti-
mate reports. It is harder for en-route nodes or even the sink
to detect such report replays than to detect false reports. In
previous schemes [13, 16] en-route nodes and the sink can
use keys shared with the detecting nodes to verify the cor-
rectness of received reports, but not their freshness. Even
when the sink eventually recognizes false reports, they con-
tain insufficient information to locate adversaries.

3.4 Our Assumptions

We assume that the sink has sufficient resources to pro-
tect itself against compromise. Sensors, on the other hand,
are small battery-equipped devices with limited computa-
tion and storage capability, and subject to capture or com-
promise. Adversaries can eavesdrop, or inject, modify or
replay messages transmitted in the network. They may
also collude in performing such compromises. Further, as
in [16, 12], we assume that the transmission range of the
sink is the same as that of the sensors. Consequently, mes-
sages from the sink may travel to sensors over several hops.

We assume that no more than ¢ nodes are compromised
within any cluster. While compromised nodes may mount
a variety of attacks, such as dropping valid reports or not



Notation | Description I

N the size of the sensor network
Ng the size of a cluster
N¢ the number of compromised sensors
n the number of sensorsin a sensor’s transmission range
n; theid of a sensor
t an event is recognized as legitimate when at least
t + 1 sensor detects it
K; asecret key shared between sensor n; and the sink
Kp; the one-hop pairwise key shared between n; and its
cluster head
cf the pth hash value on the one-way hash chain of n;

Table 1. Our Notation

reporting the events that they detect, addressing such attacks
requires active monitoring of transmissions, and is beyond
the scope of this paper. Our focus, as in [13, 16, 12] is
on filtering false reports generated by compromised nodes
before they reach the sink.

Finally, we assume that paths between the sink and the
sensors are symmetric, so that the same nodes are traversed
by messages going in either direction, albeit in opposite or-
ders.

Table 1 lists the notations which appear in the rest of this

paper.
4 Our Scheme

A central idea in our scheme is to differentiate between
the roles of detecting nodes and en-route nodes. Detecting
nodes detect and report events of interest, while en-route
nodes verify received reports and forward verified reports
to the sink. En-route nodes are not given access to the keys
used to generate reports, so that they are prevented from
abusing keys to generate false reports. This feature differ-
entiates our work from that in [13, 16].

In our scheme, each detecting sensor maintains a one-
way hash chain, and signals an event E of interest by dis-
closing the next available hash value on its chain. It also
computes a MAC on E using a pairwise secret key shared
with the sink, so that the sink can verify the authenticity and
integrity of the report. The network is divided into clusters,
and a cluster head is selected for each detecting area. Since
no more than ¢ sensors may be compromised in any detect-
ing area, an event must be endorsed by ¢ + 1 sensors. When
the cluster head collects t+ 1 hash values, representing ¢+ 1
agreements on an event occurrence, it generates and for-
wards to the sink a report which includes these hash values
and their corresponding MACs. If an en-route node on the
path from the cluster head to the sink holds the hash chain
commitment of any node endorsing this event, it verifies the
hash value reported by the endorser.

We note that en-route nodes can not fake reports using

the hash-chain commitments for detecting nodes, since re-
ports are recognized as legitimate only when they contain
fresh values from the hash chain. Since fresh hash chain
values can not be generated from the public commitments,
fake reports generated by en-route nodes can be easily de-
tected and filtered by uncompromised en-route node.

Our scheme includes four phases: sensor initialization
and deployment, report generation, en-route verification,
and sink verification. We describe the details of each phase
in the following sections.

4.1 Sensor Initialization and Deployment

Before a sensor node n; is deployed, it is initialized with
a pairwise secret key K; shared with the sink and used to
authenticate the messages sent from n; to the sink, as well
as a one-way hash chain C; = &2, ¢},---,c™. A one-way
hash chain [5] is generated using a one-way hash function
F, so that

d=FCt), j=0,1,....m—1

To save memory, each sensor may choose to store parts
of this chain. For example, it may only store every kth hash
values, deriving the rest using the one-way hash function.
This is a tradeoff between the memory and computation.

The hash values in this chain are used in reverse order,
starting with ¢}. The value ¢? serves as the commitment
for the hash chain, and is made public, so that other sensors
are able to verify the correctness of received hash values.
Given commitment ¢, a node can verify any hash value c¥
by checking whether ¢ = F*(cF).

