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Abstract. We characterize the performance of difference coding for compressing sets and database
relations through an analysis of the problem of estimating the number of bits needed for storing
the spacings between values in sets of integers. We provide analytical expressions for estimating
the effectiveness of difference coding when the elements of the sets or the attribute fields in database
tuples are drawn from the uniform and Zipf distributions. We also examine the case where a uniformly
distributed domain is combined with a Zipf distribution, and with an arbitrary distribution. We present
limit theorems for most cases, and probabilistic convergence results in other cases. We also examine
the effects of attribute domain reordering on the compression ratio. Our simulations show excellent
agreement with theory.
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1. Introduction

Difference coding, a widely used method [Netravali and Haskell 1988; Viterbi and
Omura 1979], represents a series of values by the differences between them. In
most applications, successive values in the original sequence are correlated, so
that their differences are small, yielding compression. The coding is lossless if the
differences are preserved exactly, but this technique is sometimes combined with
gquantization to convert a continuous range of difference values to a discrete range
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of output values. Quantization results in lossy compression, which is acceptable in
applications like image or voice coding [Netravali and Haskell 1988].

Lossy compression is generally not appropriate for compressing relational
databases, but lossless difference coding has been used in this domain [Ng and
Ravishankar 1997]. Compression in databases has significant practical advantages.
Commercial databases can be very large, and data warehouse sizes can easily reach
10'2-10" bytes or more. Disk 1/O tends to be the bottleneck to query perfor-
mance, since queries of interest frequently request statistics formed over a large
number of records from the database. Database compression reduces both storage
requirements as well as the data transfer volumes between disk and main memory.
Compression reduces I/O bandwidth requirements at the cost of higher processor
loads. This is a desirable trade-off, since processor performance is improving much
faster than disk performance.

Difference coding is particularly applicable to sets and databases, since the
usual requirement that the ordering between elements be preserved no longer
applies. We are at liberty to choose the ordering between the elements of a set that
maximizes the compression. The Tuple-Difference Coding (TDC) method [Ng
and Ravishankar 1997] for database compression is based on this insight. Each
tuple in a database table is first treated as an integer, and the table sorted by rows.
Successive tuples are then differenced, and the differences used to represent the
table. Thath tuple in the table can be reconstructed from the first tuple and the first
(i — 1) difference values. In practice, to avoid such laborious reconstruction, the
sorted table is partitioned into disk-block sized chunks and TDC applied separately
to each chunk. This approach has been shown to perform well in practice when
used for compressing relational databases.

In this article, we evaluate the performance of difference coding applied to the
more general context of sets of integers. Our results will apply directly to relational
databases, since arelational table is a set of tuples, and can be modeled as a sample
of integers from a large butfinite set. In the remainder of the article, we will therefore
treat the terms “database” and “set” as equivalent.

2. Tuple-Difference Coding

The original work describing TDC [Ng and Ravishankar 1997] discusses practical
details such as how to handle textual attributes in TDC, and provides experimental
results on query times and other performance parametersin practice. Itdemonstrates
that TDC is superior to other database compression methods currently in use, and
provides both better compression as well as faster query response times. A number
of factors affecting compression are listed and their effects discussed in qualitative
terms in [Ng and Ravishankar 1997].

Our present purpose is to provide a sounder theoretical basis for the performance
characteristics of difference coding applied to sets and relational tables.

2.1. AMODEL FORPERFORMANCEANALYSIS. We sayR is arelational schema
overDy, Do, ..., D, with D; = {0, 1, ..., |D;| — 1} being the th attribute domaih

1 We will sometimes specify the domainfs 2, .. ., |D;i|} instead. However, this change of notation
will not alter the semantics of compression, since TDC is based on the spacings between successive
samples.
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if R=D;x D, x---x D;. We callD a database with scherfiif D C R. Each
record in the database is extuple (di, do, . .., d;), withd; € D;.

TDC works as follows: given a databaBe= {t, t5, ..., t,} of tuples, a bijective
mappinge : D — Ny is constructed, wherlz = {0, 1, ..., |R| — 1}. Next, ¢
used to map each database redptd an integer, and the database is sorted (@)
as key. Successive tuples are differenced, and the differerftigs) — ¢(tk) are
stored instead of the original tuplgsandty ., themselves. These differences tend
to be significantly smaller than the original tuples, thus achieving compression.
In practice, it is convenient to usegathat is equivalent to lexicographic sorting.
Formally, given a tupléx = (dy, do, ..., di), with d; € Dy,

ot = d ( I |Dj|> : @)

so thatd; is simply treated as a digit with bagB; |, andty becomes a mixed-radix
number. This mapping is invertible, so compression is lossless.

2.1.1 Some Issues.Two points are worthy of note. First, the distribution of
values in different attribute domairi andDj is typically different, though there
may be correlations between the domains. Second, the actual ordering@f the
in the product space defining the schefds typically immaterial to the data-
base semantics.

It is reasonable, therefore, to view a database as a sample from the joint dis-
tribution of the domain®D;. Since a database table is a set of tuples, it will not
contain duplicate tuples, so this sample must be taken without replacement from
the joint distribution space. We proceed to form the database by chaosamgples
(X1, ..., Xp) from the joint distribution spac&(D,, D, ..., D). Since this sam-
pling must be performed without replacement, these are noti.i.d. random variables,
a fact that causes significant technical difficulties for our analysis in the remainder
of the paper. When no compression is performed, we must allocate enough space
in the tuple to accommodasayvalue that may need to be stored in the database.
Thus, ifN = |Ds]| - |D2| - - - | Dy |, each tuple will need to be at least }dy bits in
length, and the entire database willt®g, N bits in size.

We can apply TDC as follows: By sorting an(X;) (see Eq. (1)), we can con-
struct the sorted databasg:) <, --- <, X, and by differencing them, the
corresponding set af — 1 tuple spacing$éx = Xu+1) — Xw}. Thus, estimat-
ing the size characteristics of the compressed database is equivalent to estimating
> ka [0, (3k + 1)1.

For convenience, we use natural logarithms rather than base-2 logarithms, and
form the statisticA r = ZE;]]:In(X(k+1) — Xk + 1). In practice,A r represents
a lower bound on the size of the database, since additional real-world overhead
is involved in coding and representing these values. However, such overheads are
trivially estimated. Our chief challenge in the remainder of the article will be to
estimateA » for different attribute spaces.

While the ordering of attribute domaing; is irrelevant to semantics, some or-
dering must be chosen for storing the tuples on disk. Lexicographic sorting is used
to order the tuples, but we also consider the problem of optimal ordering of the
attribute domains to minimiza . Also, when correlations exist between the at-
tribute domains ink, the entropy of the database is lowered, so that compression
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methods tend to perform better in such cases. To obtain lower bounds on the perfor-
mance of TDC, we therefore assume that attribute domains are uncorrelated. This
model will form the basis for further analysis.

2.2. SMEUSEFULRESULTS FROMPROBABILITY THEORY. Inourdevelopment,
we find the following well-known results [Chow and Teicher 1988; Shiryayev 1995]
from probability theory useful. We state them without proof.

THEOREM 2.1 (S.UTSKY’'S THEOREM). If the sequence$Xu}, {Xx}, ...,
{Xik}, k = 1,2,... of random variables (r is fixed) are stochastically con-
vergent to the constants;@y,...,a, then an arbitrary rational function
R(X1, X, ..., Xrk) converges to the constant(®, a,, ..., &), provided this
constant is finite.

THEOREM 2.2 (LEBESGUES DOMINATED CONVERGENCE THEOREM). Let
n, &, &1, &, ... be random variables such th#g,| < n, En < oo, and&, —
& (a.s.). Then B¢| < o0, E&, — E&,and HE, — | — 0as n— oo.

THEOREM 2.3 (LEVY’S CONTINUITY THEOREM). Let f,(t) = E exp(/—1t&,),

t € R be the characteristic functions @f, &, ..., If &, 2, g, then f(t) —
f(t) uniformlyinjt| < T forall T > 0, where f(t) is the characteristic function of
&. Conversely, if f(t) converges to a limit ) on (—oco, co) which is continuous

att = 0, then f(t) is a characteristic function of some random varialjlend

En —> E.

