
Decentralized Hash-Based Coordination
of Distributed Multimedia Caches

Anup Mayank Chinya Ravishankar
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92507

{mayank,ravi}@cs.ucr.edu

Krishna Bandaru Trivikram Phatak
TATA Consultancy Services Ltd.

{bandaru.krishna,t.phatak}@tcs.com

Abstract

We present a new approach to decentralized and coop-
erative caching of multimedia streams, based on the notion
of virtual hierarchies, which result in very uniform distribu-
tions of loads across the system of caches. We show through
simulations that our method greatly reduces loads at the
server as well as latencies at the client. Our approach is ro-
bust, scalable and adapts quickly to changes in object pop-
ularity.

1 Introduction

Multimedia applications have become widespread over
the Internet in recent years, and this trend will surely
strengthen as more and more bandwidth becomes avail-
able [11, 16]. The term streaming media is typically used
when the contents of multimedia objects are displayed as
soon as the first chunk of data is received [3]. Specifically,
the term is intended to exclude the approach of downloading
and caching the entire object prior to playback.

Existing web caching systems are stand-alone systems
that cache web objects independently in response to client
requests. Caching is a reactive approach which caches an
object only when requested. In replication, objects are
pushed across one or more caching servers permanently.
Replication of large multimedia objects (typically hundreds
of megabytes) is hugely wasteful. Caching can be made
efficient by breaking multimedia objects into smaller seg-
ments and distributing copies of each segment across a
system of cooperating caches. Such intercache coopera-
tion can reduce the storage requirements and enhance load-
balancing, fault tolerance and scalability of the system.

 INTERNET

Main Server

Proxy server

Client

Figure 1. Caching and delivery on the internet

1.1 Caching and Cooperation

Caching (We use the term cache and proxy interchange-
ably in this paper) is a widely used method, and has been
shown to be effective in reducing server loads and client la-
tencies. Proxies also reduce network traffic by aggregating
requests for the same object. Caching is likely to work par-
ticularly well with multimedia streams since they are static,
sequentially accessed, and have high network resource re-
quirements.

Figure 1 is intended to represent the ubiquity of caching
on the Internet. Caching is central to the business of many
companies, such as Akamai [1] and Mirror Image [2]. ISPs
also commonly have proxying and caching mechanisms to
improve performance. However, cooperation among these
widely deployed caches is likely to be particularly impor-
tant for multimedia objects. A typical one-hour movie is
about 700 MB in size. In contrast, a typical web object is
5–50 KB in size. Since the number of available multimedia
objects is also likely to grow, long-term caching of entire
multimedia objects is not a good option, even with increases
in disk capacities.

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

1.2 Our Contributions

Our method partitions a streaming object into segments
and assigns them to caches organized in a virtual hierar-
chy architecture [17], using the name-based hashing scheme
described in [13]. Virtual hierarchies outperform static
caching hierarchies such as [15], in which the root cache
commonly becomes a bottleneck. In contrast, loads are very
evenly distributed in virtual hierarchies. We have modified
the caching policy used in the virtual hierarchy approach,
and have proposed a new cache replacement policy which
suits the characteristics of multimedia streams, and quickly
adapt to object popularities.

2 Related Work

In Adaptive and Lazy Segmentation policy [9], the object
is first segmented, using the average access duration as the
base segment size. Further,[9] reports that uniform segmen-
tation performs, on average, as well as the exponential seg-
mentation method of [16]. However, independent caching
policies at proxies in [9, 16] cause replication of popular
objects at many proxies, resulting in inefficient space uti-
lization.

In MiddleMan [4] architecture proposed by Acharya and
Smith, proxies in a LAN cooperate to increase aggregate
amount of storage space at the proxy system and decrease
loads at the main server. Cache space at the proxies is man-
aged by a central coordinator, which keeps track of files
hosted by each proxy. This approach to cache cooperation is
inherently centralized, and subject to single-point failures.

In the Agent-based Caching Architecture [14] proposed
by Tran et al., caches form an overlay structure across the
Internet, and act as application level routers. An agent
caches data passing through it, so that the next request for
the same object can be served from a nearby cache. A great
deal of object replication can result.