Initially, the network is partitioned into clusters, called
detecting areas. Each cluster contains at least ¢ + 1 detect-
ing sensors, the size of the clusters being determined by the
application requirement and the sensor density. A cluster
head is elected, and periodically rotated to enhance robust-
ness. Cluster head election algorithms are out of the scope
of this paper, and readers are referred to other work [10, 14]
for schemes to accomplish this task. After a sensor is de-
ployed, it establishes pairwise keys with its one-hop neigh-
bors using schemes proposed in [2, 6, 7, 15, 1].

To enable en-route nodes to verify reports, the sink trans-
mits the commitments for sensors for cluster  to the corre-
sponding cluster head H;. This message is authenticated
using uTESLA [9]. If the size of a cluster is Ng, each
en-route node randomly stores k£ out of N commitments
based on its storage capability. The more it stores, the bet-
ter it is able to verify reports. If an en-route node is on
multiple paths to the sink, it must store commitments for
each cluster.

Vi : sink = H; : ¢3,c3, - - ,C?VG



After this transmission, a path is generated between each
cluster head and the sink, to be used for secure report trans-
mission. When these paths change due to node failure, we
can use the local repair scheme or the sink initiated repair
scheme proposed in [16] to repair these paths. A path is
repaired locally by replacing the failed nodes with good
ones. Since these new nodes do not have the commitments
needed to verify reports, they just forward all received re-
ports. When the path is repaired by the sink, the commit-
ments will be piggybacked in every beaconing message [4]
sent by the sink.

(a Initidization

(E5,C ECL 2 C’:f'llCMAC%
sink

(b) Report Generation

Figure 2. Initialization and report generation

Determining k: The number of commitments each en-
route node stores for a specified cluster is restricted by the
memory capacity of sensors, and dictates the ability of en-
route nodes to verify reports. Suppose the size of a cluster
is Ng, and a valid report is to include ¢ + 1 hash values
from distinct detecting sensors. To enable an en-route node
to verify reports, it must hold a commitment for at least one
of the ¢ + 1 hash values included in the report, so the value
of k should satisfy

Ng — k <t,

so that k > Ng — t. For example, if the size of a cluster is
Ng = 7,and a valid report is to include 5 endorsements on
an event, the value of £ must be at least 3.

As we show in Section 5, en-route nodes that are on mul-
tiple paths might not have enough memory to store the re-
quired commitments in a large high-density sensor network.
We present a collaborative scheme to solve this problem in
Section 5.

4.2 Report Generation

When a sensor n; detects an event of interest, it sends a
report to its cluster head H;.

n; —)Hi [E pz,cp]Khi,MAC(Kz,E)

E specifies the type of the event and other relevant infor-
mation. ¢t is the p;th hash value, which is the next avail-
able hash value, on detecting sensor n;’s chain. This value
denotes n;’s endorsement of the occurrence of E. En-route
nodes may verify n;’s endorsement by checking the cor-
rectness of this hash value ¢}*. To enable the sink to ver-
ify the authenticity and integrity of its report, n; also com-
putes a MAC on E using the secret key K; it shares with
the sink. The authenticity and integrity of E, p; and ¢’ are
ensured by Kp;, a pairwise key shared between n; and H;.
We do not use 4 TESLA, since it consumes up one distinct
hash value at each time interval, whether or not an event oc-
curs, and approach that wastes precious hash values. In our
scheme, each detecting sensor discloses a hash value only
when it detects an event.

An event is recognized as legitimate when at least ¢ + 1
sensors detect it. When the cluster head collects at least
t + 1 agreements from detecting sensors, it sends to the
sink a report that includes the ¢ + 1 hash values sent by dis-
tinct detecting sensors, and the corresponding ¢t + 1 MACs.
The hash values are used for en-route verification, while the
MACs are used for final verification at the sink. The IDs
of the ¢ + 1 detecting nodes and the indices of hash val-
ues are also included in the report, so that en-route nodes
and the sink can verify the received reports. Rather than in-
cluding a series of individual message authentication codes
M;(E) = MAC(K;, E), a cumulative message authenti-
cation code (CMAC) M®(E) is obtained by computing an
exclusive-or on the M;(E) as follows.