3. An Equivalent Sampling Scheme and Related Topics

In Section 2.1.1, tha samplesXq, ..., X, drawn from the sef were assumed to

be mutually different since the database is a set. This scheme of sampling without
replacement may be modeled as follows. Supp#3$e= N and the first sampl,

has distribution PiX; = X1] = p(Xq) for X; € F. Given the first outcom&; = Xy,

X2 can only be drawn from the sé&t— {x;} with mass functiorp(xz)/[1 — p(x1)].
Inductively, givenX; = X1, Xo = Xo, ..., Xk_1 = Xk_1, We have the conditional
probability

p(Xk)
13077 p(x)

for xk € F — {X1,..., %1}, Kk = 2,...,n. Hence, the joint distribution of
X1, ..., Xn will have the form

PriXk = Xk| X1 = X1, Xo = X2, ..., Xko1 = Xk—1] =

s D(Xk)

PIrIX1 = X1, X2 = X, - .., Xno1 = Xn_1, Xn = Xn] = ]_[ S A
=1 1- Z p(XI
which is complicated enough to make a direct analysis of the corresponding order
statistics X1y < --- < X intractable. The random variable§, ..., X, are
related in an extremely complicated fashion due to the dependenGeanf all the
previous outcomeXy, ..., Xx_1. We must resort to some suitable transformations
and approximations here.

We therefore introduce the following alternative scheme based on sampling with
replacement, and show thatitis equivalentto the one just described. We also use this
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alternative scheme to build databases when testing the validity of our theoretical
analysis through simulations. L¢K,, Z, Zj,i > 1} be i.i.d. random variables.
Define stopping times

h=L ku=infli > Xk:2Z €{Zy,.... 23} L, k=1

For anyn, J, can be shown to be proper in the sense thal P oc] = 1, which
follows immediately from the following Eqg. (3). Based ¢4d,, n > 1}, we can
naturally obtaim mutually different random variables; , ..., Z; . We show that

(Xe, .. X)) 2 (Zy,. ... Z3). )

Set conditional probabilityPr[] = Pr[|Z; = Xi....,Z3 = XJ. Using the
Markov property, we have

PA r[ZJk+1 = Xk+l]

PAr[ZJk-H = Xk-‘rl’ ZJk+j € {le LRI} Xk}a for J = 17 LRI} I - 1]

PI[Z = X1l PI[Z € {X1, ..., %] 2

N

Il
N

_ P(Xk)
1- Y100 p(x)’

proving Eq. (2).
Let Ty = ki1 — Jk, k> 1. Itis easy to see that given the outcomes (. ., Xn),
the valuedly are geometrically distributed with mean{]zik:l p(x))~t. On aver-
age, we neeét[ J,]i.i.d. random variables to obtamdifferent values. This connec-
tion between the two sampling schemes enables us to work with an i.i.d. sampling
scheme instead of the more complex scheme of sampling without replacement.
To illustrate the use of this idea, consider Theorem 4.7 below, which analyzes
the performance of TDC on databases which may be modeled by sampling a Zipf
variablewithoutreplacement. The theorem, in fact, gives approximatiorsiof
based on a sampling schemih replacement; that is, the proof of the theorem
is developed in terms af i.i.d. Zipf (N) random variables. Therefore, in applying
Theorem 4.7 to obtain a reasonable estimateHar when replacement isot
allowed, we would us&[ J,] in place ofn.
However, it is still extremely difficult to use

n-1 n—1 k -1
E[Jn]=1+ZE[T,-]:1+ZE[1—Zp(Xi)} ©)
k=1 k=1 i=1

directly, given the very complicated nature of the joint distributior6f,(. . ., Xp).
We finesse this problem by considering the converse issue:

QUESTION.  Givenn' i.i.d. random variable<, ..., Zy, what is the num-
ber of different elements in this sample? Equivalently, what is the cardinality of
(Z1,...,Z0)?

In this set up,n’ and |{Z4, ..., Zy}| assume the roles cE[J,] and n, re-
spectively, in the original problem. This converse can be interpreted as random
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allocation problem, which is extensively studied in the literature, especially for
weak convergence in terms of the Central Limit Theorem and Poisson approxima-
tions (c.f. Kolchin et al. [1978]). This converse question has also been studied in
Cgrgd and Wu [2000] for the case wherehas uniform distribution, using large
deviation techniques.

Suppose we hawd cells labeled by 1. .., N, and we view the random variables
Zy, ..., Zy asn'balls with ballj being aIIocated tocel;. Definerandomvariables
Y, = 21—1 1(Z; =i),i =1,..., N, representing the number of balls in tith
cell, where 18) is the |nd|cator function. Hence, the number of occupied cells
{Z1,..., 2y} = Z 11(Yi > 0). Now (Y, ..., Yy) follows the multinomial
distributionMuIti(n p(l) , P( N)) LetV; have Poisson distribution with mean
n'p(i) and suppose tha[M, 1 < i < N} are independent. Then, we have the
following Poisson representation of the multinomial distribution

(Yo YN) 2 (Vi VN IVL -+ Wy = 1),

LEmmMA 3.1. Let |, 1 <i < N be independent Bernoulli random variables
with g = Pr[l; = 1] = 1 — exp(n'p(i)). ThenPr[| ZiN:l(li — Q)| > ne] <
2 exp (n'e?/3) holds for all0 < ¢ < 1/10.

ProOOF Lett > 0. DenoteSy = ZiNzl(Ii —@i). Then, by Markov's inequality,
log Pr[Sy > n'e] < log[exp(=n'et)E(e™)]

N
= —n'st + > loglexp(-tqi)(1 — ) + expt(l — ) G].

i=1
Elementary manipulations show that log[exp@)(1 — q) + expt(1—q))q] <
t?(1.19 — g?)/2 holds for all 0< t < 1/10 and O< q < 1. Let sets = {i:l<
i <N, np(i)>1and7 ={1,...,N}—-T. Then|I| <n smceZ, 1 p(i)=1.
Ifi € J,thenn’p(i) < 1 and henceeqI < n’'p(i) since 1— exp(-t) < t for
0 <t < 1. Clearly, for allg, 1.1q — g2 < 0.552. So

N

> (116 -¢) =) 4+ <) 055+ ) 1inp(i)

i=1 iel ieg iel ieg
0.55°|Z| + 1.1n" < 1.402%"..

Hence, logPi§y > n'e] < —n'et + t21.40257/2 < —n'e?/3 by lettingt =
£/1.4025. The other case B < —n’¢] can be handled similarly.]

A

Remark3.2. The constants in the upper bound in Lemma 3.1 are not best
possible, but it suffices for our application. The classical Hoeffding’s inequality
[Hoeffding 1963] can yield a bound of order exgf(n')?/N], which appears to
be too rough in our context sind¢ is typically much larger than'.

Let M = YL PrVi > 0] = YL,[1 — exp(=n'p(i))]. Then, applying
Lemma 3.1 td; = 1(Y; > 0), we have

Pr|: M| > n’s}

N

> 1Y > 0)-

i=1
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|

_ PN 1M > 0)— M| = n'e]
= Pr[\/1—|—+VN:n/]

: 2expn'e?/3) = OV exp(=n's?/3),

>n'e

N
YUV >0 -M
i=1

V1+---+VN=n/}

n’'!

which vanishes to 0 at a geometric rate. Hence

1 NlY- 0)-M| -0
ﬁ;(.>)— — 0.

Therefore, it is reasonable to také as the expected number of occupied cells,
and the expected number of i.i.d. copies needéd;an be approximated via the
equation

N
n=M =) [1—expn'p(i)). (4)
i=1

This scheme causes a complication if the definitiomofjiven in Section 2.1.1

is used directly. LetZy) < --- < Z) be the order statistics of, ..., Zy.

Since we cannot guarantee that tAe are mutually different, some of these
spacings may be zero. The definition af in Section 2.1.1 is unusable since

it involves the ngarithms for these spacings. Instead, we should use one of the
form_sAz_= E:_l InmaxZk+1) — Zg, 1) OI’A.Z = ZE:_:L IN(Z+1) — .Z(k) + 1)..

Inthis article, we suggest the second form, which appears conservative, and is math-
ematically convenient. In addition, it captures an aspect of the real world: whenever
Zy+1) — Z = 1in practice, we need one bit to store the difference. However,
the corresponding term in the first form goes to zero and makes no contribution to
the sum. Numerical simulation indicates that the difference between the two forms
is negligible.

4. Limit Theorems for the Single-Field Case

We begin our analysis of the TDC technique with the simplest case. We assume
that the database consistsafuples, each tuple comprising a single attribute field

A. This is a reasonable starting point for two reasons. First, in some cases, we are
able to reduce the general case aftribute domains to the case of a single attribute
domain. Second, we use the single-attribute results to construct an analysis for the
multiple-domain case.

