
Distributed Top-Down Hierarchy Construction

David G. Thaler and Chinya V. Ravishankar
Electrical Engineering and Computer Science Department

The University of Michigan, Ann Arbor, Michigan 48109-2122
thalerd@eecs.umich.edu

ABSTRACT: Hierarchies provide scalability in large net-
works and are integral to many widely-used protocols and
applications. Previous approaches to constructing hierar-
chies have typically either assumed static hierarchy configu-
ration, or have used bottom-up construction methods. We
describe how to construct hierarchies in a top-down fash-
ion, and show that our method is much more efficient than
bottom-up methods. We also show that top-down hierarchy
construction is a better choice when administrative policy
constraints are imposed on hierarchy formation.

1 Introduction
Hierarchies are commonly used to achieve scalability in

network protocols. Current protocols using multi-level hi-
erarchies, such as DNS and X.500, typically require manual
hierarchy configuration, an approach with considerable ad-
ministrative overhead. We consider the problem of automat-
ing distributed hierarchy construction.

Generating a hierarchy is closely related to the problem
of identifying clusters in data, since siblings in a hierarchy
are related, and will be close to each other under an appro-
priate metric. Though algorithms exist for clustering nodes
according to topological placement (e.g., [l-4]), they are of-
ten inadequate for inter-domain hierarchy construction in the
Internet. Hierarchy construction in the Internet is compli-
cated by the existence of administrative policy constraints.
Centralized methods are not generally applicable in this do-
main, and to our knowledge, relatively little work has been
done on distributed clustering methods.

There are two basic approaches to clustering: ugglomeru-
tive (bottom-up) and divisive (top-down). In an agglomer-
ative approach, each node begins as its own cluster; sets of
clusters are then combined into larger clusters until the top-
level cluster contains all nodes. In a divisive approach, all
nodes begin in the same cluster, which is successively divided
into smaller clusters until 1-node clusters are reached.

We can apply the same concepts to hierarchy construction.
In a bottom-up scheme, all agents begin as single-node sub-
trees. Subtrees are then combined into larger subtrees, until
a single tree is formed. In a top-down scheme, all agents
begin with the same parent, which selects some children to
be subtree roots, and divides the rest among the subtrees.
This continues until only single-node subtrees remain.

When agents belong to different administrative domains,
constraints often exist on which agents a given agent may
accept as children. Thus, a network provider’s agents might

ravi@eecs.umich.edu

serve as parents for customers’ agents, but not for competi-
tors’ agents.

We focus here on the top-down approach. We show that
top-down construction requires fewer resources than bottom-
up methods, and how administrative policy constraints may
be implemented using a top-down method.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous work and proposes new alterna-
tives. Section 3 presents various issues relating to hierarchy
construction. Section 4 gives an analysis of top-down versus
bottom-up hierarchy construction. Section 5 describes our
top-down construction algorithm. Section G gives simulation
results, and Section 7 covers conclusions and future work.

2 Previous Work

tributed and centralized hierarchy construction.

2.1 DNS and X.500
Hierarchies in typical name services such as DNS [5] and

X.500 [GI are constructed by manually configuring each agent
with a list of potential parents, ordered by preference. An
agent then uses the most preferred and reachable parent.
Such manual configuration represents a significant adminis-
trative burden. It also allows only a limited form of policy,
and provides no guarantee that a hierarchy is constructed
unless all potential parents are configured.

2.2 Landmark hierarchies
Landmark routing [7-101 constructs a hierarchy out of all

nodes in a network. A node’s address is determined by its
line of descent from the root, and packets are forwarded hop-
by-hop towards the visible node closest to the’destination
address. The hierarchy is constructed bottom-up by having
each node broadcast advertisements t,o all other nodes within
a given radius. This radius depends on a node’s level in
the hierarchy, being larger at higher levels. Based on such
advertisements, peers elect parents such that the maximum
number of children per parent is bounded. As we will show in
Section 4, the use of broadcast (or multicast) advertisements
can result in significant overhead.

In [9], Tsuchiya describes a policy scheme for Landmark
routing which requires configuring each node on the bound-
ary of an administrative area. This allows broadcast scopes
to be constrained by boundaries at various levels, so that a
single subtree is built within a given boundary. While this
technique may be reasonable for hierarchies where every node

In this sectmion, we describe related work in both dis-

0-7803-4383-2/98/$10.00 0 1998 IEEE. 693

mailto:thalerd@eecs.umich.edu
mailto:ravi@eecs.umich.edu

is a participant, it is less applicable to constructing hierar-
chies of distributed agents, since it requires configuration of
nodes which are not part of the hierarchy. It is, however, ap-
plicable when the same policy constraints apply to multiple
protocols, so that similar hierarchies are desirable.
2.3 Area hierarchies

A node’s address in an area hierarchy [ll-131 also corre-
sponds to its position in the hierarchy. In an area hierarchy,
however, a node is only aware of its children, its siblings, and
the siblings of its direct ancestors; it is not necessarily aware
of other nodes which are topologically close. Hagouel [13]
and Shacham [12] both discuss general approaches to man-
aging area hierarchies, although neither give detailed proto-
cols or significant analysis. Their schemes both require that
a pre-designated “primary” node oversee the formation of
each cluster a t any level. The primary node must be chosen
either administratively or by running some suitable election
algorithm .

