
Accommodating RPC Heterogeneities In Large Heterogeneous 
Distributed Environments1 

Yen-Min Huang and Chinya V. Ravishankar 
Dept. of EECS, The University of Michigan, Ann Arbor, MI. 48109 

yenminQeecs.umich.edu raviQeecs.umich.edu 

IF'jFH-iCl 1 Introduction 

Many RPC semantics have been designed and im- 
plemented in recent years to meet various application- 
specific requirements. Examples are synchronous 
RPC, asynchronous RPC, fault tolerant RPC, broad- 
cast RPC, maybe RPC (no-return RPC), RPC with 
atomic transactions, and RPC with call-back mech- 
anism [I, 21. With emerging applications like multi- 
media conferencing and distributed real-time applica- 
tions, it is conceivable that even more RPC protocols 
will be designed and implemented. This diversity of 
RPC protocols makes us adopt a general view of RPC 
as a protocol above OS1 transport layer in this paper. 

The problem with having many different RPC pro- 
tocols is that user programs built on top of dif- 
ferent RPC protocols cannot be interconnected dir- 
ectly, greatly reducing the availability of software 
and resources in a large heterogeneous distributed 
environment. This problem has been addressed by 
HRPC/HCS [3] on a smaller scale, where the number 
of different RPC instances is small, RPC protocols are 
similar, and new RPC instances are rarely introduced. 
However, these characteristics do not always hold in 
a large heterogeneous environment. In such an envir- 
onment, an acceptable solution must handle a large 
number of RPC instances, diversified RPC protocols, 
and rapid RPC protocol evolution at low software de- 
velopment and maintenance costs. 

Our RPC agent synthesis scheme is a such solu- 
tion [4]. Our system also includes a mechanism for 
distributing and acquiring synthesis information , and 
it supports RPC protocol evolution with minimumdis- 
turbance to the environment. Our approach is best for 
cross RPC within the same class of RPC semantics, 
for example, cross RPC among at-most-once RPCs, 
or among at-least-one RPCs. Although cross RPC 
between dissimilar RPC classes is also allowed, it is 

'This work was partly supported by the Consortium for In- 
ternational Earth Sciences Information Networking. 

Figure 1: The RPC Agent Synthesis Scheme 

not fully explored in the current work because there 
may exist substantial mismatches between the client 
and the server code, and it may require significant 
modification to client/server code to resolve differ- 
ences. Since it is impossible for us to determine user- 
level semantics intended, it is the user's responsibility 
to make sure that the client and the server programs 
can be meanfully interconnected, and to provide the 
appropriate agent synthesis specifications to intercon- 
nect them. This paper is focused on the design and 
implementation of an agent synthesis scheme. 

Broadly speaking, our RPC agent synthesis scheme 
has two components (see Figure 1): a set of language 
constructs (Cicero) to describe RPC protocol con- 
structions, and a program (Nestor) to synthesize and 
activate RPC agents automatically. A novel feature of 
Cicero is the use of event paitems [5] to control syn- 
chrony, asynchrony and concurrency in protocol ex- 
ecution (Section 4.1). Nestor is a remote evaluation 
system [6, 7'J specialized for synthesizing RPC agents. 
The major differences between Nestor and other re- 
mote evaluation systems are that Nestor uses a differ- 
ent language (Cicero) for evaluation (agent synthesis), 
and this evaluation usually happens at the client site 
instead of the server site. 

2 Agent Synthesis Scheme Design 

2.1 Determining Agent Configurations 

There are two possible choices for agent configur- 
ation: the one-agent configuration and the two-agent 
configuration (Figure 2). The one-agent configuration 
consists of a gateway agent which interconnects two 

429 
0-8186-1060-3425/93 $03.00 0 1993 IEEE 

... _I ...... .... .. .. .. . - -.."_--"I ..,... __--- 

http://yenminQeecs.umich.edu
http://raviQeecs.umich.edu


client ?&acme SsrverMpchii 
I 

c I 

Figure 2: One-Agent and Two-Agent Configurations 

programs using different RPC protocols. The twa- 
agent configuration can be constructed by splitting 
the gateway agent into two agents connected by a link 
protocol. These two agents, the c€ient and the server 
agent, are placed on the client and the server machines 
respectively. These agents may be linked into client 
or server programs depending whenever the respect- 
ive program may be modified. 