4.1. SNGLE ATTRIBUTE, UNIFORM DISTRIBUTION. We first consider the case
when the attribute values are drawn uniformly from a single attribute domain of size
N. The uniform distribution is interesting for several reasons. First, many attributes
domains that appear in practice are uniform. Second, the uniform distribution is
known to yield the largest value for the sum of sample spacings of all distributions
defined over a given range [Shao and Marjorie 1995]. In this sense, the behavior
for the uniform distribution form a lower bound for the compression efficiency
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of TDC. Also, the uniform distribution is a “least informative” distribution over

a given range, and is useful as a model when little is known about a distribution.
Finally, as we show in Section 5, a setka@iniformly distributed attribute domains
can be modeled as a single uniformly distributed domain.

We proceed to form the database by choogsingtegers K, ..., X,) from
{0,1,..., N—1}, sothat each suatltuple representing the database has the same
probability J,/(';') of being selected. By sorting this database, we can construct
the order statisticsX(;) < --- < X), and the corresponding set of spacings
{Xk+1) — X@o), k=1,...,n—1. Asin Section 2.1.1, we form the statisti¢) =

Zﬂ;i In(Xw+1) — Xk + 1) to estimate the size of the compressed database.

4.1.1 Prior Work. We need to work with a discrete uniform distribution, and
so we call the problem of estimating, thediscrete spacingroblem. To the best
of our knowledge, prior work in this area has dealt exclusively with continuous
distributions. See, for example, Darling [1953], Blumenthal [1968], Pyke [1965],
and Shao and Marjorie [1995]. Pyke [1965] reviews the literature in this area.
Darling [1953] uses characteristic function techniques to obtain the following limit
theorem for the continuous spacings of independent random variables uniform
on (0 1).

THEOREM 4.1. Let Uy < Uz < -+ < Uy be the order statistics of i.i.d.
uniform(0,1) random variables 4)...,U,. Then, ify = 0.5771... is Euler's
constant,

YiciIn (Ui —Up) + 0+ 1)(Inn+y) o

=T 2, N(, 1).

However, we can not directly extend these results to the discrete case. In par-
ticular, although sampling with and without replacement are equivalent for the
continuous case, they are not so for discrete distributions. Sampling with replace-
ment causes a singularity in the logarithmic term sidge.1) — Xk = 0 with
nonzero probability.

This difficulty can be overcomed by changingX;1) — X)) to In(X1) —

Xk + 1). We develop Theorems 4.3 and 4.4 for sampling without or with replace-
ment, respectively.

At first sight, it seems feasible to apply Darling’s Theorem to our situation by
simply substituting the discrete random variabds= |[NU;|,1 < i < n for
the continuous random variabldiJ;, 1 < i < n. However, this straightforward
substitution becomes problematic since the errors will be large if we replace the
spacing term I k+1)— X +1) in Theorems 4.3 and 4.4 by the continuous version
IN(NUg+1) — NU(g) + 1) unlessNUg1) — NU(r), 1 < k < n— 1 are stochastically
large. The reason for this difficulty is obvious: the errot fadt) —Int ~ dt/t will be
small for larget. We show that this difficulty may be circumvented whiis large
enough, and specifically, wher® = o(N). A significant aspect of our approach
to the proof of Theorem 4.3 is that we estimate the possible errors caused by the
continuous approximation we use, and show them to be negligible. We then proceed
to obtain the limiting distribution. Although Darling’s Theorem is not helpful in
the proof of Theorem 4.3, it does provide an incidental benefit. The asymptotic
variance we obtain for our limit theorems is hard to estimate analytically, but we
can infer it by comparison with Theorem 4.1.
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4.1.2 A Central-Limit Theorem for Discrete Uniform SpacingS§inceAy is
the sum of a large number of random variables, we would expect the statistic to be
distributed normally. However, in order to characterize the performance of TDC,
we are especially interested in the mean and variance of this distribution.

In Theorem 4.3 below, we prove a version of the Central Limit Theorem for this
case, and show that the expected valua gfis approximatelyn[—y + In(N/n)],
wherey = 0.57721...is Euler’s constant. In contrast, the number of bits to store
X1, ..., Xp without compression iaIn N.

In showing Theorem 4.3, we first approximate the samplg (.., X,) by the
i.i.d. random variableX/, ..., X|, distributed agNU], U is uniformly distributed
over (Q 1). Obviously, because we are sampling without replacem¥nt, (. , X,)
are not independent, butrif = o(N%/?), then we expect then to be asymptotically
independent, since the probability of = X; for some 1< i < j < nis
very small. In the proof, we deal with the order statist)q§) < ... < in), or
equivalently,[NU(y)] < [NU(z)] < --- < [NU) ] using the representation

S S
U, .... Un 2(——) 5
((l) ()) St S ®)

whereYy, Yz, ... are i.i.d. exp(1) random variables, aBd= S, Y.

We use this representation form throughout the article. Therefasecan be
approximated b)[ﬂj IN(NYi11/S41), which can be analyzed using the Strong
Law of Large Numbers. In the process, however, we encounter sets with small
probabilities, with which we must deal with care. We first prove the follow-
ing lemma.

LEMMA 4.2. Let{Y,Y;,i > 1} be i.i.d.exp(l)random variables. Then
1 K1
Yo

ninn —~ Y

Proor ClearlynPr[1/Y > nInn] = n[1 — exp(~1/(nInn))] — 0 asn —
co. Then

n

1 1 B P
m (Z Vi nE[Y 11Y1§nlnn]) — 0

i=1 '
by Klass and Teicher [1977]. Thus, the lemma follows since
E -1 >¢ > -1 eX u d
jim E v ) Sy OREN Y
e—0 —Ine e—0 —Ine e—0 —e1
by the L'Hospital rule. [

-1
e expe) _ 1

We now present a theorem dealing with the performance of TDC when the
values in the database are uniformly distributed, and when the databaseaside
the attribute domain sizl,, obeyn? = o(N,).! In this case, we are able to obtain

LIt is usual to writef (n) = o(g(n)) when f andg are functions of an independent variablguch
that lim,_. o, f(n)/g(n) = 0. So we will frequently writen = o(N,) to emphasize our view dfl as a
function of the independent variabteand lim,_, ., n/N, = 0.
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accurate results without recourse to the equivalent sampling scheme described in
Section 3. In Section 4.1.3, we show how to extend these results to the case when
n? = o(N,) fails to hold.

THEOREM 4.3. Let (X4,..., X,) be n numbers sampled from the set
{0,1, ..., Ny — 1} equiprobably, and without replacement. LegyX< - - - < X
be the order statistics ofX, ..., X;), and define the random variableé, =

St In(Xs1y — Xgg + 1). Then, if f = o(Ny),
Au — nu

oy/4/N

whereuy = (N — 1)[INN, — In(n + 1) — y], ou = a/n(n— 1), andy, o are
defined in terms of a standard exponential random variable ¥ as—E(InY) =
0.57721.., or Eulers constant, andx> = Var(nY —Y) = 72/6 — 1 =
0.644934. ..

2, N(, 1),

Proor  We writeN = N,, 0 = oy, u = py for simplicity. Let X7, ..., X],
be i.i.d. random variables with common distribution ®y[= k] = 1/N for k =
0,1,...,N — 1. First, we claim the following distributional equality, which will
transform the dependent random variabl¥g,( .., X,) to i.i.d. random variables
(X35 oy XP):

(Xp, . X)) 2 (X5 .. X0IXS, ., X! are different) (6)

Forxsy, ..., % €{0,1,..., N =1}, if x, = x; for somei # |, then

PriX; =Xq,..., Xhn =X%] =0
= Pr[X] =xq,..., X, = xa| X1, ..., X;, are different]

If X1, X2, ..., X, are mutually different, then
PriX; = X1, ..., X, = Xn| X], ..., X], are different]
= Pr[X] = xq, ..., X, = xa]/ Pr[Xj, ..., X|, are different]

-1
1 n (n-1 J N _1
-9 =)
= Pr[X1 = Xq, ..., Xp = Xl
Hence, for fixed. € R,

Pzt -0 <]

n-1
=Pr|:Z IN(X{ep1) — Xy + 1) — 1 < A0 — DY%a| X}, ..., X| are differen}
k=1
=Pr[Bn|An] (say),

where Xgl) < ... < X(n) is the order statistics ofX, ..., X)), and In"x =
In(max (1 x)). Observing that P#,] = ]'[’;;}(1 — j/N) = 1+ O(n?/N) =
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1+ 0(1), and that
PI[B.] _ Pr{AB,] _PB) 1
PIiA] = PriA] —enlfel = mr s T AT

we find that PrB,|A,] is closke to PrBy]. Hence, it sufficesD to show
liMn_ o PI[Bn] = ®(A) = \/%f_oo e"/2dt asn — oo. Since X, = [NU],

whereUy, ..., U, are i.i.d. random variables uniformly distributed over 1 we
know

(Xg, -5 Xp) = (INUs ], ..., [NUp]),
which yields

(Xaay: -+ X() = (INU]. .. [NU@) ). )

LetY, Yy, ... be ii.d. exp(1) random variables, and &t = Zim:lYi. We now
make use of Eq. (5), and let event

n-1
Bn = {Z IN(INS+1/S+1) — INS/Sva] +1) — e < A(n — 1)1/2a] .
k=1

From Eq. (7), PiB,] = Pr[B,]. Now we can estimate FB}] by approximat-
ing the integer parts by the values themselves. Roughly speaking, the summand
INS1/Shi1] — INS/Si1] in the logarithmic terms will be close tdY.1/n,
which is stochastically large since we haNén — oo andS,.1/n — EY=1, by
the usual Strong Law of Large Numbers.