Chan and Tobagi [7] study the tradeoff between the local
storage and network channels in distributed servers archi-
tecture to offer on-demand video services. However, the
approach of replicating popular movies entirely at the local
caches does not make efficient use of the storage space.

SplitStream [5] splits multimedia content into different
streams and multicasts each stream using a separate tree.
SplitStream is built on Pastry [12], a generic peer-to-peer
content location and routing system. The route lookup sys-
tem in Pastry [12] is based on identifiers assigned to nodes
and objects. We use name based hashing to map a specific
object to next level proxy in virtual hierarchy.

In the Silo [6] architecture a multimedia clip is divided
into segments od exponentially increasing size. Initial seg-
ments are small in size and are cached with high probabil-
ity, while later segments are large in size and cached with

low probability. This approach is similar to technique used
in [16]. Proxies compute a local segment map of the cached
segments, exchange it with other peer proxies and create
a global segment map which is used in routing requests to
peer proxies for missing segments. Although Silo [6] is a
decentralized architecture, it depends heavily on message
exchanges between cooperating proxies.

3 Hash-Based Virtual Hierarchies

Caching reduces server loads and client latencies, but
single caches achieve only moderate hit rates due to limited
temporal locality [8]. As shown in [8], hierarchical caching
reduces server hot spots from globally popular objects, and
improves access latencies by aggregating requests up the
hierarchy. However, such aggregation is useful only on a
per-object basis.

Statically defined hierarchies [15] aggregate requests and
misses for all objects as one proceeds up the hierarchy. Inte-
rior caches become overloaded since they handle misses for
all objects at each child cache. The root is also very likely
to become a bottleneck since it experiences the aggregated
miss rate for all objects from lower levels.

In contrast, the Hash-based Virtual Hierarchy (HVH) ap-
proach uses hashing to define a different hierarchy for each
object [17], resulting in uniformity of traffic and processing
workloads across the caches. we discuss only the features of
this approach relevant to the caching of multimedia streams.

3.1 Hash-based Object Allocation

Hashing was first used in [13] for allocating objects
to a cluster of caches {C1, C2, · · · , Cn}, so that cluster
clients could agree on which cache should hold each ob-
ject Ok, without communicating with each other. A re-
lated idea appeared subsequently under the name con-
sistent hashing [10]. In the approach in [13], each
client independently computes the series of hash val-
ues H(C1, Ok), H(C2, Ok), · · · , H(Cn, Ok), and picks the
cache Cj that yields the highest hash value. Since all clients
use the same hash function H , they obtain the same hash
values, and choose the same Cj independently. Each Ok

is therefore cached only at its corresponding Cj , minimiz-
ing object duplication in the cluster, and maximizing hit
rates. The work in [13] shows that hashing on a combi-
nation of object name and cache name is effective, among
other things, in addressing the issue of cache failures.

3.2 Skeletons for Hierarchies

Virtual hierarchies are built in HVH using hashing on
top of tree structures called skeletons. All proxies appear at
the leaves of this tree, and each non-leaf node represents a

2

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

C0:C2:P5

C1:P1 C2:P5 C3:P7

P1 P2 P3 P4 P5 P6 P7 P8 P9

 H(C0,O) = C2
 H(C1,O) = P1
 H(C2,O) = P5
 H(C3,O) = P7

 Hash Functions

Figure 2. Virtual hierarchy

cluster of nodes at the next lower level (see Figure 2). Clus-
ters can vary in size, and may be defined using any suitable
metric, such as hop counts, transfer latencies, or data trans-
fer bandwidth between nodes. Under any chosen metric,
proxies within a cluster will be closer to each other than to
proxies in other clusters. In Figure 2, the skeleton is rooted
at virtual node C0, and is the parent of sub-clusters C1,C2

and C3.

3.3 Hierarchy Construction

Given a skeleton, a virtual hierarchy is determined as fol-
lows. Let a request for an object O arrives at a cache c in
cluster C. If c holds O, it directly responds to the request.
Otherwise, c acts as a client, and applies the hash function
HC to the members of to own cluster C. A cache is cho-
sen as in Section 3.1, and the request for O forwarded to it.
This chosen cache is referred to as the prime for object O at
cluster C, and denoted by ΠC,O .