M®(E) = M(E) & My(E) ® - -- & My (E)
H; — sink :n1,n2, - ;N441,P1,P2,* »Pey1,
C:fl’c?a 'acf-ti-'—llaM@(E)

4.3 En-route Verification

When an en-route node receives a report, it first checks
the number of hash values included in the report. If the
number of included hash values is less than ¢ + 1, it drops
the packet, since it does not include enough agreements.
Otherwise, if an en-route node u stores commitments for x
of the detecting nodes that endorse this report, it can verify
2 hash values included in the report. Specifically, suppose u



stores detecting sensor n;’s commitment. When u receives
a report which includes p; and c}*, it verifies ¢!* in two
steps. First, u checks whether p;, the index of ¢, is larger
than the index of the value it previously received, say, p;,
confirming that ¢* is a new hash value. Second, for a fresh
value ¢/, u checks whether cfg = FPiPi(cli). If these
two checks succeed, the en-route node relays the report to
the next node on the path to the sink.

In our scheme, we do not assume that cluster heads are
secure, or that they are hardened, or have special attributes.
A compromised cluster head may drop or manipulate true
reports, or inject false reports. In this paper, we focus on
false report generation attacks. Denial of service attack
mounted by compromised cluster heads by dropping reports
require special monitoring, and are not addressed here.

To inject a false report, the compromised cluster head
must fabricate ¢ hash values and a cumulative MAC. An
uncompromised en-route node that has the commitment of
any fabricated hash value will filter this false report imme-
diately. Further, since each en-route node maintains the in-
dices of hash values, replaying old reports will also be de-
tected by an uncompromised en-route node.

4.4 \frification at Sink

When the sink receives a report, it checks the number
of hash values included, and their correctness. It also com-
putes t + 1 MACs using keys shared with each detecting
node, and XORs them. If the cumulative MAC matches the
one included in the report, the sink accepts the validity of
the report. Otherwise, it has identified a set of misbehaving
nodes, and takes corrective action against them.

4.5 Security Analysis

We now show that our scheme performs well in terms of
its ability to address false report generation, and is efficient.

45.1 Outsider Attacks

False reports generated by outside attackers can be filtered
by any uncompromised nodes immediately. Replaying old
reports can also be detected, because the indices of hash
values along the hash chain allow the forwarding nodes to
verify the freshness of reports.

45.2 Insder Attacks

Unlike previous schemes [13, 16], en-route nodes in our
scheme are only able to verify reports using the commit-
ments of detecting nodes, but not generate fake reports,
since they cannot fabricate valid hash values belonging to
the hash chains of other detecting nodes. Compromised
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Figure 3. The probability of a false report be-
ing filtered within one hop

en-route nodes must forge ¢ 4+ 1 hash values of detecting
nodes to generate a false report. These will be detected
and dropped by an uncompromised en-route node in our
scheme.

Let §(h) be the probability that a false report will be fil-
tered in h hops. Let there be N detecting nodes in a clus-
ter, and let N, of these, including the cluster head, be com-
promised. To forge a report, the cluster head must forge
t + 1 — N, hash values. If each en-route node holds &
commitments for that cluster, the detection probability is
the probability that an en-route node happens to have com-
mitment for at least one those ¢+ 1— N, forged hash values.

Clearly, Ny 1+N)
G—t— c

=1k

Figure 3 shows the probability of a false report being fil-
tered within one hop, when the size of the cluster is 7 and
an event is recognized when t 4+ 1 = 5 detecting sensors en-
dorse its occurrence. If each en-route node stores two com-
mitments for that cluster, a false report from a compromised
cluster head (N, = 1) will be filtered within one hop with
a probability of 86%. When four detecting nodes including
the cluster head have been compromised, false reports will
be filtered within one hop with the probability of 29%.

As Figure 3 shows, the probability of a false report be-
ing filtered within one hop increases with the number of
commitments that each en-route node stores. When each
en-route node stores seven commitments for that cluster, it
suffices to have a single uncompromised en-route node to
filter all false reports.