To be more precise, we introduce the eveatisD,, as follows:

NY; NYq S+1—(n+1)
=\ > . > = —_— | > .
&= (g 72 g =2 o= { [P -

EventDg, the complement of everld,,, leads us to the approximatidh; ~
n. If eventC, Dy occurs, then we can show by a straightforward approach that
IN(INSc1/Sh+1) — INS/Shia) 4 1) can be approximated by Nt 1/ Sh1).

Hence, we really need to show that &Dg] = 1+ o(1), or, that PrC7] +
Pr[D,] = o(1). To prove this, first PiD,] < (nInn)"*E[S;1 — (n + 1)]? = o(1).
Next, for largen, we have Pi€C,] > Pr[C,DF] > Pr[NY> > 3n,...,NYy >
3n, D] > (exp(3n/N))""1 — Pr[Dy] = 1+ o(1).

Let {x} denote the fractional part of (i.e., {x} = x — [x]), and letenx =
{N&/Si1} — INS41/S+at +1 € (0,2). If o € C,Dg, andn is sufficiently
large, we can obtain the following estimatéS;,1/(n + 1) — 1| < (Inn/n)Y/?,
1S1/(N+1) = 1= In(Si11/(N+1))| < (Si41/(n+1)—1¥ < Inn/n. From these
estimates, we now have
n—1 n—1
Z'”(LNS&HJ — Lﬁj + 1)— m —( (InYer1+y) — Sy +n+ 1)
K=1 Si‘H—l EiH-l k=1
n—-1
Zln(l—i- S1+1<9nk) +2< St 1) - 1)(51+1 1 Sh+1>
— NYic+1 n+1 n+1 n+1




676 W. B. WU AND C. V. RAVISHANKAR

Discrepancy between theoretical and experimental estimates for mean A
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Fic. 1. Uniform distribution: Agreement between Theorem 4.3 and experiment.

A

n—1 1/2
2 Inn
E S‘+1+2(—> +1Inn
k=1 NYk+l n

A
|
+
N
=3
=]

By Lemma 4.2, notice that RELDE] = 1+ o(1) andn? = o(N,), we obtain

o] [52] )

n—-1
—u = (Z(InYk+l+ Y)— Sy +n+ l) ‘ 2o,

k=1

lim L
n—oo n1/2

which leads to Theorem 4.3 via Slutsky’s Theorem ang the classical central limit
theorem [ — 1)Y26]" 1 30-1(IN Yis1 + ¥ — Yis1 + 1) — N(O, 1). The exact
value of the asymptotic variane€ is presented in Corollary 4.6 below(]

Figure 1 compares the estimates/of from Theorem 4.3 with the results of
experiments on databases of different sizes containing integers drawn uniformly
without replacement fronfl, 2, ..., 231 — 1}. Theory and experiment agree to
within a fraction of one percent even for databases as large 2 Zshowing the
robustness of the theorem, singd ~ 46, 000 in this case).

The majorideainthe proof of Theorem 4.3 was to first show the asymptotic equiv-
alence of the samplexg, ..., X,) without replacement and i.i.d. uniform(N;)
random variables under the constraift= o(N,) and hence reduce to the classi-
cal central limit theorem based on the i.i.d. case. After some minor modifications,
the proof in the second part also implies the following theorem forrthé.d.
uniform(N,) random variables.

THEOREM 4.4, Assume thath= o(Np). Let X1y < X < --- < X be the
order statistics of i.i.d. uniform(N random variables X ..., X,. DefineAy =
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S rIn(X ey — Xgg + 1) Then,
Ay —pmy o
—— — N(0, 1),
oy /ﬁ

whereuy, oy are the same as that in Theoreh8.

Remarld.5. Theorems 4.3 and 4.4 can be usedto construct confidence intervals
based on the limiting distributions.

Obtaining the exact form of the variance term is an interesting exercise. It is
somewhat challenging to obtairt = Var(InY — Y) directly, but we note that
Theorems 4.1 and 4.4 jointly lead to the following interesting observation.

COROLLARY 4.6. IfY isexp(1)distributed, them? = Var(InY —Y) = n?/6—
1=10.644934 ...

4.1.3 The Case of Large DatabasesWhenn? = o(N,) is not satisfied, we
must fall back on the equivalent sampling scheme described in Section 3. Since
for the uniform distributionp(x) = N~ for all x € F, we haveE[J,] = 1+
Zﬂ;i(l — k/n)~! by Eq. 3. Under the assumption< N/2, we claim that

‘EUﬂ—Nm(l—D) n+2
N

— 8
< ®)
Define functiong(t) = (1 — t/N)~1. Forintegek € [1,n — 1], if t € [k — 1/2,
k + 1/2], the Taylor expansion yields

’ (t - k)z "
9(t) = 9(k) + (t —K)g' (k) + ——g'(€)
for somet € [k —1/2, k+1/2]. If t € (O, N/2), then
, 2 t\ % 16
9 (t)|:‘m<l—ﬁ> SW.
Therefore
n-1/2 n—1 n-1 k+1/2
JIRECEE - CIED M N OO
1/2 k=1 k=1 | Yk=1/2
-1 16 [k+1/2 (1 _ k)2 2
< —2 ( ) dt < n2 < —.
— N2 )12 2 3N 3N
Next,
n n-1/2 n 1
E —NiInl1l-— 1 —NIn[1-— —
[JIn] n( N) < +/1/2 g(t) dt n( N) +3N
1 1 1 2n—1 n 1
< §+Nln<1—m>+§—Nln<l— N >+Nln<1—ﬁ) +3_N
n+2
< .

N
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Inequality 8 meansthat, on average, we have to dfaw —N In(1—n/N) ~ E[J,]
i.i.d. samples uniformly from{1, 2, ..., N} to getn distinct values. Therefore, in
applying Theorem 4.4 for a sample of sizeobtained without replacement, we
must use the adjusted sample sizi place ofn to get a reasonable result. We also
observe that under the assumptith= o(N,) we getn’ = —NIn(1 — n/N) =
n + O(n?/N) = n, supporting our treatment in the proof of Theorem 4.3.

It is instructive to examine the applicability of Eq. (4) here. From this equa-
tion, the adjusted sample siz€ satisfiesn = ) ;_,[1 — exp(~n/N)] =
N[1 — exp(=n’/N)], so that we have’ = —N In(1 — n/N), which is in excellent
agreement with Inequality 8.

4.2. SNGLE ATTRIBUTE, ZIPF DISTRIBUTION. We say that random variabbée
has the Zipf distribution with parametét if Pr[X = k] = k™1/Hyn, k = 1,
2,..., N, whereH, = Z:‘Zli—l. The Zipf distribution is of practical interest
because many attribute domains appear to follow this distribution in practice. It was
first studied in the context of the distributions of word frequencies in documents, but
it was soon found to arise in a wide range of other applications. Itis now known [Li
1992] that the Zipf distribution arises naturally in many contexts. For example,
when strings are formed from letters chosen randomly from an alphabet with fixed
probabilities, the distribution of words is Zipf.