Processing continues recursively. If ΠC,O holds O, it
responds to c, which, in turn, caches O, and responds to its
own client. If ΠC,O does not have O, it determines the next-
level prime for O by hashing over the nodes in its parent
cluster. In the worst case, O will not be cached anywhere
in the hierarchy, and the prime at the highest level must for-
ward the request to the remote server.

In Figure 2, for example, P1, P5, and P7 are the primes
for object O at clusters C1, C2, and C3, respectively. If a re-
quest for O arrives at cache P2, it first checks its own cache.
If O is not found, P2 applies hash function H1, and forwards
the request to P1. If P1 does not have O, it applies the hash
function H0, and descends to C2, applies hash function H2

to get to P5, which is the root prime for O. If O is not in
P5, it must be retrieved from the remote server. The remote
server is accessed only when the object is not cached at any
of the nodes in the virtual hierarchy, ensuring that the server
load is kept low. The structure of the skeleton and the hash-
ing functions can both be stored in a name server and made
available to all participating caches.

1 2 3 M

1 2 3 4 5 6 7 N

Multimedia Object

 a) Complete object view at the main server

 c) Block level view at the client end

 b) Segment level view at the proxy server

Figure 3. Different views of the same object

4 Our Approach

We use HVH for its load-balancing properties. We also
present and evaluate a cache replacement policy suitable for
such virtual hierarchy of proxy caches.

4.1 Multiple Access Granularities

In our model, the server, caches, and the client see mul-
timedia streams at different granularities. We define granu-
larity to be the smallest amount of data from a stream that
an entity can fetch or manage (see Figure 3). The coars-
est granularity is at the main server, which manages entire
media objects. A proxy, in contrast, fetches and manages
streams at the granularity of segments. We use the strategy
of dividing multimedia objects into equal-sized segments,
since it was observed in [9] that this approach achieves the
same performance as exponential sized segmentation [16].

Clients fetch and manage streams at the granularity of
blocks, the finest granularity. Clients prefetch an entire
block, before its playback started. To minimize jitter and
delay, a client may prefetch and buffer a small number of
blocks, up to some predefined prefetch limit.

4.2 Object Retrieval

We first define some terms. Segments in the present dis-
cussion are equivalent to objects in our presentation of HVH
in Section 3. Consequently, a proxy cache may store zero
or more segments of a multimedia stream. Because of the
way hashing is used in HVH, each proxy serves segments
in different roles. Segments for which it generates highest
hash value in the cluster are called its prime segments. Seg-
ments for which it generates the highest hash value in the
entire hierarchy are called its root segments. Segments that
are neither prime nor root for a proxy are called its alien
segments.

A client sends its request for an object to its designated
proxy, negotiates the block size, and requests object blocks
sequentially. When a request for a block arrives at the proxy,
it first determines the segment number for that block, and

3

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

returns the block to the client if it holds the segment. Other-
wise, the proxy propagates a requrest for the segment up the
virtual hierarchy as described in Section 3.3. Since clients
request data at a fine granularity, interactivity is easy to im-
plement. A pause is easy to realize, since the client stops
requesting blocks. For forward and rewind, a client
must request the appropriate block from the proxy it is con-
nected to.

4.3 Cache Replacement

Our replacement policy first calculates a utility value for
each cached segment, and replaces segments with the small-
est utility value.

Let Si,O be the ith segment of object O. Our utility func-
tion for segments is

U(Si,O) = ω(Si,O) ∗ ψ(Si,O)

where ω(Si,O) is the weight of the segment at the cache, and
ψ(Si,O) is the probability of segment Si,O being accessed
at the cache.

The weight of a segment is determined by the number of
proxies which can request that segment called as out degree.
If d is the outdegree of the virtual hierarchy, then ω(seg) =
dk, where k = 0 for alien segments, k = 1 for level-1
primes, and so on. In our experiments prime proxies are at
level 1 and root proxy is at level 2, but our approach can be
easily generalized to deeper hierarchies.

The probability of access ψ(Si,O) is computed as fol-
lows.

ψ(Si,O) = min{1,
Tavg

Tr − Tc
},

where Tavg is the cumulative average request arrival inter-
val of the segment, Tr is its last reference time, and Tc is
the current time. Tavg is recomputed as

T new
avg = β ∗ T old

avg + (1 − β)(Tr − Tc),

where β is a positive constant less than 1. Proxies calculate
utility values of the segments present in the cache and evict
the one with lowest utility value.