In Shacham’s scheme, non-primary nodes ask to join a
cluster by contacting its primary node, which may refuse the
request. In Hagouel’s scheme, the primary node seeks out
potential cluster members. The procedure is then repeated
for the next higher layer by selecting new primary nodes.
Area hierarchies are thus also constructed bottom-up.
2.4 Clustering algorithms

A number of clustering algorithms have been developed in
other domains, such as pattern recognition, where the prob-
lem is to identify clusters of points based on their coordi-
nates. Such clustering algorithms may be either agglomera-
tive, working bottom-up from individual points by merging
clusters, or divisive, working top-down from the entire space
by successively dividing clusters. These algorithms [4] gen-
erally require one or more of the following:

Construct a minimal spanning tree and then partition it
in some way [l]. In networks, minimal cost trees spanning
some subset of nodes are known as Steiner trees, whose
construction is known to be NP-complete [14]. Hence,
these techniques are not suitable for use in large dynamic
hierarchies of distributed agents.
Use a region of influence for each node, usually defined by
distance (e.g., [2]). In a distributed version, this method
would require broadcast advertisements within this re-
gion, such m those used by the Landmark scheme as de-
scribed above.
Find the &nearest neighbors for each node (e.g., [3]).
This approach does not lend itself well to a distributed
algorithm for arbitrary topologies, for two reasons. First,
there is no simple method of determining one’s &nearest
neighbors without broadcast advertisements, and second,
with broadcast advertisements, using regions of influence
is more natural than finding the k-nearest neighbors.

Issues in Hierarchy Construction
We will use the word hierarchy synonymously with the

word tree, so that a single root exists for t,he hierarchy. The
root has no parent, and every other agent has a single parent

and a unique path to the root. Constructing a hierarchy is
thus equivalent to determining the parent for each agent.

A hiemrchy is different from a spanning tree: it has a sin-
gle root and contains only particzpating nodes (or “agents”),
which may not be adjacent. Hierarchy construction needs
no special support in intermediate routers. In this section,
we discuss several issues which directly affect the hierarchy
construction process.

3.1
An unbounded number of children per agent typically

means unbounded processing overhead, both for hierarchy
maintenance and use (e.g., nameserver lookups).

Bounding the number of children per agent also involves
tradeoffs. A higher bound can increase overhead at the par-
ent, but a lower bound deepens the hierarchy, potentially
slowing its use. For example, a nameserver lookup may have
to be forwarded through more levels in the tree. Specifically,
an m-ary tree of N nodes has between log, N and N levels.
The number of levels in an N-node tree is inversely propor-
tional to logm in the best case, and remains constant in the
worst case. Thus, increasing via can, at best, only provide a
very slow (proportional to I/ log m) decrease in levels.

3.2 Root/Neighbor discovery method
In a top-down scheme, all agents must first locate the root.

In bottom-up schemes, agents must first discover their neigh-
bors so that merge operations may proceed. In either case,
four choices exist for the discovery method:

Static configuration Nodes may be sta.tically configured
with a prioritized list of possible root agents in a top-
down scheme, or with a list of neighbors for each level
in a bottom-up scheme. Alt,hough sta.tic configurat<ion is
administratively burdensome, it is currently used by DNS
and X.500.

Scoped broadcast (“Push”) For root discovery, the
scope is simply the entire network, since all agents need
to discover the same root. For neighbor discovery, the
scope can be set based on hierarchy level, as i n the Land-
mark [7] scheme. Thus, the higher up in the hierarchy an
agent is, the farther away its neighbors may be. For ex-
ample, if level 0 indicates a leaf and the scope is specified
in network hops, the scope might be given by 2 (l e U e ’ + l) .

Or, if well-defined borders already exist, the scope might
be defined by the area enclosed within level-i borders.

Pull All agents poll some location, which maintains com-
mon state. This requires knowledge of a location to poll.
Such knowledge must be discovered using one of these four
methods, resulting in a recursive problem known as the
“Bootstrap Problem’’ [15]. Thus, while this scheme can
be useful for decreasing the amount of information which
is pushed or configured, it. is not, a complet,e solution with-
out one of the other three options.

Scoped pull A request is broadcast within a given scope,
and one or more agents reply. This avoids the bootstrap
problem, and trades the overhead of periodic pushes for
the overhead of on-demand pushes (pushing a request).

Bound on the number of children

694

I Scheme Mean CPU cost Mean link cost CPU cost of these is 0(1) to send the agent’s own message,
and O(ICl) to receive and reply to messages from the set C
of children. The total bandwidth required is thus propor-
tional to the number of agents times the mean distance each
message travels, and the average link cost is given by:

Static 0 0
Bottom-up O(visib1eagents) O(p * R * N / E)
Top-down, O(chi1dren) O(parentdist * N / E)

Top-down, O(chi1dren) O(parentdist * N / E)
static root

dynamic rt. O(mean distance to parent * N / E)

Table 1: Steady-state Overhead

3.3 Parent election scheme
In a bottom-up scheme, a distributed election algorithm

is used by siblings to determine their parent. In a top-down
scheme, a parent uses a centralized election mechanism to
designate subordinates which are to be parents of subtrees.