The two-agent configuration is used for our syn- 
thesis scheme because it results in a much cleaner syn- 
thesis scheme than the one-agent configuration. It is 
cleaner because each agent only needs to know the the 
local and the link RPC protocols, and the runtime sup 
port for both the native and the link RPC protocols 
are locally available. However, the one-agent config- 
uration will not have all the runtime support available 
locally because the single gateway agent could be loc- 
ated on either the client or Server machine. In either 
case, it must be aware of the details of the RPC not 
available locally. This makes the agent construction 
and synthesis more difficult. Synthesizing a gateway 
agent on a third-party machine is not considered here, 
because of access control constraints. 

2.2 Handling RPC Hetemgeneitiea 

Two RPCa may differ in their calI semantics, fail- 
ure semantics, RPC topology, external data represent- 
ation, and so on. Dealing with these heterogeneities 
al1 together is not easy even using a synthesis scheme. 

To make our synthesis scheme manageable, RPC 
heterogeneities are handled differently depending 
upon their types. RPC heterogeneities are classified 
into those that are semantics-dependent, and those 
which are semantics-independent. For example, het- 
erogeneities in call semantics and failure semantics are 
semantics-dependent, while heterogeneities in RPC 
message format are semantics-independent because 
they are an artifact of implementation and have no 
effect on RPC semantics. Semantics-dependent het- 
erogeneities are handled by synthesizing the imple- 

mentation of the specified semantics directly, giv- 
ing programmers maximum flexibility in describing 
their RPC semantics implementation to achieve better 
cross-RPC performance. Semantics-independent het- 
erogeneities are handled by providing a default imple- 
mentation of each mechanism, which is encapsulated 
in the link protocol and has little effect on applic- 
ations. Thus, call semantics, failure semantics, and 
RPC topology, muet all be described in the protocol 
construction language and synthesized by the synthes- 
izer. 

3 Nestor: An Agent Synthesizer 

Neator is a runtime organization for RPC agent syn- 
thesis. Its synthesis support consists of a set of librar- 
ies and utility programs used by Nestor to synthesize 
RPC agents. The libraries provide the functions to 
implement the link protocol between two agents. The 
utility programs are used to generate and package code 
to form an agent. Specifically, the utility programs 
consist of compilers for Cicero and C, a stub gener- 
ator, and a software packaging utility (UNIX make). 

To synthesize an RPC agent, the synthesis support 
uses three specifications: the RPC protocol construc- 
tion, the RPC interface specification, and the RPC 
agent profile specification. The RPC protocol con- 
struction and the RPC interface together determine 
what agent will be synthesized. The agent profile spe  
cification determines how an agent will be synthesized 
and managed. For each protocol, two sets of specific- 
ations are needed: one for the client agent and one for 
the server agent. 

Figure 3 illustrates how utility programs use these 
specifications to synthesise an agent. The Cicero com- 
piler compiles the RPC protocol construction and out- 
puts a Gcode implementation of the specified RPC 
semantics. This C code will be compiled by the nat- 
ive C compiler and linked with the libraries imple- 
menting the link protocol. The stub generator com- 
piles the RPC interface specification and generates the 
stub routine which interfaces with the client or the 
server program. When an agent must contact its cli- 
ent/server program using native RPC, the native stub 
generator is used to generate the stub for constructing 
the agent. If a stub generator is not available, users 
are required to provide RPC stubs. Finally, the RPC 
stub, libraries, and the link-protocol implementation 
are linked together to form an agent. This entire syn- 
thesis process is specified in a file (makefile), whose 
location is obtained from an RPC agent profile spe- 
cification. 

430 



.aftwar. 