Figure 3 also shows the probability of false reports being
filtered within one hop in SEF. However, we should note
that SEF can not be directly compared with our scheme,
since the meanings of N, in two schemes are different. N,
in our scheme denotes the number of compromised sensors,
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Figure 4. The portion of dropped false reports
as a function of the number of traveled hops.

while in SEF, N, denotes the number of key partitions that
compromised keys come from.

The expected fraction of false reports detected and
dropped within A hops is

S(hy=1-[1-6()" =1 l(NG_t;HNC)r
(h) [1-5(1)] )

Figure 4 illustrates that the fraction of dropped false re-
port increases rapidly as the hop count grows. We assume
here that an event is legitimate when at least five nodes have
detected it. Figure 4 shows that more than 98% false reports
are dropped within two hops when only the cluster head is
compromised. In the worst case, where a threshold (4 in
this example) number of detecting nodes have been com-
promised, 90% of false reports are dropped within 8 hops.

5 High-Density Deployments & Mobility

In our basic scheme, en-route nodes are able to filter
most of false reports in a few hops, using commitments for
detecting sensors. Now, we consider the problem of false
report filtering in two scenarios: high-density sensor net-
works and mobile sensor networks.

Scenario |: High-Density Deployments. A common
approach to extending the lifetime of sensors is to divide
each cluster into y groups, and activate each group in
turn [11, 3]. This ensures that each sensor is active for 1/y
of the total time. To ensure that event will be reported re-
liably, each group must have at least ¢ + 1 sensors. Thus a
high-density sensor network is required to satisfy this appli-
cation requirement.

Our basic scheme is not suitable for high-density sen-
sor networks, since the storage requirement becomes ex-
cessive. For example, consider a 5, 000-sensor network,

in which each cluster has 100 sensors divided into five 20-
sensor groups. Suppose a legitimate event must be detected
by at least ¢ + 1 = 11 sensors. As shown in Section 4.1,
each en-route node must store at least Ng — ¢ commitments
to enable itself to verify the received reports. Under the
above configuration, each en-route node needs to store 90
commitments per cluster. If an en-route node is on multi-
ple paths to the sink, say 6 paths, it needs around 4.3 K B to
store commitments. To put this in perspective, the MICA2
Mote [8] only offers 4K B SRAM.

Scenario | l: Mobile Networks: Consider a mobile sce-
nario, in which the sink may move through the entire target
region while the sensors are static after deployment. An ex-
ample of this situation is sensors deployed in a battlefield,
where the sink is deployed in a vehicle that moves across
the battlefield.

When the sink moves to a new location, the paths from
each cluster to the sink are all changed accordingly. The
sink must send commitments and latest indices of the hash
values to each cluster head again, enabling en-route nodes
to update the commitment-index pairs they need store.

0
;CNG;

P1,P2, " ’p(J)VG

Vi : sink — H; :nq,m,--- ,nNg, 0, ¢, - -+

Consider a 1, 000-sensor network, and let the node 1D
and the indices all be 10 bits, and the length of each commit-
ment be 64 bits. Whenever the sink moves, it will send out
around 8 K B in commitments and 1.2K B in indices. If the
sink moves frequently, sending these messages repeatedly
will waste scarce bandwidth and energy. In this section,
we present a collaborative false report filtering scheme, en-
abling the sink to only send the short-length indices, and
thus saving lots of bandwidth and energy consumption.

The basic idea in this scheme is for every sensor to be
randomly preloaded with m out of N commitments, where
m iS a system parameter and N is the number of nodes in
the network. When the sink moves to a new location, it
only sends the latest indices of hash values of sensors to
their cluster head. Each en-route node stores the indices,
and will collaborate with its one-hop neighboring sensors
to verify the received reports.

This scheme works in four phases: sensor initializa-
tion and deployment, report generation, en-route verifica-
tion, and sink verification. The difference between our two
schemes is the method of distribution of commitments in
the first phase, and en-route verification in the third phase.
The other two phases are the same, so we only describe the
first and third phases of this enhanced scheme.



5.1 Sensor Initialization and Deployment

As in our first scheme, each sensor is preloaded with a
secret key shared with the sink, and a one-way hash chain.
Unlike the first scheme, however, each sensor is preloaded
with m commitments prior to its deployment. m is a system
parameter determined by the memory capability of sensors,
and directly affects the verification ability of each node. We
give a detailed analysis in Section 5.3.

