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Abstract. We characterize the performance of difference coding for compressing sets and database
relations through an analysis of the problem of estimating the number of bits needed for storing
the spacings between values in sets of integers. We provide analytical expressions for estimating
the effectiveness of difference coding when the elements of the sets or the attribute fields in database
tuples are drawn from the uniform and Zipf distributions. We also examine the case where a uniformly
distributed domain is combined with a Zipf distribution, and with an arbitrary distribution. We present
limit theorems for most cases, and probabilistic convergence results in other cases. We also examine
the effects of attribute domain reordering on the compression ratio. Our simulations show excellent
agreement with theory.
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1. Introduction

Difference coding, a widely used method [Netravali and Haskell 1988; Viterbi and
Omura 1979], represents a series of values by the differences between them. In
most applications, successive values in the original sequence are correlated, so
that their differences are small, yielding compression. The coding is lossless if the
differences are preserved exactly, but this technique is sometimes combined with
quantization to convert a continuous range of difference values to a discrete range
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of output values. Quantization results in lossy compression, which is acceptable in
applications like image or voice coding [Netravali and Haskell 1988].

Lossy compression is generally not appropriate for compressing relational
databases, but lossless difference coding has been used in this domain [Ng and
Ravishankar 1997]. Compression in databases has significant practical advantages.
Commercial databases can be very large, and data warehouse sizes can easily reach
1012–1013 bytes or more. Disk I/O tends to be the bottleneck to query perfor-
mance, since queries of interest frequently request statistics formed over a large
number of records from the database. Database compression reduces both storage
requirements as well as the data transfer volumes between disk and main memory.
Compression reduces I/O bandwidth requirements at the cost of higher processor
loads. This is a desirable trade-off, since processor performance is improving much
faster than disk performance.

Difference coding is particularly applicable to sets and databases, since the
usual requirement that the ordering between elements be preserved no longer
applies. We are at liberty to choose the ordering between the elements of a set that
maximizes the compression. The Tuple-Difference Coding (TDC) method [Ng
and Ravishankar 1997] for database compression is based on this insight. Each
tuple in a database table is first treated as an integer, and the table sorted by rows.
Successive tuples are then differenced, and the differences used to represent the
table. Thei th tuple in the table can be reconstructed from the first tuple and the first
(i − 1) difference values. In practice, to avoid such laborious reconstruction, the
sorted table is partitioned into disk-block sized chunks and TDC applied separately
to each chunk. This approach has been shown to perform well in practice when
used for compressing relational databases.

In this article, we evaluate the performance of difference coding applied to the
more general context of sets of integers. Our results will apply directly to relational
databases, since a relational table is a set of tuples, and can be modeled as a sample
of integers from a large but finite set. In the remainder of the article, we will therefore
treat the terms “database” and “set” as equivalent.

2. Tuple-Difference Coding

The original work describing TDC [Ng and Ravishankar 1997] discusses practical
details such as how to handle textual attributes in TDC, and provides experimental
results on query times and other performance parameters in practice. It demonstrates
that TDC is superior to other database compression methods currently in use, and
provides both better compression as well as faster query response times. A number
of factors affecting compression are listed and their effects discussed in qualitative
terms in [Ng and Ravishankar 1997].

Our present purpose is to provide a sounder theoretical basis for the performance
characteristics of difference coding applied to sets and relational tables.

2.1. A MODEL FORPERFORMANCEANALYSIS. We sayR is a relational schema
overD1, D2, . . . , Dr with Di = {0, 1, . . . , |Di |−1} being thei th attribute domain1

1 We will sometimes specify the domain as{1, 2, . . . , |Di |} instead. However, this change of notation
will not alter the semantics of compression, since TDC is based on the spacings between successive
samples.
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if R = D1× D2× · · ·× Dr . We callD a database with schemaR if D ⊆ R. Each
record in the database is anr -tuple〈d1, d2, . . . ,dr 〉, with di ∈ Di .