The Zipf distribution can pose considerable analytical difficulties, particularly in
the context of the problem we are addressing. When we take a s&mple , X,
without replacement from the s8t= {1, ..., N}, whose elements are distributed
as Zipf(N), the joint distribution of theX; is very complicated. We find the sam-
pling equivalence results of Section 3 especially useful for this case. Theorem 4.7
below and Remark 4.2 give approximations/of based on a sampling scheme
with replacement; that is, the sample analyzed is of.d. Zipf(N) random vari-
ables. Since repetition is not allowed, we may apply the arguments in Section 3,
and useE[Jy] in place of n in Theorem 4.7 to obtain reasonable estimates
for Az.

A problem is thatE[ J,] can be calculated directly from Eq. (3) only for very
special cases; the only really tractable case may well be the uniform distribution.
We must therefore solve for from Eg. (4), and proceed as follows: Defihe =
ZiNzl[l — exp@/i)], A = n’/Hy. By the monotonicity of the functiog(t) =
1—exp(=xr/t) € (0,1) whent € [1, N],

N
2 > ‘M—f (1—exp(—/\/t)dt|
1
}\’ —_— —_—
A/N X
00 _ - 11 _ - _
- M_/ 1 — exp( X)dx—/ 1— exp(=x) de—lnﬂ
A 1 X2 0 X2 A
AN 1 _ v) —
L [ meR xy
0 X
M N A2
AMl——-IN—+1—y-1-0(—).
- ‘x P V‘ (N)
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Therefore, instead of solving for from Eq. (4) withM = n, we can solve fon’
from the approximated equation

nHy NHy
—In =1-—y. 9
pv p 1% 9)

Although an explicit formula for the root’ of Eq. (9) does not exist, we can use
the fixed-point iteration scheme

nHN
fior = f(fe), fi= f(1), f(t) = 1= T In(NFy) —In@®" keN. (10)
Since f (t) is monotone and grows very slowly, the scheme converges to a fixed
point within just a few iterations.

Before proceeding to Theorem 4.7, which deals with the estimatian pive first
adopt the foIIowing adjustments. Suppasg ..., X|, are i.i.d. Zipf (N) random
variables, withX{,, < --- < X{, being the correspondrng order statistics. Let the
quantile functio be defined such th&n(t) = kif Hx_1/Hn <t < Hyg/Hy,
fork=12,..., N

Now, for a random variabl&) u%iform on (Q 1), the quantile functiorQy(U)
as defined above satisfies Zipf) = Qn(U). For mathematical convenience, we
may takefy(t) = N, t € [0, 1] to approximateQy (t), since we have the estimate
for the total variation distance

dTv(QN(U) L fn(U)]) := supd| Pr{Qn(U) € Al — Pr[| fn(U)] € A]l, AC Z*)

k1 _Ink+1)—Ink| In(N+1)—InN _ 1
InN InN N InN

Therefore, we can us&y = Y p_; In(NVen — NV 4 1) to approximate\ ; =
s IN(X{y ;1) — X{y +1)- AstoAy, we have the following I|m|t theorem, which
asserts that under suitable conditions, the expected valng @f 1 5(1— en)?ninN,
wherep, =Inn/In N.

THEOREM 4.7. Let Uy < Uy < --- < Uy be the order statistics of i.i.d.

uniform(0,1) random variables Y, ..., U,. If limp_ o n/Nn 2 = 0 , and
sup.1INnNy/Inn = C < oo, then we have
Ay 1 5 P
——(1- 0,
nin N, 2( ) —
and
EAy 1 5
——(1- 0,
nin N, 2( pn)” —>

as n— oo, wherep, = Inn/InN.

PrROOFR We write N = N, for simplicity. The Zipf distribution is very
skewed towards the high-probability elements, so for any intkges N, the
first ko values in the order statistic§1) < Xp) < --- < X, are very likely
to be 12 ,ko. We takeky = |[hpn] here. This observation suggests that
Ay = Zk 1 In(X(kH) X + 1) should be stochastically small. In terms of our
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approximation, for the corresponding suxfy = Y7 In(NYesn — N0 4 1), we
will prove A(,/(nIn N) — 0. Since the logarithm function is concave, we may
apply Jensen’s inequality to get

! ——A; <In = koz_l(NU<k+1>_NU(k)+1) <In< 1 NU(ko)_|_1>.

Now for anye > 0,

Pr[ko 1| (kol_ NU<ko>+1)>g]

In(kg — 1) + In(N¢// — 1)
< PrjU
r[ (ko) > nN
Pr[ So/ko N+ 1In(ko — 1)+ In(N*/7n — 1)}
= >
Se/(n+1) " ko InN
Since% 1 by the Weak Law of Large Numbers and

. .n+1lintkg—1)+In(N&/m —1)
Ilmlorgf K N zllmlorgf 1—}-'0n 1+§,

we have lim_ . A /(nInN) 2 0. Next define

n—-1
Al = Z In(NU(k+1) — NY% 4 1)
k=ko
p INN o Yir1/S: Si1/S
:S]lzs(+l+2|nl N~ Ykrt/ e 4 N 7St +1)
+ k=ko
= In+ Jn(say)

Elementary calculations show ttEtZE;&O(S(H —k—1)]J? < n®, since for exp(1)
random variabley, we knowE(Y — 1) = 0, E(Y — 1)? = 1. Hence,

sm( h Zﬂ;io(kJrl)) 1

P
= ) (S41—k—=1)— 0,
n \ninN NS.1 nZg;O *

or, nInN)~I, — (1 — p?)/2 ", 0. Now we consided,. Given anye > 0, since
0 > |n(1 — N~ Yir1/ S + N~ Sk+1/3h+1) > |n(1 N Yk+1/sh+1),

Pr|

< Pr[ 1 J InN 1} + Pr[In N > 1}
= < =& 7— < = =
ninN ™" S S

< Pr|: 1 nzl In(1 — exp(=VYks1)) < —gj| + Pr|:I_N > 1]
. S

k=ko +1
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Discrepancy between theoretical and experimental estimates for mean Az
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FiG. 2. Zipf distribution: Agreement between Theorem 4.7 and experiment.

Observe that ifYk, 1 is exp(1), then - exp(—Yks1) is uniform(0,1),E In(1 —
exp(-Yki1)) = —1, hence by Markov’s inequality, the first termn —(e In N)~2
EIn(1 — exp(=Yk;1)) = (¢In N)~L. Obviously, the second term goes 0 via the
Weak Law of Large Numbers, which completes the proof of the first statement of
Theorem 4.7. By Jensen’s inequality,

IN(Np + n) -

2,
In N,

Au 1 1
0 < In NYen — NYw 4 1
<nInNn_InNn [”_1k:1( +) =

hence random variablgay /(nIn N,) — (1 — pn)?/2, n > 2} are uniformly inte-
grable. Thenthe second convergence result stated in the theorem follows easily from
the first one and the Mean Convergence Criterion [Chow and Teicher 1988].

Remark4.8. Under the conditions of Theorem 4.7, a more careful analysis

leads to the stronger result

lim M r 0

n—o00 n
whereu, = (1/2)(1— p2)nIn N +n(l—pp)(InInN —y —Inn), y = 0.5772...is
Euler’'s constant. Since the details of the proof are complicated, we omit the proof
and only provide an outline here. First, to obtaify /n 7, 0, we usethe Law ofthe
Iterated Logarithm [Chow and Teicher 1988] lim sup, [(S, — n)/+/nininn| =
/2, a much finer estimate than we can obtain from WLLN. Fgrthe estimate
used in the proof of Theorem 2 can yietd!l, — (1/2)(1 — p2)InN 7, o.
Since INN~Y«+/S1 75 0, we can use Taylor's expansion-1 N—Ye1/Su1
(In N)Yk+1/S+1. Henceld, can be further approximated by(n — ko)(y + Inn) by
the usual SLLN — ko)™ >_p_, InYiy1 —> EInY = —y andS,;1/n — 1as..
Together, these facts imply the refined limit theorem.

Figure 2 evaluates how well Remark 4.8 matches the results of experiments on
databases of different sizes containing integers drawn without replacement from a
Zipf distribution over{1, 2, ..., 23! — 1}. To validate both the analysis and the ap-
proximations driving it, we used the actual valuefof obtained from experiments
in place of Ay. Figure 2 shows the percentage difference betwep(nin N)
and u,/(nIn N). Agreement is to within a few percent even for databases that
are quite large, suggesting that our formula is an excellent predictor of experi-
mental results.
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We appear to have satisfactorily addressed the problem of estimatinigr
relatively large databases. However, the situation for small databases is somewhat
different, since the small number of samples means that the spacings between them
are likely to be larger. We now address the case where the database is small, and
present the following result.