+ -Hi 

Stub f 

Figure 3: Specifications and Components of an Agent 

4 Cicero: Language Constructs for 
Protocol Const rudion 

Cicero is a set of language constructs designed to 
add multi-threaded control capability to an existing 
programming language to make protocol construction 
easier. It is used in our system to describe the imple- 
mentation of RPC protocol semantics (Seetion 2.2). 

Although Cicero constructs may be applied to dif- 
ferent programming languages, we have chosen C as 
our target language because it has efficient compilers 
and is portable. Therefore, our prototype implement- 
ation of Cicero includes a compiler for translating 
Cicero constructs into C code and a Cicero runtime 
library providing implementation of these constructs. 
The when construct is the most important in Cicero. 
It represents the execution control mechanism as well 
as the unit of parallelism in Cicero. 

The central notion the when construct is based 
on is event pattems, which provide a dataflow ex- 
ecution model. The dataflow model is c h m n  
because it represents maximal parallelism, and is 
used in today’s high-performance architecture/micro- 
processors. Also, it can be translated into Petri 
nets [SI to take advantage of existing protocol veri- 
fication methods/tools [9]. 

4.1 Event Patterns 

Each event is a unbounded sequence of its event in- 
stances. An event instance is an object representing 
an occurrence of an event. For example, if timeouts 
are modeled as events, then the third occurrence of 
timeout is represented by the third timeout event in- 
stance. While instances of an event may occur at sev- 
eral places in a program, all instances of an event are 
globally ordered and delivered in order. 

Because complex dependencies often exist among 
event instances, Cicero borrows a feature called event 

Figure 4: The Petri Net Definition for Event Patterns 

patterns from the language Post [5] to help program- 
mers express such dependencies. An event pattern 
specifies the precise relationships between event in- 
stances that trigger actions in a protocol, and it is used 
by programmers to control synchrony, asynchrony, 
and sequencing in protocol construction. We recog- 
nize three basic relationships between two event in- 
stances: synchrony, asynchrony, or sequentiality. In 
Cicero, these relationships are expressed by operat- 
ors called event combinators which may be used to 
combine simpler event patterns into more complex 
ones. The three event combinators are “A”, “,” , and 
“-” corresponding to synchrony, asynchrony, and se- 
quencing, respectively. Their semantics are formally 
defined as Petri nets (Figure 4) and are described as 
follows. 

1. when (el  A e2): actions end 
This program requires that the associated actions 
be triggered only when both e l  and e2 occur. 

2. when (e l  , e2): actions end 
This pattern requires that when either e l  or e2 
occurs the associated actions be triggered, and 
the action instances triggered by e l  and e2 are 
executed concurrently. 

3. when (e l  - e2): acfions end 
This pattern requires the actions triggered by e l  
and e2 to be executed in sequence. No actions 
may be triggered by e2 unless all actions triggered 
by e l  are finished. 

5 Implementation and Performance 

Our prototype version of Nestor and Cicero runs on 
top of BSD 4.3 and Mach 2.5. The Cicero compiler is 
implemented using UNIX lec and yacc, and its runtime 
library has interfaces to existing thread packages such 
as SUN LWP, and Mach Cthreads. 

43 I 



The performance of synthesized agents depends on 
the overhead of Cicero runtime and communication 
primitives. The Cicero runtime overhead comprises 
the overhead of managing event instances and threads. 
Depending on the thread package used, the runtime 
overhead of using event patterns varies. On average, it 
accounts for lese than 10% of the overall RPC latency. 
To measure the overhead of communication primit- 
ives, we constructed AT1-RPC protocols (at-most- 
once RPC semantics) using the same RPC semantics 
and transport mechanism as Sun RPC. For typical 
RPC messages (I lK), our performance is competit- 
ive with SUN RPC’s performance (ours is 3% slower 
on average). 