TDC works as follows: given a databaseD = {t1, t2, . . . , tn} of tuples, a bijective
mappingϕ : D → NR is constructed, whereNR = {0, 1, . . . , |R| − 1}. Next,ϕ
used to map each database recordtk to an integer, and the database is sorted onϕ(tk)
as key. Successive tuples are differenced, and the differencesϕ(tk+1) − ϕ(tk) are
stored instead of the original tuplestk andtk+1 themselves. These differences tend
to be significantly smaller than the original tuples, thus achieving compression.
In practice, it is convenient to use aϕ that is equivalent to lexicographic sorting.
Formally, given a tupletk = 〈d1, d2, . . . ,dr 〉, with di ∈ Di ,

ϕ(tk) =
r∑

i=1

di

(
r∏

j=i+1

|Dj |
)
, (1)

so thatdi is simply treated as a digit with base|Di |, andtk becomes a mixed-radix
number. This mapping is invertible, so compression is lossless.

2.1.1. Some Issues.Two points are worthy of note. First, the distribution of
values in different attribute domainsDi andDj is typically different, though there
may be correlations between the domains. Second, the actual ordering of theDi
in the product space defining the schemaR is typically immaterial to the data-
base semantics.

It is reasonable, therefore, to view a database as a sample from the joint dis-
tribution of the domainsDi . Since a database table is a set of tuples, it will not
contain duplicate tuples, so this sample must be taken without replacement from
the joint distribution space. We proceed to form the database by choosingn samples
(X1, . . . , Xn) from the joint distribution spaceF(D1, D2, . . . , Dr ). Since this sam-
pling must be performed without replacement, these are not i.i.d. random variables,
a fact that causes significant technical difficulties for our analysis in the remainder
of the paper. When no compression is performed, we must allocate enough space
in the tuple to accommodateanyvalue that may need to be stored in the database.
Thus, if N = |D1| · |D2| · · · |Dr |, each tuple will need to be at least log2 N bits in
length, and the entire database will ben log2 N bits in size.

We can apply TDC as follows: By sorting onϕ(Xi ) (see Eq. (1)), we can con-
struct the sorted databaseX(1) <ϕ · · · <ϕ X(n), and by differencing them, the
corresponding set ofn − 1 tuple spacings{δk = X(k+1) − X(k)}. Thus, estimat-
ing the size characteristics of the compressed database is equivalent to estimating∑n−1

k=1dlog2(δk + 1)e.
For convenience, we use natural logarithms rather than base-2 logarithms, and

form the statistic3F =
∑n−1

k=1 ln(X(k+1) − X(k) + 1). In practice,3F represents
a lower bound on the size of the database, since additional real-world overhead
is involved in coding and representing these values. However, such overheads are
trivially estimated. Our chief challenge in the remainder of the article will be to
estimate3F for different attribute spacesF .

While the ordering of attribute domainsDi is irrelevant to semantics, some or-
dering must be chosen for storing the tuples on disk. Lexicographic sorting is used
to order the tuples, but we also consider the problem of optimal ordering of the
attribute domains to minimize3F . Also, when correlations exist between the at-
tribute domains inR, the entropy of the database is lowered, so that compression
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methods tend to perform better in such cases. To obtain lower bounds on the perfor-
mance of TDC, we therefore assume that attribute domains are uncorrelated. This
model will form the basis for further analysis.

2.2. SOMEUSEFULRESULTS FROMPROBABILITY THEORY. In our development,
we find the following well-known results [Chow and Teicher 1988; Shiryayev 1995]
from probability theory useful. We state them without proof.

THEOREM 2.1 (SLUTSKY’S THEOREM). If the sequences{X1k}, {X2k}, . . . ,
{Xrk}, k = 1, 2, . . . of random variables (r is fixed) are stochastically con-
vergent to the constants a1,a2, . . . ,ar , then an arbitrary rational function
R(X1k, X2k, . . . , Xrk) converges to the constant R(a1,a2, . . . ,ar ), provided this
constant is finite.