THEOREM 4.9. Let Uy < Uz < -+ < Uy be the order statistics of i.i.d.
uniform(0,1) random variables4). .., U,. If limy_. o n/In N, = 0, then we have

. Ay 1p
lim —— =
n-conlnN, 2

and
EAy 1

im
n-conlnN, 2
PROOF.  As in the proof in Theorem 4.7, we write

n-1
Ay = Z In(NYes — NYo 4 1)
k=1

> In N n-1 n-1

Sﬁ—+1 Z S(+l + Z In(l — N*Yk+1/31+1 + N*S<+1/Sw+1)
k=1 k=1
= Iy + Ji(say)

Using the same argument as in Theorem 4.7, we haveN) 1, —1/2 2o
For anys > 0, letn > ng be large enough such that () ~1(n + 1) < 1/2, then

1
Pr[nlnN | 3n| > e]

n7
§Pr[ - In(1— N7Yt/Se1) < g, Sl 2} + Pr[ St 2}
1

n+1 n+1
<Pr In(1 — exp(—Yis1)) < —& | + Pr Sl ol
- ninN & n+17—

[EEN
[EN

pzd

>
S x
[l

1
1

Again by the same arguments as in Theorem 4.7, we kmdwi)~1Jy )

Thus the second convergence result stated in the theorem follows from the first
one via uniform integrability, which is an immediate consequence of the uniform
boundedness of the random sequeffoén N,)"*Ay —1/2,n > 2}. O

Remark4.10. Under the conditions of Theorem 4.9, we have,ligInn/
InN, = O, thusp, =~ 0. Then interestingly enough, both Theorem 4.9 and
Theorem 4.7 are consistent, and give the reBullt, ~ (1/2)nIn Np.

4.3. SPACINGS FORDISTRIBUTIONS WITH HIGH CONCENTRATION. A nonnega-
tive integer-valued random variabkis said to be highly concentrated4f takes
values in a set of few elements with high probability. Thus, the Binomial, Pois-
son, Geometric, or general Zipf distribution are highly concentrated. (The general
Zipf distribution is defined by P = k] ~ ck™, ask — oo, @« > 1.) When
highly concentrated distributions are sampled without replacement, the spacings
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Effect of reordering of uniform attributes
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Fic. 3. Two uniform attributes: Effect of attribute reordering a(u, — Au,u;)/Auyu,-

Zoy— Zays - -, Zgny — Z(n—1) are very likely to be 1, wher&,), ..., Z(, are the
order statistics oh samplesZ,, ..., Z,. Thus, the total number of bits required

in this case is likely to be close t©@(n). Defining Az simply as the sum of the
logarithms of the difference will lead to a smaller estimate since the logarithmic
terms corresponding to differences of 1 will be zero. Fortunately, adopting the con-
servative formA; = Zrk‘;i IN(Zk+1) — Z) + 1) suggested in Section 3 leads to
Az ~nlIn2, in perfect agreement with practice.

5. Optimal Ordering of Attribute Domains

When multiple attribute fieldX, X», ..., Xk are present in a database tuple, it is
clear that the ordering of the attribute fields in will influence the value resulting
from the application of (see Section 2) to the tuples. In this section, we consider
the question of how to order the attribute fields so that reaches its minimum.

5.1. INIFORM ATTRIBUTE DOMAINS.  Consider first the case when thdields
are all uniformly distributed, so thag is uniform over (1 |D; ). Somewhat contrary
to intuition, EA will remain unaffected in this case by attribute domain reordering,
since the random integet; - | Dy| - | D3| - - - | Dk| 4+ X2-| D3|+ | D4l - - - | D] +- - - + Xk
is, regardless of field ordering, always distributed uniformly over théssetl, a+
2,...,a+b}, ifwedefinea = |Dy|-|D3|---|Dg|+|D3|-|Dg4| - - - |Dg|+- - -+]|Dkl,
andb = |D;] - |Dy| - - - | Dk|. This somewhat paradoxical result is confirmed by our
simulations, which are shown in Figure 3.

5.2. NONUNIFORM ATTRIBUTE DOMAINS. The case of non-uniform attributes
is more complex. In fact, the optimal attribute ordering actually depends on the
database size. A full analysis is elusive, but we provide general characterizations
of behaviors for different cases.

5.2.1 Small Databases. Let us first consider the simplest case, where there are
only two fields, and the database contains just two records. We use the analysis
for this case to provide insights into more general situations. Suppos&that
are independent random variables distributed as Aipbnd Zipf (1) respectively.
Therefore,Z = (X, Y) = nX + Y has distribution function

Hy_ H Inx + In(z/n) + ~
Hm XHy, Inm+y Inm+y

Fz(2) =Pr[Z < 7] =
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forz=y+nx,x=1...,my=1...,n HenceZ can be approximated by
random varlabIeF‘l(U) = n exp[U (In m+ y) y], whereU is uniformon (0 1).
TakeZ;, Z; to be i.i.d. copies oZ with order statistic&Z(1) < Z(2). Now,

EAw = EIN(Z@) — Zg) + 1) ~ EIn(ne’@M™)=r _ pelalnmiy)=r)
14

2

= Inn—y+(Inm+y)[EUy+ E(Ug —Uw)] =Inn+ 3inm-3
We may, but do not derive this asymptotic formula from the original distribution
function F(z) since that route mvolves elementary but tedious calculations. We
observe that the random varlatFFeZ (U) does not take the distribution &f into
account, which appears reasonable as the first field will domikatben dealing
with a sample size of two. Hence, this approach also works for any discrete random
variablesY taking possiblyn values.

The same idea works whefis uniform on (1 m).

For integer valued random variabfetaking at mosh values, We usé&y 71(U) =
mnUto replaceZ = (X, Y) since
z
mn’

~
~

Fu(2 =PrinX+Y <nx+y] =

3| x

As before,

11
EAxy = EIn(Z@) — Z@y + 1) = EIn(mnUz — mnUg) = Inm+Inn — 5
whereZ )y < Z( is the order statistics of1, Z,.
Now let us assuma > m. From the formulas above, K is Zipf (m) andY is
Zipf(n), then

EAy ~ Inn+ 21 Yo Zinn—Y ~ EA
xy nn+3nm 3> nm+3nn 3 7~ EAyx

suggests that we need to put fiddirst to minimizeEA.

This result also appears paradoxical, since the domalfiisfsmaller than that
of Y. Intuition might have suggested that placiXgbeforeY would result both
in smaller values of, as well as longer runs of leading zeroes in the sequence
of differences, leading to a lower value af This apparent contradiction can be
resolved by considering the skew and concentration effects of the distributions
mvolved For anyp € (0, 1), the order X, Y) gives the p-percentileP;(p) =

1(p) = nexp[p(lnm+ y) — y], by Pr[(X,Y) < Pi(p)] = p, while the order
(Y X) gives thep-percentileP,(p) = mexp[p(In n+y)—y] < Pi(p). Hence, the
latter is more skewed than the former, and consequently, the sample data is more
likely to be concentrated on the left extreme, redudiidg Figure 4 convincingly
suggests this relationship by displaying the quantiles.

We may also interpret this phenomenon in terms of the distribution functions.
Clearly, for integers 1< x < m,1 <y < n, we have PriK,Y) < (x,y)] =
PriX < x] + PriX = x,Y < y] = Hy_1/Hm + Hy/(XHnHy) and Pr[, X) <
(y,X)] = PrlY < y] +PrlY =y, X < x] = Hy_1/Hn + Hx/(yHm n). It can
be shown that Pr(, Y) < (X, y)] < Pr[(Y, X) < (y XN ifl<x,xX <m1l<
y,y <nandxn+y=ym+x through arather compllcated calculation.
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Effect of attribute field ordering, X is Zipf on [0:1000], Y is Zipf on [0:100000]

100 | . I " |
90 | using order (X,Y) ——— 4
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FiG. 4. Two Zipf attributes: Characterizing skew through the distribution of quantiles.

Effect of attribute reordering: Z=Zipf(0:10%) and U=Uniform(0:10°)
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Fic. 5. Attribute reordering: One Zipf and one uniform attribute.

Another extreme case is when all the fields are Zipf distributed soXhad
Zipf (| Dj). In this situation, the analysis above suggests that to minifizewe
order fields so that the first Zipf field corresponds to the largest valy®of
the second field has the second largest value, and so on. If there exist both Zipf
and uniform distributions among those fields, one should put those field with Zipf
distributions first, then those with uniform distributions. Similarly, when there are
fields with arbitrary nonuniform distributions, we place the uniformly distributed
fields last and the field with the highest concentration first, and then the field with the
second highest concentration, and so on. Figure 5 illustrates this effect by showing
the values ofA 7y and Ay z obtained through experiment.