It is harder to get good performance on cross RPCs, 
because the extra indirection involved makes it inher- 
ently slower than homogeneous RPC. Also, slow native 
RPC performance can easily become a performance 
bottleneck when the client programs involved may not 
be modified. Our measurements are taken for cross 
RPCs among SUN RPC, Mach RPC and HP/Apollo 
NCS/NCA RPC using a two-agent configuration. The 
latency for cross RPCs is about 1.5 to 2.5 times longer 
than sending measages through TCP directly. The 
worst case occurs when the cross RPC is performed 
on a lightly-loaded local Ethernet with a slow local 
native RPC on the server side. However, the absolute 
performance for this case (9.7ms for cross RPC and 
3.6ms for TCP) is still tolerable in most situations. 

6 Conclusions 

Our work illustrates that an agent synthesis scheme 
is an effective method for dealing with the many in- 
stances of RPC heterogeneity in heterogeneous dis- 
tributed environments. The agent synthesis scheme 
provides a solution with low software development and 
maintenance costs. This feature is particularly ad- 
vantageous for the client site, since a client can contact 
many servers using different RPC protocols without 
having implementations of each server protocols. 

Importing protocol constructions from the outside 
also offers other advantages. It provides immedi- 
ate software availability after a protocol construc- 
tion is created or updated. It minimizes disturbance 
when updating existing RPCs and introducing new 
RPCs. Hence, RPC protocol evolution is well suppor- 
ted. It offers the opportunity to synthesize specialized 
code to improve performance. Finally, it also makes 
the synthesis solution scalable, and makes each site 
fully autonomous. 

A synthesis scheme must be backed up by a good 
specification language. Cicero represents a significant 
part of this effort. It provides the following advant- 
ages under an acceptable overhead: (1) support for 
multiplethread execution (when constructs) for ex- 
ploiting parallelism, (2) event patterns to control syn- 
chrony, aaynchrony, and sequentiality in protocol ex- 
ecution, which is a better implementation paradigm 
than using just thread package alone, (3) coarse-grain 
parallelism by combining smaller event patterns into 
larger ones, (4) translation to Petri net to be able to 
take advantage of existing protocol verification meth- 
ods/tools. 

References 

B. €I. Tay and A. L. Ananda. A Survey of Remote 
Procedure Calls. Opemting Systems Review, 24(3):6& 
78, July 1990. 
A. L. Ananda, B. H. Tay, and E. K. Koh. A Survey 
of Asynchronous Remote Procedure Calls. Opemting 
Systems Review, 26(2):92-109, April 1992. 
B. N. Bershad, D. T. Ching, E. D. Lazowska, J .  San- 
islo, and M. Schwartz. A Remote Procedure Call Facil- 
ity for Interconnecting Heterogeneous Computer Sye 
tems. IEEE 7tunsactions on  Software Engineering, 

Y. Hnang and C. V. Ravishankar. Accommod- 
ating RPC Heterogeneities Using Automatic Agent 
Synthesis. Technical Report CSETR-131-92, Dept. 
of EECS, The University of Michigan, Ann Arbor, 
Michigan, 1992. 
C. V Ravishankar and R. Finkel. Linguistic Support 
for Dataflow. Technical Report CSETR-14-89, Dept. 
of EECS, The University of Michigan, Ann Arbor, 
Michigan, 1989. 
J. R. Falcone. A Programmable Interface Language 
for Heterogeneous Distributed Systems. ACM %ns- 
actions on Computer Systems, 5(4):331-351, 1987. 
J. W. Stamos and D. E. GiiTord. Implementing Remote 
Evaluation. IEEE Tbnsactions on Software Engineer- 
ing, 16(7):710-722, July 1988. 
K. M. Kavi, B. P. Buckles, and U. N. Bhat. Ieomorph- 
ism Between Petri nets and Dataflow Graphs. IEEE 
lhnsact ions on  Softwore Engineering, 13(10):1127- 
1134, October 1987. 
T. Suzuki, S. M. Shatz, and T. Murata. A Protocol 
Modeling and Veritication Approach Baaed On A Spe- 
cification Language and Petri Nets. IEEE h n s a c t i o n s  
on  Software Engineering, 16(5):523-536, May 1990. 

13(8):880-894, August 1987. 

432 