THEOREM 2.2 (LEBESGUE’S DOMINATED CONVERGENCE THEOREM). Let
η, ξ, ξ1, ξ2, . . . be random variables such that|ξn| ≤ η, Eη < ∞, and ξn →
ξ (a.s.). Then E|ξ | <∞, Eξn→ Eξ , and E|ξn − ξ | → 0 as n→∞.

THEOREM 2.3 (LÉVY’SCONTINUITY THEOREM). Let fn(t) = E exp(
√−1tξn),

t ∈ R be the characteristic functions ofξ1, ξ2, . . . , If ξn
D−→ ξ , then fn(t) →

f (t) uniformly in|t | ≤ T for all T > 0, where f(t) is the characteristic function of
ξ . Conversely, if fn(t) converges to a limit f(t) on (−∞,∞) which is continuous
at t = 0, then f(t) is a characteristic function of some random variableξ and

ξn
D−→ ξ .

3. An Equivalent Sampling Scheme and Related Topics

In Section 2.1.1, then samplesX1, . . . , Xn drawn from the setF were assumed to
be mutually different since the database is a set. This scheme of sampling without
replacement may be modeled as follows. Suppose|F | = N and the first sampleX1
has distribution Pr[X1 = x1] = p(x1) for x1 ∈ F . Given the first outcomeX1 = x1,
X2 can only be drawn from the setF −{x1} with mass functionp(x2)/[1− p(x1)].
Inductively, givenX1 = x1, X2 = x2, . . . , Xk−1 = xk−1, we have the conditional
probability

Pr[Xk = xk|X1 = x1, X2 = x2, . . . , Xk−1 = xk−1] = p(xk)

1−∑k−1
i=1 p(xi )

for xk ∈ F − {x1, . . . , xk−1}, k = 2, . . . ,n. Hence, the joint distribution of
X1, . . . , Xn will have the form

Pr[X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn] =
n∏

k=1

p(xk)

1−∑k−1
i=1 p(xi )

,

which is complicated enough to make a direct analysis of the corresponding order
statisticsX(1) < · · · < X(n) intractable. The random variablesX1, . . . , Xn are
related in an extremely complicated fashion due to the dependence ofXk on all the
previous outcomesX1, . . . , Xk−1. We must resort to some suitable transformations
and approximations here.

We therefore introduce the following alternative scheme based on sampling with
replacement, and show that it is equivalent to the one just described. We also use this
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alternative scheme to build databases when testing the validity of our theoretical
analysis through simulations. Let{X1, Z, Zi , i ≥ 1} be i.i.d. random variables.
Define stopping times

J1 ≡ 1, Jk+1 = inf{i > Jk : Zi 6∈ {ZJ1, . . . , ZJk}}, k ≥ 1.

For anyn, Jn can be shown to be proper in the sense that Pr[Jn <∞] = 1, which
follows immediately from the following Eq. (3). Based on{Jn, n ≥ 1}, we can
naturally obtainn mutually different random variablesZJ1, . . . , ZJn . We show that

(X1, . . . , Xn)
D= (ZJ1, . . . , ZJn). (2)

Set conditional probabilityP̂r[·] = Pr[·|ZJ1 = x1, . . . , ZJk = xk]. Using the
Markov property, we have

P̂r[ZJk+1 = xk+1]

=
∞∑

l=1

P̂r[ZJk+l = xk+1, ZJk+ j ∈ {x1, . . . , xk}, for j = 1, . . . , l − 1]

=
∞∑

l=1

Pr[Z = xk+1] Pr[Z ∈ {x1, . . . , xk}]l−1

= p(xk)

1−∑k−1
i=1 p(xi )

,

proving Eq. (2).
Let Tk = Jk+1− Jk, k ≥ 1. It is easy to see that given the outcomes (x1, . . . , xn),

the valuesTk are geometrically distributed with mean (1−∑k
i=1 p(xi ))−1. On aver-

age, we needE[ Jn] i.i.d. random variables to obtainn different values. This connec-
tion between the two sampling schemes enables us to work with an i.i.d. sampling
scheme instead of the more complex scheme of sampling without replacement.