Our analysis began by assuming a database size of 2, but can clearly be extended
to databases of size small relativetb = []; |Di|. The concentration effect is
again the key to determining the optimal ordering. We note however, that for two
Zipfrandom variables, the advantage of optimal ordering over an arbitrary ordering
seems small sincBA,, — EA,, ~ 1/3In(n/m), which is significant only when the
ration/m is extremely large. Even fan = 10'® andm = 10, the difference is
merely 51n 10, which is not very significant.

5.2.2 Large Databases. Consider now the case when database siadarge,
but we still have two Zipf attributeX andY. The situation is now quite different,
since the concentration effect will no longer be crucial in determitingVhether
we order the attributes aX(Y) or (Y, X), itis very likely that the initial segment
of the order statistic& (1) < Zp) < --- < Zg) Will be the first consecutivel
integers for somd e N. Thus, the lower values in the Zipf range are very likely to
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Effect of reordering of Zipf attributes, Z,=Zipf(0:10%), Z,=Zipf(0:231-1)
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FiG. 6. Attribute reordering: two Zipf attributes.

be quickly exhausted; so that their contributiomt@re small since is relatively
large. The main contributions #® will come from the elements at the right extreme
of the these order statistics.

From Jensen’s inequality, we have; < (k — 1) In[(Zg) — Z@w)/(k — D)]. It
is intuitively clear that the two sides of this inequality will be closer together if
spacingsZi) — Zw, ..., Zgy — Zx-1) are close to each other. Sinkes large,
Z is close tomn for both orderings. Therefore, nonuniformity within the set
of spacings is really an issue. Such nonuniformity is most significant at the right
extreme, and more uniformity will lead to highdar. The quantile plot shown in
Figure 4 of X, Y) and (¥, X) shows that the former displays less uniformity at
the right extreme, so that we expect the correspondirtg be smaller. Figure 6
illustrates this effect through experiments on two Zipf domains &ith< Z,. For
smaller database sizes, the ordeZ, yields lowerA values (in agreement with
our results in Section 5.2.1), while the ord&rZ, is better for larger database sizes.

Although this discussion provides adequate intuition for understanding the dif-
ference between the two orderings for small and large database sizes, it appears to
be quite difficult to quantify and compare the effects caused by concentration and
non-uniformity. It also appears difficult to determine the borderline represented by
the value ok. We suggest that K < m = min(m, n), then we use ordering/( X)
and otherwise we useX( Y).

6. Limit Theorems for the Multifield Case

We now turn to the problem of estimating values &f when the database

has several fields. Suppose the databasekhizalds drawn from independent
opmains Dy, ..., Dy, respectively. Consider the corresponding random vector
X = (Xq,..., Xg) with X; taking values in{1, ..., |Dj|},i = 1,...,k. Asin
Section 2, this random vector can be represented by the corresponding random
integerXy - [Da| -+ |Dk| + - -+ + Xg_1 - [ Dk| + Xk.

Our analysisin Section 5 showed that lower values oésult when the uniformly
distributed domains are placed at the least-significant end of the tuple. In this case,
the remaining nonuniform domains will be placed in some suitable order at the
head of the tuple. We may view these nonuniformly distributed domains as jointly
constituting a single composite domain with an arbitrary discrete distribution.

Let us therefore model the nonuniform domals ..., Xy_1 as a single ran-
dom variableZ with and arbitrary distribution, and assuming values in the set
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{1,...,d} with probabilites Prf = k] = px > 0,k = 1,...,d for some
fixedd € N. The remaining fieldXn, . .., Xk have uniform distributions, whence
Xm-|D3| -+ |Dk| +-- -+ Xk_1- | Dk| + Xk may be collapsed into a single random
variableU uniformly distributed over the sda + 1,a + 2,...,a + b}, where
a=|Dmy1|---|Dkl + -+ [Dk-1l - [Dk| + |Dk| andb = |Dp| - - - | D]

Thus, in estimating\, we can collapse the field§,, . .., Xk into just two fields.
Let Z be an arbitrary discrete random variable assuming valuesf{fto®,. . ., d},
andU be uniform on{1, 2, ..., u,}. Let Z andU be independent, and form the
random vectorZ,U). LetY; = (Z;,U;),i = 1,...,n, ben i.i.d. copies of this
vector. TakeY() < Y(2) < --- < Y(n to be the order statistics of th¢. Now form
the statisticApy = ZP:_:I:_L IN(Yii+1 — Yi) + 1).

If Z is uniform on{l,2,...,d}, then £, U) can be viewed as single large
uniformly distributed field. Theorem 4.3 can be directly applied to obtain the follow-
ing result.

COROLLARY 6.1. If n2 = o(uy), then (Apy — wn)/o BN N(O, 1), where
o =an*? pun= (M —21)(Ind+Inu, —y — In(n + 1)).

If the distribution ofZ is not uniform, we may proceed as follows. Sirncean
take at most values, we would expectto see groups of tuples in the database sharing
the same value in their first fields. When the database is sorted, tuples in each such
cluster will appear together, and their differences will show a zero value in the first
field. We call each such cluster of tuples in the sorted database herefore,
we may split the original database irdesmaller databases, each defined by a run
corresponding to a value &, with the jth run havingN; = Y, 1(Zi = j)
records. Since we may haw; = 0, we allow runs to be empty. Consequently,
Apu, the overall statistic to estimate database size, can be decomposed into two
components: one to model the spacings within the runs, and one to model the
spacings across the runs. That is,

d d—1
D
Apy =) Aj+ Y InUji11—Ujn, +Un+ 1) = Ay + Ap.
j=1 j=1

In this formula,A; = i'\il_lln(uj,iﬂ —Uji +1), orgivenN; =1, Aj =
Aj(l) = Z'i;iln(uj,iﬂ_—ujgi +1),Uj1 <Uj2 <---Ujisthe order statistics of
Uj1 ..., Uj, where{U;;,1 < j <d,i >0}, are i.i.d. random variables uniform
on{l,...,uy}andindependentd,, ..., Z,. Ay is the contribution to\ py from
within runs, andAp, can be regarded as the spacings between consecutive runs.

Obviously, (Ni,..., Ng) follows the multinomial distribution Multi(n;

P, ..., Pda), SO thatN; has distributionBin(n; p;). As in Shiryayev [1995], we
may therefore write the inequality PN;/n — p;j| > ¢] < 2 exp(2ne?) for ev-
erye > 0. WhenN; = 0 or 1, we use the conventioh; = 0, and define the
corresponding summand i, to be 0. However, given the large-deviation style
inequality above, we are assured thit= 0 or 1 with exponentially small prob-
abilities. Therefore, in pursuing the limiting distribution Ay in Theorem 6.2,
we may assume without undue concern tRat> 2.

We now state the main theorem that allows us to estimate the size of a compressed
database with multiple attributes.
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THEOREM 6.2. Let each record in the database comprise two discrete random

fields(Z, U), where Z is an arbitrary distribution oft, . . ., d}, and U is uniform
on{l,...,un}. If n? = o(u,), then as n— oo,
A —
DU — MDU i) N(O, 1),
where

MDU—Z(an—l)(Inun |n(np,)—y)+Zl (np o ):=uw+ub
]

and
d d 2

B=a’+) pilnp;)® - (Z p; In p,—) , a’=7%/6—1=0.644934--.
i=1 =1

PrROOF We first motivate the result with heuristics before proceeding to the
rigorous argument. Sincl; has distributiorBin(n; p;), we can replacéN; with
the meamp;. ThenEUj 11 ~ Uy/(NPj+1), E(Un — Uj n;) = Un/(Npj), SO we
approxmateEAb by ,u,b By Theorem 4 3, the medbA,, ~ Mw and the variance
is Y 4 a?np, = o?n. The partn[z _1 pj(In pj)? — (ZJ _1pjIn p;)?] in the
overall variancen8? can be mterpreted as the uncertainty in choosing differences
across runs, which correspondsAg.