The choice of agent t o be the parent can be based upon
any criteria, including the following ones, which are typical:
0 The winner is determined without respect to any proper-

ties of the agent. For example, the winner may be picked
at random, or be the first one seen by the root in a top-
down scheme [ZO].

0 The agent with the highest (or lowest) value of some at-
tribute (e.g., address, or priority) wins. This is referred
to as the “Bully” method [16].

0 The agent which is the most “centralized” with respect to
the others wins, so overhead is minimized. A comparison
of such election algorithms can be found in [17].

4 Analysis of Distribution Mechanisms
We now turn to an analysis of the costs of various classes of

algorithms. To create and maintain a distributed hierarchy,
agents must keep some amount of state, and exchange some
amount of control data via network messages. We are there-
fore interested in the memory requirements and processing
costs at individual agents, as well as the network bandwidth
requirements. For simplicity, we will assume that in all cases,
the steady-state maintenance cost of static configuration is
zero. We will estimate the bandwidth requirements of hier-
archy construction protocol messages by counting each link
traversed by a message as one bandwidth unit.

Consider a bottom-up scheme employing scoped multicast,
and let v be the average number of agents visible from any
agent. The CPU cost of the algorithm is 0(1) to send a
message, and O(v) to receive (and possibly forward) mes-
sages from each other visible agent. Since multicast messages
follow a distribution tree rooted at the sender, each multi-
cast message traverses one link per node within the sender’s
scope. Let R be the average number of nodes within the
scope of an agent. (Note that R >_ 21, since 21 also represents
the average number of agents within the sender’s scope.) If
there are A agents in a network of N nodes and E edges,
then the total bandwidth used is O(RA), and the average
link bandwidth is O (R A / E) = O(pRN/E), where p = A/N
represents the agent density.

For top-down schemes with a statically-configured root us-
ing maintenance messages unicast to the parent, the only
costs are those associated with the unicast messages, and
the unicast messages sent by the parent in response. The

Top-down schemes which multicast root advertisements
incur additional overhead. The CPU cost added is 0(1)
to receive and forward (or originate) the root’s advertise-
ment, and the link cost is 0(1) as well. Table 1 summarizes
the costs discussed. From this analysis, we observe that the
steady-state overhead of allowing a dynamic root is negligi-
ble. Such a scheme could be used whenever broadcast ca-
pability exists. Since all children are visible to a parent in
any scheme, the top-down approach always has lower CPU
overhead than the bottom-up approach.

For the link cost, we observe that with a scoped multicast
scheme, where the scope must include the parent, the ad-
vertisement will be visible to at least all the nodes between
the originator and the parent (pareddis t nodes). Thus, the
top-down scheme usually has less overhead than the bottom-
up scheme; the only time the converse could be true is if the
average parent distance in the top-down scheme were signif-
icantly higher than in the bottom-up scheme.

Taking our two nietrics together, a top-down scheme will
typically consume less resources than a bottom-up scheme.

5 Top-Down (TDH) Construction
Given a collection of agents, we now present a top-down

algorithm for hierarchy construction, which we call TDH. We
begin with a general overview of TDH.

All agents use a simple election to elect a single root, which
is then known to all agents. Each agent k wishing to partici-
pate in the hierarchy applies to the root, which either accepts
k as its own child, or redirects it to one of its children which
the root knows is willing to accept k as child. Agent k then
contacts this child, which again either accepts k as a child, or
redirects it to one of its own children. This process continues
until some agent accepts the applicant as child. This process
always terminates, since an applicant is never redirected to
a child unless the parent knows that the child is willing to
accept the applicant. We initially assume that the root agent
has enough resources available to handle all such first-time
queries. In Section 5.5 we will explore optimizations which
will relax this assumption.
5.1 Integrating policy constraints

In practice, hierarchies must often be configured to con-
form to policy constraints. For example, some agents may
not be willing or allowed to accept certain other agents as
children. Typically, policies tend to group agents into ad-
dress ranges, and tend to accept or reject such ranges, since
address ranges tend to define administrative domains. We
handle policy issues by representing acceptable address range
sets as bit-string prefixes. We use the term policy p r e j x to
denote both an address range as well as the bit string repre-
senting that range.

695

We begin with the following definitions. Let a; denote the
address of an agent i. Let Parent(i) denote the agent that
agent i believes to be its parent, and let Children(i) denote
the set of agents that agent i believes to be its children. A
policy prefix Pi, is the set of addresses of agents that agent i
may accept as children. That is, c E Children(i) + a , E P;.
In bit-string form, if i is a parent and c is its child, P; is a
prefix of the bit string a,.

Let every agent i be configured with a m a x i m a l policy
prefix Pyaxl that represents policy, and have an active policy
prefix Pi Pya= determined dynamically in the process of
hierarchy construction according to the rules below. If agent
c is a child of i, (Pi/2), denotes the half of i’s prefix set
that includes agent c’s address, and is defined as follows.
We know that if Pi is a string of k bits, p l p z . + . p k , then a ,
must have the form p l p z . . . p k c k + 1 . . . cn . Now, (Pi/2), is
obtained by extending Pi with C k + l . Clearly, (Pj/2)c covers
half the addresses covered by Pi, and includes a,.

A child’s maximal policy prefix is a subset of the maximal
policy prefix of its parent, and a child’s active prefix is a
proper subset of its parent’s active prefix. In bit-string rep-
resentation, a child’s active prefix string extends the parent’s
active prefix string.