To illustrate the use of this idea, consider Theorem 4.7 below, which analyzes
the performance of TDC on databases which may be modeled by sampling a Zipf
variablewithout replacement. The theorem, in fact, gives approximations ofE3Z
based on a sampling schemewith replacement; that is, the proof of the theorem
is developed in terms ofn i.i.d. Zipf (N) random variables. Therefore, in applying
Theorem 4.7 to obtain a reasonable estimate forE3Z when replacement isnot
allowed, we would useE[ Jn] in place ofn.

However, it is still extremely difficult to use

E[ Jn] = 1+
n−1∑
k=1

E[Tj ] = 1+
n−1∑
k=1

E

[
1−

k∑
i=1

p(Xi )

]−1

(3)

directly, given the very complicated nature of the joint distribution of (X1, . . . , Xn).
We finesse this problem by considering the converse issue:

QUESTION. Given n′ i.i.d. random variablesZ1, . . . , Zn′ , what is the num-
ber of different elements in this sample? Equivalently, what is the cardinality of
{Z1, . . . , Zn′ }?

In this set up,n′ and |{Z1, . . . , Zn′ }| assume the roles ofE[ Jn] and n, re-
spectively, in the original problem. This converse can be interpreted as random
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allocation problem, which is extensively studied in the literature, especially for
weak convergence in terms of the Central Limit Theorem and Poisson approxima-
tions (c.f. Kolchin et al. [1978]). This converse question has also been studied in
Csörgő and Wu [2000] for the case whereZ has uniform distribution, using large
deviation techniques.

Suppose we haveN cells labeled by 1, . . . , N, and we view the random variables
Z1, . . . , Zn′ asn′ balls with ball j being allocated to cellZ j . Define random variables
Yi =

∑n′
j=1 1(Z j = i ), i = 1, . . . , N, representing the number of balls in thei th

cell, where 1(A) is the indicator function. Hence, the number of occupied cells
|{Z1, . . . , Zn′ }| =

∑N
i=1 1(Yi > 0). Now (Y1, . . . ,YN) follows the multinomial

distributionMulti(n′; p(1), . . . , p(N)). Let Vi have Poisson distribution with mean
n′p(i ) and suppose that{Vi , 1 ≤ i ≤ N} are independent. Then, we have the
following Poisson representation of the multinomial distribution

(Y1, . . . ,YN)
D= (V1, . . . ,VN |V1+ · · · + VN = n′).

LEMMA 3.1. Let Ii , 1 ≤ i ≤ N be independent Bernoulli random variables
with qi = Pr[Ii = 1] = 1− exp (−n′p(i )). ThenPr[|∑N

i=1(Ii − qi )| > n′ε] ≤
2 exp (−n′ε2/3) holds for all0< ε ≤ 1/10.

PROOF. Let t > 0. DenoteSN =
∑N

i=1(Ii −qi ). Then, by Markov’s inequality,

log Pr[SN > n′ε] ≤ log[exp(−n′εt)E(eSN )]

= −n′εt +
N∑

i=1

log[exp(−tqi )(1− qi )+ exp(t(1− qi )) qi ].

Elementary manipulations show that log[exp(−tq)(1− q) + exp(t(1− q)) q] ≤
t2(1.1q − q2)/2 holds for all 0< t < 1/10 and 0< q < 1. Let setsI = {i : 1 ≤
i ≤ N, n′p(i ) ≥ 1} andJ = {1, . . . , N}−I. Then|I| ≤ n′ since

∑N
i=1 p(i ) = 1.

If i ∈ J , thenn′p(i ) < 1 and henceqi ≤ n′p(i ) since 1− exp(−t) ≤ t for
0≤ t ≤ 1. Clearly, for allq, 1.1q − q2 ≤ 0.552. So

N∑
i=1

(
1.1qi − q2

i

) = ∑
i∈I
+
∑
i∈J
≤
∑
i∈I

0.552+
∑
i∈J

1.1n′p(i )

≤ 0.552|I| + 1.1n′ ≤ 1.4025n′.