Now let us proceed the rigid argument. Boe> 1, setu(k) = (k — 1)(—y +
Inu, —Ink), and letu(k) = O if k < 1. To obtain the limiting distribution, we apply
the Lévy Continuity Theorem by analyzing characteristic functions. We first note
that givenN; = ny, ..., Ng = ng, Ay, ..., Aq are independent. Hence, foe R,
we have via conditioning,

exp[«/_t Z w}

- E{E{exp(d—_ltZ“(Nj)_“(npj)

= vl
d
Aj — n(Nj)
T I

9 u(ND) — (.
- E{exp(J—_ltZ“(N’) “(np’)>
=1

1)

Aj — (Nj)
x [TE| exp| v—1t 21—
IR
We next assert the three convergence results (11), (12), and (13) and proceed to
prove them using the Lebesgue Dominated Convergence Theorem and Slutsky’s
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Theorem. These results will lead to Theorem 6.2 via tbetContinuity Theorem.

(N 2042
E|:exp<\/—_1tA17n(Nj)) NJ} —> exp( azp,t )a.s., (11)

NG

d

2
#ND = 10P) 2 oS o2 (d _ )
— , ) pi(inpj)” — pjInp . (12

andforj =1,...,d,

1 u u
W[In(uj+l,l —Ujn +Un+1)— In(—n + = ):| 2.0 (13)

np;  NpPj+1
To show (11), we proceed as follows: Since eveN{ = I} and Aj(l) are
independent,
Aj — u(Nj) Aj(l) — u()
o N o s )
= g(t;n,1).

Define setZ, = {l € N, I € (np; — n?3, np; + n%3)}. Observing that

E|:exp(\/—_1tAj_4M(Nj)> NJ} — exp<_a22pjt2)‘

NG
lim sup (Z + Z)

2D
g(t;n,l)—exp( @”pjt )
n=>o00  \lez, I¢7, 2

o2
g(t;n,l)—exp( azp,t>

limsup

n—oo

< limsupsup

n—oo le7Z,

+ 2limsupl(N; € Zp) := A+ B,

n—oo

for (11), we only need to show = 0, B = 0 a.s. Again, by inequality Pij\; /n —
pil > &] < 2expE2ne?), iMoo D no PI[N) & Zn] < 2liMisoe X opoyk
exp[-2n(n~%3)?] = 0. HenceB = 0 a.s. via the Borel-Cantelli lemma.Af £ 0,
then there exists an > 0, a subsequencg’} ¢ N andl(n’) € Z, such that
along this subsequencegy(t; n', I(n')) — exp(—a?p;t?/2)| > ¢. However, by the
Levy Continuity Theorem, we do havg(t; n',1(n")) — exp(—a?p;t?/2)] — 0
following from (0")=Y2[A;(1(n")) — n(I(n))] 2, N(O, o2 p;), which is due to
I(n)/n" — p; and p2(N)]"Y2[A;(0(N)) — w((M))] BN N(O, 1) asserted by
Theorem 4.3 sincgn’) — oo.

To prove (12), defingd, = (Ni/n,...,Ng/n), p = (p1,..., pg), and the
entropy functionv(§) = Z?Zl gj Inq; for a d-dimensional probability vec-

tor §=(qy, ..., qq). g;y the classical Central Limit Theorem for vectors, we
haven?(p, — p) — N(0O, ), where X is ad x d positive definite matrix
with Zi; = pi(1 — p), Zij = —pi pj. Using the Delta method [van der Vaart

1998], which expands a function of random variables about its mean with a 1-step
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Taylor expansion to compute its variance, we now have

53 (2;) ) (14)

In view of n¥2(p, — p) 2, N(0, £), Taylor's expansionv(p,) — v(p) ~
(Pn — P)(@v/34)°|p gives some intuition of the application of the Delta method
for (14). Now we can use (14) to prove (12) by writing

av
a4

NY2[v(pn) — V()] —> N (o

d d o
S TNy — up)l = > In % + n[v(P) — v(pn)l,

j=1 j=1 J
since

Pn,j — pj a.s. and—

v < >
by
9q|, \ag

For (13), we only need to show that

Z pi(in p)* — (Z piIn p.> :

p

npPj 11

Ujy11= OP(l) (Un Ujn;) = Or(1).

n
The notationX,, = Op(1), as in van der Vaart [1998], means that the random
sequenceX, is stochastically bounded; that is, for each> 0, there exists a
K = K(e) > O such that syp ; Pr[| Xn| > K] < . In fact, it is possible to obtain
the stronger result

nPj 11
n

Here we only prove the second case since the first one can be derived similarly.
Actually, forx > 0,

np-
Uji11 —> exp(l) = Ujn) 2 exp(1) (15)
n

np
lim Pr[u—(un Uj.n;) > x}

n—o0

P
nlewZPr[ u‘(un —Uj)) > x N; _|]
= lim i(i{u —ﬁD PrN; =]
n—o0 -1 un n |”|pJ !
I. E l UnX npj NJ/(npj)
LE[GEEIN

= exp(=Xx).

The last step follows from the Lebesgue Dominated Convergence Theorem.

Figure 7 shows how closely Theorem 6.2 agrees with values olbserved in
practice. We generated two datasets, each with two distributions, one skewed and
one uniform. The skewed distribution in the first dataset was Zipf(100), and its
second field being uniform over (007). The other dataset had its first field dis-
tributed asBinomial(10, 1/3), with its second field being uniform over, (D0°).
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Discrepancy between theoretical and experimental estimates for mean Apyy
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Fic. 7. Multiple fields: Agreement between Theorem 6.2 and experiment.

Agreement in both cases is to within a fraction of one percent over a large range,
illustrating the power of Theorem 6.2.

Remark6.3. The reader may observe that, in order to obtain a more accurate
estimate ofEA, = Z?_l In(Uj111 — Uj N, + Un + 1), one must take advantage
of the limiting distributions olJ; 1 1 andu, — U n; specified by (15) since bias
will be caused if we directly repladg; 1 1, Uy — Uj n; by their asymptotic means
Un/(NPj11), Un/(NP;). This goal can be achieved by the following steps. (We again
omitthe details because ofthe overwhelming complexity.) First, gieamdN; 1,
Ujs11, Un—Uj N, areindependent, sindg, N;, ; are asymptotically independent.
So we have
np; n
P+ S — U)o =L+ 2,
n Pj+1 Pj
whereYy, Y, are two i.i.d. exp(1) random variables. Next, following a careful esti-
mation, the random sequence in the proceeding display can be shown to be uniform
integrable. Hence,

lim EAp—(d — 1)In— ZEIn( AE Yz)

Pi+1  Pj

Finally, an elementary but interesting computation leads to

Y1 Y-
Eln(p,+1+ p,) / / exp( (s+t))|n( " _)dsdt

Pj N Pj+1— Pj+1lnp;
Pj+1— Pj

through the parameter transformation= s/p; 1 +1t/pj, y = s+t. To summa-

rize, we outlined a better estimate

d-1

Un Pj In Pj4+1 — Pj+1In p;

EAp=(d—-21)| In— — + .
o= )[ n y] Z Pj+1— Pj

Remark6.4. If the conditionn® = o(u,) does not hold, we would use the
techniques in Section 3. An equivalent sampling scheme must be adopted with
replaced by the adjusted siné
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7. Conclusions and Future Work

This article provides the theoretical foundations for the Tuple Difference Coding
method for compressing Large databases and data warehouses. As already noted,
practical interest is growing in the TDC method, and the results given in this paper
will help in the task of organizing the data in the warehouse so as to maximize the
effects of compression.

The problem of estimating the effectiveness of compression using TDC reduces
to the problem of estimating the sum of the logarithms of the spacings between el-
ements of samples taken without replacement. This is a nontrivial problem, but for
the purpose of estimating compression efficiency, we may consider the problem ef-
fectively solved using the techniques we have developed. In particular, the approach
we develop in Section 3 to sampling without replacement in terms of sampling with
replacement is likely to be useful beyond its applications in this paper.

This article provides methods for estimating the compression for cases where
the population from which database records are sampled is either uniform, Zipf, or
the product of a uniform distribution and an arbitrary distribution. We have verified
our theoretical results by conducting experiments, and agreement between theory
and practice is always within a few percent, and to within a fraction of a percent in
most cases.

The issue most in need of additional work is that of optimal ordering of attribute
domains for achieving optimal compression. We have made significant progress
on the issue in this paper, but do not yet have strong analytical results. This is
material for further work. Also, our analysis in this article assumes knowledge of
data distributions, but in practice, this information is not always available. Much
more likely is nonparametric knowledge of data characteristics, such as variance,
skew, or information such as “80% of data is formed from 20% of the values.” The
estimation of compression efficiency from such non-parametric information is an
important area of future work.

From the probability theory and statistics viewpoint, it appears quite important to
derive the asymptotic distributions for discrete spacings under proper scaling. The
results available to date require the strong assumption that the distribution functions
are absolute continuous.
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