To enable en-route nodes to verify reports, the sink sends
the indices of the latest hash values on the corresponding
hash chains to each cluster head.

Vi : sink — Hz tM1,N2, " yNMNg, P1,D2,° " ;PNg

When an en-route node u receives this message, it first
checks whether it holds any commitments for nodes spec-
ified in the message. If it does, it records the correspond-
ing indices. Otherwise, it sends a request to its neighbor-
ing sensors, asking whether they have the commitments for
the specified nodes. The node u will store any indices that
their corresponding commitments are held by «’s neighbor-
ing nodes.

Whenever the sink moves to a new location, the sink
sends the latest indices of hash values of sensors to their
cluster heads, enabling en-route nodes to update their in-
dices.

5.2 En-route Verification

As in our first scheme, each en-route node will first check
the number of hash values included in a received report, ver-
ifying whether this report is endorsed by at least t+1 detect-
ing sensors. Unlike the first scheme, however, each en-route
node will now first check whether it has the commitment-
index pair of any one of the ¢ + 1 hash values. If it does,
it verifies the corresponding hash value(s) as in the first
scheme. If it holds indices but not commitments, for any of
the ¢ + 1 hash values, the en-route node u contacts its one-
hop neighboring sensors, asking for the commitment(s) of
those hash values. u verifies the corresponding hash values
using these responses and the indices it stored in the first
phase.

5.3 Security Analysis

The security analysis for outsider attacks of the en-
hanced scheme is identical to that of the basic scheme (Sec-
tion 4.5.1). In this section, we analyze the security of the
enhanced scheme in terms of its ability to filter the false
reports generated by compromised detecting sensors.

In our basic scheme, each en-route node is guaranteed to
have the commitment-index pair corresponding to at least
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Figure 5. The probability of an en-route node
and its neighboring nodes having at least one
commitment of the ¢+ 1 hash values included
in a report (N = 5,000, t = 10, n = 20)

one of the hash values included in the received report. How-
ever, since we now randomly preload m commitments, we
can not guarantee that an en-route node and its neighbors
will have the commitment-index pair for any hash value.
Let the size of the network be N, the expected number of
sensors within a sensor’s transmission range be 7, and a
valid report include ¢ + 1 agreements. Let o be the proba-
bility that a node and its 1-hop neighbors hold at least one
of the commitments for the ¢ + 1 hash values in a message.

Clearly,
(N—t—l) n
e l & ]

Figure 5 shows that an en-route node and its neighboring
nodes will hold at least one commitment of the ¢ + 1 hash
values with a very high probability. For example, when each
sensor is preloaded with 100 commitments, this probability
is 99%, suggesting that each en-route node and its neigh-
boring nodes can nearly always collaboratively verify the
received reports.

Now we consider the probability of a false report being
filtered in one hop. Let A(k) be the event that a false re-
port is filtered in & hops, and B(7) be the event that a node
and its 1-hop neighbors hold : commitments for nodes in a
specified cluster. Now,

Pr{A(1)] = 3 PrA(1) | B@)] - PrB()].

Now, Pr[A(1) | B(i)] = 1 —
Section 4.5.2.

Let v be the probability that any given commitment c is
held by a node or its 1-hop neighbors. Now,
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Consequently,
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For example, consider a sensor network with N = 1,000
sensors, and is divided into 7-sensor clusters. Therearen =
10 sensors in a sensor’s transmission range. A valid report
includes 5 endorsements. A false report generated by two
compromised detecting sensors will be filtered in one hop
with the probability of 95.7%.

6 Performance Evaluation

We evaluate the performance of both our schemes in
terms of the energy savings from false report filtering, as
well as storage requirements.

6.1 Energy Savings

In our scheme, sensors consume energy in two ways: (1)
to transmit reports, and (2) to verify reports by computing
hash values. Since the sink is assumed to have sufficient
resources, we ignore the energy consumed at the sink. Be-
sides, as shown in [9], computing hash values increases en-
ergy consumption only marginally. Thus, we ignore the en-
ergy overheads of computation, and concentrate only the
communication overhead.