In our experiments we have used β = 0.5. While
our probability function ψ() is reminiscent of the one used
in [16, 9], our utility function is quite different. By multi-
plying the weight of a segment with its access probability, it
assigns higher utility values to prime and popular segments.

4.4 Fault Tolerance and Scalability

When a proxy Pi goes down, request for each segment
assigned to it is routed to the proxy that generated the next
highest hash value. The randomizing property of HVH
causes these reassignments to be evenly distributed among

Table 1. Comparison with Silo
Parameter DHCMC Silo

Number of objects (N) 100 or 1000 100
Cacheable fraction of data 10%–100% 50%–100%
Number of caching proxies 10 100

Segment size 10MB 50MB or more

the remaining proxies, preserving the load balancing prop-
erty of our method.

When a proxy Pi ∈ C comes back up or when a proxy
Pi /∈ C is added to the cluster C, then the segments which
reassigned to it are exactly those which yield a higher hash
value for Pi than any other proxy in the cluster. Thus, HVH
ensures that the fewest possible number of segments are re-
assigned in the case of proxy failure or proxy addition. tol-
erant and scalable.

5 EXPERIMENTS AND RESULTS

Our experiments were designed to evaluate the perfor-
mance of our caching model (abbreviated as DHCMC) un-
der different scenarios. Our metrics of interest were the byte
hit ratios at the caches, the average block latencies, and ini-
tial startup delays, since they are good indicators of server
load, and the jitter and initial delay observed by clients.

5.1 Simulation Model

Proxies are clustered into groups, and proxies within a
cluster are connected by a local or medium area network.
Our experiments used a 2-level hierarchy with nodes of out-
degree 3, for a total of 9 proxies grouped into 3 clusters. In
our simulations, I/O bandwidth for proxies was set to 100
Mbps for all connections, to 10 Mbps between proxy and
server, and to 3 Mbps between client and proxy. The block
size was 1 MB, so that its play time was 16 seconds at a
streaming rate of 0.5 Mbps.

5.2 Performance comparison with Silo

We first compared the performance of our scheme with
that of Silo. The parameter values in our experiments are
shown in Table 1, which represents the parameters reported
in [6] for Silo. The work in [6] reports a system-wide BHR
of 85% with 100 caching proxies for a database of 100 mul-
timedia objects. Although [6] do not discuss this issue, each
proxy in Silo effectively appears to support only one ob-
ject. Figure 4 compares the performance of Silo with that
of DHCMC. In our first series of experiments, we used the
same object and database characteristics reported in [6] to
facilitate this comparison. We used 100 objects, each of size

4

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

B
y
t
e

h
i
t

r
a
t
i
o

Cache size (% of total multimedia size)

Silo hit ratio
DHCMC hit ratio (100 objects)
DHCMC hit ratio (1000 objects)

Figure 4. Performance comparison with Silo

Table 2. Simulation parameters
Parameter Range Default

Objects (N) 1000–5000 1000
Zipf parameter 0.4–1.0 0.7

Cacheable fraction of data 1%–50% 10%
Request interval (λ) 2–6 min 3 min

Blocks per segment 5–10 10
Proxies in system 4–25 9

Stream bit rate 0.3–1.0 Mbps 0.5
Prefetch limit (blocks) 1–9 No limit

between 1GB–2GB, with a mean size of 1.5GB. We observe
that our model achieves the BHR achieved by Silo for much
smaller cache sizes.

In our second series of experiments, we increased the
number of objects in DHCMC by a factor of 10, to 1000.
The performance of our method degrades only slightly, de-
spite the huge increase in the size of the database. These re-
sults demonstrate the excellent scalability of our approach.

5.3 Comparison with Middleman

A typical Middleman configuration consists of a num-
ber of proxies and a single coordinator which keeps track of
proxy contents and makes cache replacement decisions for
the entire system [4]. We studied the performance of our
our model against Middleman under various system param-
eters settings. Table 2 summarizes the parameters used in
our experiments, their ranges, and their default values. To
isolate the effects of various parameters, our experiments
varied them one at a time, keeping all others at their default
values. However, discussing effect of each parameter on
system performance is outside the scope of this paper.