The algorithm we describe in this section conforins to the
following invariants:
11.

12.

13.

14.

A parent may not accept any agent as child whose max-
imal prefix is not covered by its own maximal prefix.
More formally, c E Children(p) + PTax
A child’s active prefix is the intersection of its maxi-
mal prefix, and the half of its parent’s active prefix
which covers the child’s own address. That is: c E

The root’s active prefix is identical to its maximal prefix

Any agent which does not know its parent initially as-
sumes that it is itself the root.

PFax

Children(p) + P, = Pyas n (PP/2),

(Pro02 = m).
pmax

Finally by transitivity of achjld E Pparentl we have the
derived invariant: a; E Pi + a; E P R ~ ~ ~ (;) . Thus, in st8eady
state, the address of an agent is always within the active
prefix of the agent it believes to be the root. This also implies
that for a single hierarchy to exist, some agent’s maximal
prefix must cover the addresses of all other agents which are
reachable. That is, 37- : Vi(ai E Pya”). We call such an
agent a “legal root”.

We now describe a top-down hierarchy construction algo-
rithm with dynamic root discovery. This algorithm consists
of two parts: determining the root, and determining one’s
parent. We will describe these two parts in turn. Figure 1
illustrates the state transition diagram used by each agent
in the discussions below. Pseudocode is available in [18].
5.2 Determining the Root

If multicast or broadcast mechanisms are not available,
then each agent must be configured with the address of one
or more other agents to use initia.lly as root. This stra.t-
egy is not an undue administrative burden, since all agents
can be configured identically, and such information could be

Root(i) = i
Parent(i) = NULL

Root(i) != i
Parent(i) = Root(i) a RcvAm-Root -a “Root“ “Child of

Root timeout Root“

m

”Unknown

Parent timeout

Rcv Am-Root

-
Root timeout

“Child of

Root(i) = NULL
Parent(i) 41 NULL, i 1

Root(i) != i
Parent(i) +{ NULL, i, Root(i) }

Figure 1: State Transition Diagram

distributed with the applicat>ion, or looked up in a global
directory (as when resolving a well-known hostname).

When multicast is available, root election and discovery
can be accomplished through an election procedure similar
to the “Bootstrap Router” election used by PIM-SMv2 [15].
The root is chosen by a simple Bnlly election: t,he agent with
the shortest maximal policy prefix wins, with ties broken by
highest preconfigured “priority” value, and then by lowest
address. This operates as follows.

An agent starts up in state A (see Figure 1) as the root of
its own subtree, and starts a periodic Advertisement-Timer
with a random delay. Agents in state A broadcast AmRoot
messages to all other agents a t each timer interval. Receiv-
ing this message causes all agents except the most preferred
agent (according to the Bully election rules) to transition to
state B, and start their Root-Timer.

An agent in any ot,her state uses itrs Adverhement-Timer
to send periodic Am-Child messages directly to its parent,
thus refreshing the parent’s entry for the child. Any child
entries not refreshed are eventually deleted by the parent.

The Root-Timer is restarted whenever an AmRoot mes-
sage is received from the Root agent. If the Root becomes
unreachable, this timer will expire a t each agent, and agents
in states B and D will move to stat,es A and C respectively.
Agents moving to state A do so from state B, where they
were the root’s imniedia.te children. These assume the role
of root, and begin t,o broadca,st. Am-Root messages. The ad-
vertisements from the most preferred agent in state A again
override all other AmBoot messa.ges. A new root will thus
be elected, allowing t,he hierarchy t.o adapt, t,o t,lie failure of
the root agent.
5.3 Determining One’s Parent

Once the root is known a.nd an agent n enters state B, it
may proceed as follows to determine its parent, and thus its
place in the hierarchy. The algorithm is itera.t.ive, and the
agent n successively refines its notion of who its parent is.

The agent, n. init,ially takes t,he root* to be it,s parent,, and
starts a t,imer (Parent-Timer). At each iteration, 71 sends an
Am-Child message containing its own address and maximal
prefix to its current pa.rent.. The pot,ential pa.rent must then
decide whet.her to a,ccept, a.gent, 71 as a child, or whether n.
properly belongs in a subtree under one of its current chil-

696

Figure 2: Redirection

dren. This determination is made by comparing n's address
and maximal prefix with its own, and with those of its chil-
dren. An agent p is a legal parent of an agent n if p's maximal
prefix covers n's maximal prefix, and p's active prefix covers
n's address. If any child c of p is a legal parent for n , the
agent p redirects n to its child c by sending a Redirect mes-
sage to n. Otherwise, the parent p will accept the agent n as
its own child by responding with an AmSarent message. As
we will show below in Section 5.4, at most one child c will
be a legal parent of the new agent n.

If the new agent n is accepted as a child, its parent p must
also check to see whether n is a legal parent for any of p's
current children. If so, the parent sends Redirect messages
to such children, redirecting them down to n (Figure 2).

A child receiving a Redirect sets its parent to be the
agent indicated in the message, restarts its Parent-Timer,
and repeats the procedure above for finding its parent.