When an en-route node w first receives a report endorsed
by sensor n; in our enhanced scheme (Section 5.2), it may
need to ask its neighbors for the commitment ¢ of n;, if
u stores the latest index of the hash chain of n;. This is
a one-time request. Once v gets and stores ¢?, it can ver-
ify n;’s hash values appearing in all future reports. This
one-time local communication cost is amortized over all re-
port transmissions, and introduces marginal additional over-
head. In other words, the energy consumed for communi-
cation during report transmission in our enhanced scheme
is marginally higher than that of our basic scheme. Due to
space limitations, we provide an analysis of energy savings
for our basic scheme.

Our scheme requires each report to include extra ¢t + 1
node IDs, ¢t + 1 hash values and their corresponding indices,
and a cumulative MAC, so that it involves extra energy con-
sumption for communication. However, as Section 4.5.2
illustrates, our scheme is able to filter most of false reports

within a few hops, significantly reducing the energy wasted
by false reports.

We use a model similar to that in [13] to quantify the en-
ergy consumption. Let L,., L,,, Ly, Ls and L¢ g, denote the
lengths, respectively, of a regular report without our secu-
rity mechanism, the node id, the hash value index, the hash
value, and of the compressed MAC. The length of a report
packet in our scheme is L, = L, + Loy + (Lp + L +
Ly) - (t + 1), and is normalized to original report length as
IL“— = 14Lgu 4 Latbidle (441). Letthe number of hops
a report travels be H, and the normalized legitimate traffic
and fabricated traffic be 1 and 3. Let the energy consumed
for delivering all reports without our security mechanism be
E,., and the energy consumed with our security mechanism
in place be E,. Now,

E’r‘ = H(l + 18)7
and
B Loy Lp+ L+ Ly
Es—[1+ I + I (t+1)
_ _ _ H
x H [1+ﬂ- 1-(-hH){-h) ] .
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Figure 6. Energy Consumption

Figure 6 compares the energy consumption for report
transmission with and without our security mechanism,
when the original packet size is L,, = 24 bytes, node id is
L,, = 10 bits, hash value index is L, = 10 bits, the length
of hash value is L, = 64 bits, the length of compressed
MAC is Loy = 64 bits, and H = 100 hops.

Although our scheme introduces extra fields in report
packets, Figure 6 shows that our scheme results in very con-
siderable energy savings.



6.2 Storage Requirements

Our schemes mainly require each sensor to store its one-
way hash chain and the commitments of hash values of
some other detecting sensors to verify the received reports.
As noted in Section 4.1, each sensor can store parts of its
hash chain, deriving the rest of it using the one-way hash
function F. Suppose each sensor stores n; hash values on
its chain.

In our basic scheme, each en-route node needs to store
Ng — t commitments to ensure that it is able to verify re-
ports from the specified cluster to the sink. If an en-route
node is on [ paths to the sink, it must store [ x (Ng — t)
commitments. For example, suppose the size of the clus-
tersis Ng = 7, ny = 100, 1 = 20, t = 4, and the length
of each commitment is L, = 64 bits, the total storage re-
quirement of this scheme is around 1.2K B. As we showed
in the beginning of Section 5, this scheme is not suitable
for high-density sensor networks, since the storage require-
ment is nearly proportional to the size of the clusters, which
is decided by sensor density.

In the enhanced scheme, as we showed in Section 5.3,
an en-route node with 100 preloaded commitments is able
to verify almost any report from the specified clusters to the
sink. Thus the total storage requirement is around 100 x
8B + 100 x 8B ~ 1.5KB. The MICA2 Mote [8] offers
4K B of SRAM. Therefore, the storage requirements of our
schemes are very reasonable.

7 Conclusion

In this paper, we present two fault-localized schemes
for false report attacks in wireless sensor networks. Our
schemes differ from existing schemes since they differen-
tiate between the roles of detecting nodes and en-routing
nodes, and enable en-route nodes only to verify received
reports based on commitments from detecting nodes, but
not to generate reports. Therefore, the impact of a node
compromise is limited to its locale. We generalize our ba-
sic scheme to a collaborative false report filtering scheme
using commitment predistribution, making it more suitable
for mobile sensor networks and adaptable for high-density
sensor networks. Our security and performance analysis
shows that our schemes are able to filter most of false re-
ports within a few hops, significantly reducing the energy
consumption due to the false reports.
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