5.3.1 Effects of Inter-arrival Times

We varied the inter-arrival times for object requests from 2–
6 minutes. Lower inter-arrival times result in longer queues
at proxies, and increase the delay in fetching segments. As

Figure 5 shows, average startup latency dropped from 8.5
seconds to 4.6 seconds, and average block latency dropped
from 1.3 ms to 0.1 ms in the range studied. The cache hit
ratio increased from 86% to 91%.

 0

 20

 40

 60

 80

 100

 2 3 4 5 6

B
y
t
e

h
i
t

r
a
t
i
o

Arrival interval (min)

DHCMC hit ratio
MiddleMan hit ratio

 0

 4

 8

 12

 16

 20

 2 3 4 5 6
 0

 1

 2

 3

 4

 5

A
v
e
r
a
g
e

s
t
a
r
t
u
p

l
a
t
e
n
c
y

(
s
e
c
)

A
v
e
r
a
g
e

b
l
o
c
k

l
a
t
e
n
c
y

(
s
e
c
)

Arrival interval (min)

DHCMC Avg. startup latency
MiddleMan Avg. startup latency

DHCMC Avg. block latency
MiddleMan Avg. block latency

Figure 5. Effects of request arrival interval

5.3.2 Effects of Cache Size

Larger caches allow proxies to store more segments, in-
crease BHR and reduce startup and average block latencies.
As Figure 6 shows, we achieve very high BHR (nearly 89%)
even when the total size of caches in all proxies is only 10%
of the size of the database. In contrast, [4], using central-
ized cache coordination, reports a BHR of only 77%, with
an average cache size of 9% of database size. These re-
sults demonstrate that our architecture and cache replace-
ment policy do an excellent job of caching popular objects
and segments.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50

B
y
t
e

h
i
t

r
a
t
i
o

Cache size (% of total multimedia size)

DHCMC hit ratio
MiddleMan hit ratio

 0

 4

 8

 12

 16

 20

 0 10 20 30 40 50
 0

 1

 2

 3

 4

 5
A
v
e
r
a
g
e

s
t
a
r
t
u
p

l
a
t
e
n
c
y

(
s
e
c
)

A
v
e
r
a
g
e

b
l
o
c
k

l
a
t
e
n
c
y

(
s
e
c
)

Cache size (% of total multimedia size)

DHCMC Avg. startup latency
MiddleMan Avg. startup latency

DHCMC Avg. block latency
MiddleMan Avg. block latency

Figure 6. Effects of cache size

5.3.3 Effects of Number of Distinct Objects

As the number of objects increases, client requests are
spread over more objects. Caching performance worsens
since more unpopular objects are present. In [16], perfor-
mance degraded drastically, with BHR dropping from 55%
to 40% as the number of objects increased from 1000 to
2500. As shown in Figure 7, our approach shows a minor
degradation in BHR, from 87.9% to 86.5%, when the num-
ber of objects increased from 1000 to 5000. Our caching
policies appear to work well.

5

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

 0

 20

 40

 60

 80

 100

 1000 2000 3000 4000 5000

B
y
t
e

h
i
t

r
a
t
i
o

Number of distinct objects

DHCMC hit ratio
MiddleMan hit ratio

 0

 4

 8

 12

 16

 20

 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

A
v
e
r
a
g
e

s
t
a
r
t
u
p

l
a
t
e
n
c
y

(
s
e
c
)

A
v
e
r
a
g
e

b
l
o
c
k

l
a
t
e
n
c
y

(
s
e
c
)

Number of distinct objects

DHCMC Avg. startup latency
MiddleMan Avg. startup latency

DHCMC Avg. block latency
MiddleMan Avg. block latency

Figure 7. Effects of number of distinct objects

5.3.4 Effects of Number of Proxies

The space at each proxy decreases as the number of proxies
increases, but our experiments show that BHR and startup
delay remain good, since our popular and initial segments
remain cached. The average block latency does increase,
as later segments are obtained from other proxies. Figure 8
illustrates this effect.