A child receiving an AmSarent message in response to its
periodic Am-Child message will restart its Parent-Timer. If
not explicitly restarted, the Parent-Timer will eventually ex-
pire, causing an agent to move from state B, C, or D, to state
A, A, or B, respectively, as shown in Figure 1. Agents mov-
ing to state A in this way repeat the root election procedure
described in Section 5.2 by broadcasting AmAoot messages
unless suppressed by a more preferred agent's AmRoot mes-
sage. Agents moving to state B repeat the parent discovery
procedure described above.

A child receiving an AmSarent message will also set its
active prefix according to invariant I2 of Section 5.1. If this
causes an agent with children to lengthen its active prefix,
invariant I1 may be invalidated. When this occurs, the agent
sends a Redirect message to all children for which I1 is
invalid, redirecting them up to its own parent (Figure 2),
and removing them from its list of children.
5.4 Discussion

The parent selection scheme in Section 5.3 generates a hi-
erarchy which is sensitive to the order of addition. This diffi-
culty could be addressed by having a parent use some criteria
(Section 3.3) for performing redirection, when a new agent
and an existing child can both be parents for each other. This
approach causes additional reorganization, however, which is
often undesirable.

In the rest of this section, we will show that children's
active policy prefixes do not overlap, and that the algorithm
above generates a stable hierarchy in steady-state. We will
do this in the form of three theorems, below.
Theorem 1 (Children don't overlap): If agents i and j
are sibling agents, then their active policy prefixes Pi and Pj
are disjoint.

Proof: Invariant I1 of Section 5 tells us that a parent p
initially accepts a child c if Pya, 2 Pmas . Also, a, E P,.
Since i is not a child of j, either Pya' e Pj""" or ai $4 Pj.
Similarly, since j is not a child of i, either Pya" Pya" or
aj @ Pi. (Otherwise, either i or j would have been redirected
to the other by their common parent.)

We must therefore consider four cases. We begin by noting
the following property of prefixes: if A and B are prefixes,
then A n B # 0 3 A c B or B C A.

In the first case, Pya" Pya,, and Pya, Pya,. From
the property of prefix sets noted above, we can conclude that
P y n P p a * = 0. Finally, since Pi E Pima, and Pj C Pya",
the theorem immediately follows.

We show the remaining cases by contradiction.
In the second case, ai Pj and aj @ P;. If Pi n Pj # 0,

then from the prefix set propertry, either ai E Pi c Pj or
aj E Pj C Pi, and we have a contradiction.

In the third case (and the fourth, by symmetry), we have
Pya, Pi. If P,nPj # 0, then either Pi C
Pj or Pj C Pi. If Pj c Pi, then aj E Pi, a contradiction.
On the other hand, if Pi c Pj, then 3x E Pj such that
c $4 Pi. We next observe that (Pp/2)i = (P,/2)j (if not,
Pi n Pj = 0). We also know that Pya, c Pya' since
Pi n Pj # 0 and Pj sf Pi. Thus, we have x E Pj = Pya' rl
(Pp/2)j & (Pp/2)j1 and c E Pya' c Pya", so 2 E PT"" (I
(Pp/2)i = Pi, a contradiction. 0

The above theorem has certain implications on the number
of children per parent. Specifically, if children have maximal
policy prefixes which are at least as inclusive as the parent's
active policy prefix, then the size of the children's active pre-
fix set will be half the parent's active prefix set. Theorem 1
says that the number of children per parent will then be at
most two in this case. A lower number of children has the
advantage of keeping the processing requirement<s per parent
low, at the expense of more levels in the tree.

We define a stable agent as one whose parent will not
change in the absence of failures, message loss, or configura-
tion changes. We define a st.able hierarchy as one in which
all agents are stable. The following t,heorems show that our
method generates stable hierarchies.
Theorem 2 (Stability): In steady-state, a stable hierar-
chy exists if a legal root is in state A , a l l other agents
are in states B and D, and Parent(i) # N U L L 3 i E
Children(Pa,rent(i)) .

Proof We first note that since active prefixes are strictly
nested (Invariant I2), loops cannot exist in steady state.
Also, an agent may only change its parent in response to
a Parent-Timer or Root-Timer expiration, or in response to
a Redirect or AmRoot message.

If a legal root is in state A , it has no parent. Thus, it
will never leave state A (i.e., never set its parent) since it
will never receive an Amloot from agents in other states.
In the absence of message loss, other agents will then never
experience a Root-Timer expiration, since they will receive
AmRoots from this legal root. Similarly, Amlarent re-
sponses to periodic Am-Child messages will maintain par-
ent state in children, so that Parent-Timer expirations do

Pya, and aj

697

not occur. Finally, Redirects are only sent when a parent
hears from a new child (Le., when i Children(PQrent(i))),
or when a parent’s active prefix changes. The first case
is covered by the condition (Parent(i) # NULL 3 i E
Children(Parent(i))) from the theorem statement. For the
latter, we observe that the definition of the active prefix (12)
says that in steady state, a child’s prefix will not change un-
less its parent’s prefix changes. Since there are no loops, and
the root’s active prefix never changes (I3), then by induction,
every agent’s active prefix remains constant. 0

Theorem 3 (Convergence): The TDH algorithm con-
verges to a stable hierarchy if a legal root exists.