 0

 20

 40

 60

 80

 100

 0 8 16 24 32 40

B
y
t
e

h
i
t

r
a
t
i
o

Number of proxies in the system

DHCMC hit ratio
MiddleMan hit ratio

 0

 4

 8

 12

 16

 20

 0 8 16 24 32 40
 0

 1

 2

 3

 4

 5

A
v
e
r
a
g
e

s
t
a
r
t
u
p

l
a
t
e
n
c
y

(
s
e
c
)

A
v
e
r
a
g
e

b
l
o
c
k

l
a
t
e
n
c
y

(
s
e
c
)

Number of proxies in the system

DHCMC Avg. startup latency
MiddleMan Avg. startup latency

DHCMC Avg. block latency
MiddleMan Avg. block latency

Figure 8. Effects of number of proxies

6 Conclusion And Future Work

Our work is a significant advance over previous ap-
proaches since our caching policies are decentralized, and
our architecture uses virtual hierarchies for cooperation be-
tween proxies in different clusters.

We have shown through simulations with synthetic
workloads that our methods achieve a high byte hit ratio
at proxies, thus reducing the load on the main server. Our
mechanism captures object popularities very effectively,
and decreases startup delays greatly. Our mechanism re-
quires small amounts of buffer space to work effectively,
making it usable with resource-sensitive thin clients.

We are planning to build a prototype implementation
for our caching mechanism to further study system perfor-
mance. We propose to investigate the behavior and per-
formance of VCR functions such as forward, pause,
rewind and stop in our model.

References

[1] Akamai. http://www.akamai.com.
[2] Mirror image. http://www.mirror-image.com.
[3] Streaming media definition. http://www.webwisdom.com.
[4] S. Acharya and B. Smith. Middleman: A Video Caching

Proxy Server. In Proceedings of the NOSSDAV 2000, June
2000.

[5] M. Castro, A. Rowston, and P. Druschel. Splitstream: High
bandwidth multicast in cooperative environments. SOSP’03.

[6] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and E. W. Ze-
gura. Silo, Rainbow, and Caching Token: Schemes for Scal-
able, Fault Tolerant Stream Caching. IEEE Journal on se-
lected areas in communication, 20:1328–1344, September
2002.

[7] S. G. Chan and F. Tobagi. Distributed servers architecture
for networked video services. IEEE Transactions on Net-
working, 9, June 2000.

[8] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A Hierarchical Internet Object
Cache. In USENIX Annual Technical Conference, January
1996.

[9] S. Chen, B. Shen, S. Wee, and X. Zhang. Adaptive and Lazy
Segmentation Based Proxy Caching for Streaming Media
Delivery. In Proceedings of the 13th international work-
shop on Networks and operating systems support for digital
audio and video, number 1-58113-694-3, pages 22–31, June
2003.

[10] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web Caching with Consistent Hashing. In
Proceedings of 8th International World Wide Web Confer-
ence, May 1999.

[11] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia
Proxy Caching Mechanism for Quality Adaptive Streaming
Applications in the Internet. In Proceedings of IEEE INFO-
COM, number 0-7803-5880-5, March 2000.

[12] A. Rowston and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
sytems. ACM International Conference on Distributed Sys-
tems Platforms, Nov 2001.

[13] D. G. Thahler and C. V. Ravishankar. Using Name-Based
Mapping to Increase Hit Rates. IEEE/ACM Transactions on
Networking, 6:1–13, February 1998.

[14] D. A. Tran, K. A. Hua, and S. Sheu. A New Caching Ar-
chitecture for Efficient Video-on-Demand Services on the
Internet. In Proceedings of the 2003 Symposium on Appli-
cations and the Internet (SAINT’03), January 2003.

[15] V. Valloppillil and K. W. Ross. Cache array routing protocol
v1.0. http://icp.ircache.net/carp.txt.

[16] K. L. Wu, P. S. Yu, and J. L. Wolf. Segment-Based Proxy
Caching of Multimedia Streams. In Proceedings of the tenth
international conference on World Wide Web, number 1-
58113-348-0, pages 36–44, May 2001.

[17] Z. Yao, C. V. Ravishankar, and S. Tripathi. Hash-Based
Virtual Hierarchies for Caching in Hybrid Content-Delivery
Networks. Technical Report 62, UCR, May 2001.

6

Proceedings of the International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06)
0-7695-2552-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