Due to space limitations, we have omitted the details of the
proof, which can be found in [18]. Briefly, it can be shown by
contradiction that in steady state, the most preferred agent
will be in state A, all others will be in states B and D, and
Parent(i) # NULL 3 i E Children(Parent(i)). This is
done by showing that every other case is not stable, but
converges to the above conditions. Thus, by Theorem 2, a
stable hierarchy will emerge. If a legal root does not exist,
TDH will instead result in multiple independent hierarchies,
each rooted at a legal root for all agents in its hierarchy.
5.5 Optimizations

If a large number of agents start up simultaneously, the
root could be overwhelmed with messages. In this section,
we investigate optimizations which relax the assumption that
the root agent has enough resources to respond to all agents’
initial requests for a parent.

We know from Section 5.3 that an agent sends a message
to the root in three cases: upon starting up, when its parent
state expires (;.e., its parent dies or becomes unreachable),
and periodically, if the root has accepted it as a child. The
last case poses no problems, since the root, being a parent,
must see the same overhead as any other parent.

The message load at the root from the other two situations
may be reduced by allowing agents to contact agents other
than the root. If an orphan sets its parent to some agent
other than the root, it moves to state D, rather than B.

The algorithm runs correctly even if a non-legal parent is
initially chosen as parent by some agent, since the chosen
parent will respond with a Redirect message, redirecting
the potential child up the hierarchy (Figure 2). This process
will continue until a legal parent is found, after which any
downward redirections occur as described in Section 5.3.

It only remains to efficiently inform all agents of any other
agents already in the hierarchy to contact, so that the respon-
sibility of replying to orphan agents is distributed. Possible
methods (making different tradeoffs between the amount of
global resources required and the degree to which the load
on the root is reduced) correspond to the root/neighbor dis-
covery schemes discussed in Section 3.2, namely:
Static Configuration: This can be administratively bur-

densome to maintain. It also does not ensure that any of
the addresses will be in the hierarchy.

Scoped Broadcast (“Push”): When multicast or broad-
cast facilities are available, some agents which already

have parents may also broadcast announcements. Or-
phans can then select any legal parent as the agent to
query. The choice of whether an agent should send an-
nouncements may be made based on any of several crite-
ria. For example, it could be based on static configuration,
or active prefix length (limiting broadcasters to those at
the highest levels). Alternatively, an RTP-like scheme [19]
could be used in which all agents broadcast, the broad-
cast periods being scaled back with the number of agents
so that the overall frequency (and hence the bandwidth
usage) remains the same.

Pull: As described in Section 3, this option is not complete,
requiring one of the other three schemes in addition.

Scoped Pull: When multicast or broadcast facilities are
available, an agent can initially employ an “expanding
ring multicast” scheme to locate a nearby agent already
in the hierarchy. This is done by successively broadcast-
ing queries with increasing time-to-live (;.e., hop-count)
until a potential parent responds.

6 Simulation
In this section, we will present the results of simulating the

performance of various hierarchy construction algorithms,
according to the criteria described below.

We simulated two schemes. The first scheme was the top-
down scheme described in Section 5, and is labelled TD.
The second was a simple Landmark-like bottom-up scheme
employing scoped multicast with a radius of two for leaves,
doubling at each level up. To select between several equal
parents, we could use any deterministic algorithm which op-
erates as a purely local decision with negligible overhead.
Our simulations chose the closest parent, using HRW [20] to
break ties. HRW allows children to deterministically choose
parents so that whenever several children may choose from
the same set of parents, each parent gets roughly the same
number of such children. The number of children per parent
was unbounded. In both schemes, the periodic message in-
terval was GO seconds and all h e r expirations were set to
130 seconds.

We use the random graph model of Waxman [all , which
randomly places nodes over a Cartesian coordinate system,
and creates edges as described in [all.
6.1 Parameters of interest

We are first interested in the steady-state distribution of
CPU overhead (a5 summarized in Table 1). We are also in-
terested in the distribution of the number of children, since
having too many children can adversely affect an agent’s abil-
ity to participate in the application using the hierarchy.

We are also interested in the total amount of bandwidth
consumed in steady-state. We measure this i n terms of “link
cost”, or the average number of messages per link per peri-
odic update interval. Finally, we are interested in the con-
vergence time for adapting to failures of intermediate agents
in the hierarchy.
6.2 Basic simulations

In our first set of simulat,ions, all nodes were agent,s, no
failures occurred, and no policy limitations existed (i.e., ev-

Link Cost as a Function of # d Aaents
I

12 .

10 ~

BU --m+
TD *

Link Cost as a Function of Node Degree

0 ‘ I
0 100 200

of Agents

0 ‘ I
3 4 5 6

Node Degree

(a) Effects of Number of Agents (b) Effects of Node Degree

Figure 3: Bandwidth Usage

Max State Kept as a Function of # d Agents Max State as a Function of Node Degree
80

- 70

560

5 5 0

X 840
1

4 30
c

* 20 I = 10

0
0 100 200 3 4 5 6

01 Agents Node Degree

Figure 4: Agent Resource Requirements

ery agent was a legal parent of every other agent). Node
addresses were random 32-bit addresses in a flat domain.
We ran ten simulations of each algorithm of interest, for
each combination of network size and node degree. These
combinations were derived from seven different node degrees
between 3 and 6, and five different network sizes, of between
10 and 200 nodes.

Since this yields a relatively large number of combinations,
plotting all our results tended to create very cluttered graphs.
We observed, however, that each algorithm tended to give
rise to a cluster of curves, each curve corresponding to a
choice of the above parameters. We therefore used errorbars
to capture the range of y-axis values across the cluster of
curves for a given x-axis value. The average of these values
was also plotted as a curve within this range.

Figure 3 shows how the number of agent,s and average
node degree affect the bandwidth requirements in steady-
state. Both algorithms were run on the same set of graphs.
In Figure 3(a), each point represents an average over 70 tri-
als with varying node degrees. As usual, errorbars indicate
the maximum and minimum values observed over this range.
For ease of comparison, the results of the two algorithms are
slightly offset along the X-axis. We see that the link cost
of the bottom-up scheme increases significantly as the num-
ber of agents increases, since the number of visible agents

increases as more levels are added. The link cost Gf the top-
down scheme remains relatively low , increasing only slightly
with the average parent distance.

Since the average node degree = 2 E / N , we would natu-
rally expect from Table 1 that the link costs would decrease
somewhat as the node degree increases. This is confirmed by
Figure 3(b), where each point represents an average over 50
trials with varying network sizes. For the bottom-up scheme,
however, the expected decrease is mostly counterbalanced by
an increase in the number of nodes within an agent’s scope.
In general, the more sparsely-connected the network is, the
higher the bandwidth required to construct a hierarchy in
either scheme.

Figure 4 shows the steady-stat,e distribution of agent re-
source requirements. For each algorithm, the following quan-
tities are shown:
0 maximum number of children at any agent, averaged over

all trials (note that the average number of children per
agent is always (N - l) /N) . These are the “ C lines.

0 average number of visible agents (the “V” lines).
0 maximum number of agents visible at any agent (averaged

over all trials). This quantity is indicated by the tops of
the errorbars connected to the “V” lines.
Clearly, the top-down scheme requires the least state (and

hence the least CPU processing overhead in steady state).
The number of children is bounded a t two, since in Invariant

699

Link Cost as a Function of # d Agents
25

BU -
TD .--&

5 15 -
8
z
3 10 -

5 -

0
0 100

#of Agents
200

Figure 5: Bandwidth Usage with Policy Constraints

Max State Kept as a Function of # d Agents

~~.~
~ .. - -. - . . - lcEzl€___.. _.......... ,

0 100 200
of Agents

Figure 6: Agent Resource Requirements with Policy Constraints

I2 the parent’s active prefix controls the children’s prefixes.
The bottom-up scheme requires more resources as both the
number of agents and the average node degree increase.

If we had bounded the number of children in the bottom-
up scheme, this would have been reflected by a lower “C”
line. However, this would have increased the number of lev-
els, and hence the radii of many agents. As a result, the link
cost, build time, and number of visible agents would have
risen accordingly. Our simulation thus shows the worst case
for “C”, hut the best case for all other metrics in Figures 3-
4. Bounding the number of children in a bot,tom-up scheme
would thns increase the advantage of using TDH instead.
6.3 Adding Policy

In the next set of simulations, we added administrat,ive
policy constraints by assigning each agent a maximal policy
prefix. We randomly assigned each agent a preference value
between 0 and 24, and then associated preference values with
mask lengths between 0 and 24 bits long, giving the lowest
preference value a 0-bit mask.

The top-down scheme then used the resulting maximal
prefix as described in Section 5. The bottom-up scheme used
this prefix by not accepting as children any visible agents
whose addresses fell outside an agent’s maximal prefix.

Figure 5 shows the results in terms of link cost. We see
that the cost of bottom-up schemes has increased by up to
100% compared to Figure 3, while the cost of the top-down
scheme is relatively unaffected.

Figure 6 shows the steady-state distribution of agent re-

Agents Affeded as a Function d # of Agents
80

70
BU -w-
TD * T

hl v 50
940
B

30

20

10

0

Q:

0 100
of Agents

200

Figure 7: Agents Affected by a Failure

Convergence time as a Function d # of Agents
600

H 500

; 400
E
8 300
.- -
c

g 200

s 100
C

0 I
0 100 200

of Agents

Figure 8: Reconstruction Time

source requirements. Comparing this to Figure 4, we see that
the CPU and memory requirements have also increased by
up to 100% as a result of adding policy constraints. We also
note that the maximum number of children in the top-down
scheme has increased. This is because the active prefixes
are often controlled by the agents’ maximal prefixes rather
than their parents’ active prefixes. This allows more than
two children to exist without. overlapping prefixes.
6.4 Adapting to Failures

The results i n this section were derived by introducing
failures into the simula.tions in Section 6.3. Starting from
a stable hierarchy with policy constraints, a non-leaf agent
was selected at random to fail, such that it was still possible
to find a single connect,ed hierarchy. We t,hen measured the
elapsed time and number of messages required to converge
to a new stable hierarchy.

Figure 7 shows the distribution of the number of agents
whose parent changed as a result of the failure of one agent.
In the bottom-up scheme, the failure sometimes caused ripple
effects across much of the network. The top-down scheme on
the other hand, was much better at localizing changes.

Figure 8 shows the convergence time, start.ing from the
time at which the int,ermediat,e agent, died. We observe that
the convergence time of both schemes is relatively unaffected
as the number of agents vary, and that again the top-down
scheme is better.

Figure 9 shows the distribut.ion of t,he number of messages
received by each node during this convergence. The curves

700

400
Convergence Overhead as a

7
Fundion of # of Agents

0 100 200
of Agents

Figure 9: Convergence Overhead

indicate the average number, and the tops of the errorbars
indicate the maximum number of messages received by any
node (averaged over all trials). Intuitively, we would expect
the number of messages to be related to the number of chil-
dren affected by the failure of a parent. Comparing Figures 9
and 6 shows the results to indeed be similar. Secondly, com-
paring figures 8 and 9 gives an indication of the average and
maximum CPU overhead imposed by a node failure. From
this comparison, we see that the rate at which messages are
received is much lower in the top-down scheme.

7 Conclusions
Many applications, such as nameservice [5,6] and network

management [18], use hierarchies of distributed agents. In
this paper, we presented a solution to the important problem
of constructing hierarchies in distributed fashion. We pre-
sented a top-down approach to this problem, and described
a specific top-down algorithm (TDH) with a number of de-
sirable properties. We compared the top-down and bottom-
up approaches through both analysis and simulation, and
showed that the top-down approach requires less resources
than the bottom-up approach. Our top-down approach also
results in less overhead caused by the addition of adminis-
trative policy constraints.

The TDH algorithm keeps the number of children per par-
ent low, which in turn keeps the overhead at each agent low.
The state and CPU overhead of hierarchy maintenance in the
top-down scheme increases linearly with the number of chil-
dren, while the overhead of additional levels imposed on the
application using the hierarchy decreases much more slowly.
Thus, fewer children are better.

One possible disadvantage of the top-down approach is
that it can impose a large resource requirement on the root
when a large number of agents either start up or lose their
parent simultaneously. We described several possible ways
to counter this effect.

In conclusion, we believe that our TDH algorithm is very
usable in applications that must run over large distributed
environments like the Internet.

References
[l] C. Zahn. Graph-theoretical methods for detecting and de-

scribing gestalt clusters. IEEE Trans. Computers, 20:68-86,
1971.

[2] W. Koontz, P. Narendra, and K. Fukunaga. A graph-
theoretic approach to nonparametric cluster analysis. IEEE
Trans. Compzrters, 25(9):936-944, Sep. 1976.

[3] Riichiro Mizoguchi and Masamichi Shimura. A nonparamet-
ric algorithm for detecting clusters using hierarchical struc-
ture. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 2(4):292-300, July 1980.

[4] R. Urquhart. Graph theoretical clustering based on limited
neighbourhood sets. Pattern Recognition, 15(3), 1982.

[5] Paul Mockapetris. Domain names - concepts and facilities,

[6] Gerald W. Neufeld. Descriptive names in X.500. In Proc.
ACM SIGCOMM’89, pages 64-70, 1989.

[7] Paul F. Tsuchiya. The landmark hierarchy: A new hierarchy
for routing in very large networks. In Proceedings of the A CM
SIGCOMM, 1988.

[8] Paul F. Tsuchiya. The landmark hierarchy: Description and
analysis. Technical Report MTR-87W00152, MITRE Cor-
poration, June 1987.

[9] Paul F. Tsnchiya. Landmark routing: Architect,ure, al-
gorithms, and issues. Technical Report MTR-87W00174,
MITRE Corporation, Sep. 1987.

[lo] Paul F. Tsuchiya and Ron Zahavi. Landmark routing algo-
rithms: Analysis and simulation results. Technical Report
MTR-89W00277, MITRE Corporation, Dec. 1989.

[Ill L. Kleinrock and F. Karnonn. Hierarchical routing for large
networks: Performance evaluation and optimization. Com-
puter Networks, 1:155-174, 1977.

[12] Nachum Shacham and Jil Westcott. Future directions in
packet radio architectnres and protocols. Proceedings of the
IEEE, 75(1):83-99, Jan. 1987.

[13] Jacob Hagouel. Issnes in ront,ing for large and dynamic net-
works, May 1983. Ph.D. Thesis, Columbia University.

[14] Michael R. Carey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, June 1988.

[15] Estrin, Handley, Helmy, Huang, and Thaler. A dynamic
bootstrap mechanism for rendezvous-based multicast rout-
ing, 1997. Submit,ted t,o IEEE/ACM Tra.ns. Net,working.

[16] H. Garcia-Molina. Elections in a distributed computing sys-
tem. I E E E Trans. Computers, C-31(1):48-59, Jan. 1982.

[17] David G. Thaler and Chinya V. Ravishankar. Distributed
center-location algorithms. IEEE J . Select. Areas in Com-
mun., 15(3):291-303, Apr. 1997.

[18] David G. Thaler. An architecture for inter-domain network
troubleshooting, 1998. Ph.D. Thesis, University of Michigan.

[19] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A transport protocol for real-t,ime applications, Jan.
1996. RFC-1889.

[ZO] David G. Thaler and C.V. Ravisliankar. Using name-based
mappings to increase hit rates. IEEE/A CM Trans. Network-
ing, 6(1) , Feb. 1998.

Routing of multipoint connections.

NOV. 1987. RFC-1034.

[21] Bernard M . Waxman.
IEEE J . Select. Areas in Commun., 6(9), Dec. 1988.

701