Hence, log Pr[SN > n′ε] ≤ −n′εt + t21.4025n′/2 ≤ −n′ε2/3 by letting t =
ε/1.4025. The other case Pr[SN < −n′ε] can be handled similarly.

Remark3.2. The constants in the upper bound in Lemma 3.1 are not best
possible, but it suffices for our application. The classical Hoeffding’s inequality
[Hoeffding 1963] can yield a bound of order exp[−2(n′ε)2/N], which appears to
be too rough in our context sinceN is typically much larger thann′.

Let M = ∑N
i=1 Pr[Vi > 0] = ∑N

i=1[1 − exp(−n′p(i ))]. Then, applying
Lemma 3.1 toIi = 1(Yi > 0), we have

Pr

[∣∣∣∣∣ N∑
i=1

1(Yi > 0)− M

∣∣∣∣∣ ≥ n′ε

]
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= Pr

[∣∣∣∣∣ N∑
i=1

1(Vi > 0)− M

∣∣∣∣∣ ≥ n′ε

∣∣∣∣∣V1+ · · · + VN = n′
]

≤ Pr
[∣∣∑N

i=1 1(Vi > 0)− M
∣∣ ≥ n′ε

]
Pr[V1+ · · · + VN = n′]

≤ en′n′n
′

n′!
2 exp(−n′ε2/3)= O(1)

√
n′ exp(−n′ε2/3),

which vanishes to 0 at a geometric rate. Hence

1

n′

[
N∑

i=1

1(Yi > 0)− M

]
P−→ 0.

Therefore, it is reasonable to takeM as the expected number of occupied cells,
and the expected number of i.i.d. copies needed,n′, can be approximated via the
equation

n = M =
N∑

i=1

[1− exp(−n′p(i ))]. (4)

This scheme causes a complication if the definition of3 given in Section 2.1.1
is used directly. LetZ(1) ≤ · · · ≤ Z(n′) be the order statistics ofZ1, . . . , Zn′ .
Since we cannot guarantee that theZi are mutually different, some of these
spacings may be zero. The definition of3 in Section 2.1.1 is unusable since
it involves the logarithms for these spacings. Instead, we should use one of the
forms3Z =

∑n′−1
k=1 ln max(Z(k+1)− Z(k), 1) or3Z =

∑n′−1
k=1 ln(Z(k+1)− Z(k) + 1).

In this article, we suggest the second form, which appears conservative, and is math-
ematically convenient. In addition, it captures an aspect of the real world: whenever
Z(k+1) − Z(k) = 1 in practice, we need one bit to store the difference. However,
the corresponding term in the first form goes to zero and makes no contribution to
the sum. Numerical simulation indicates that the difference between the two forms
is negligible.

4. Limit Theorems for the Single-Field Case

We begin our analysis of the TDC technique with the simplest case. We assume
that the database consists ofn tuples, each tuple comprising a single attribute field
A. This is a reasonable starting point for two reasons. First, in some cases, we are
able to reduce the general case ofr attribute domains to the case of a single attribute
domain. Second, we use the single-attribute results to construct an analysis for the
multiple-domain case.

4.1. SINGLE ATTRIBUTE, UNIFORM DISTRIBUTION. We first consider the case
when the attribute values are drawn uniformly from a single attribute domain of size
N. The uniform distribution is interesting for several reasons. First, many attributes
domains that appear in practice are uniform. Second, the uniform distribution is
known to yield the largest value for the sum of sample spacings of all distributions
defined over a given range [Shao and Marjorie 1995]. In this sense, the behavior
for the uniform distribution form a lower bound for the compression efficiency
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of TDC. Also, the uniform distribution is a “least informative” distribution over
a given range, and is useful as a model when little is known about a distribution.
Finally, as we show in Section 5, a set ofk uniformly distributed attribute domains
can be modeled as a single uniformly distributed domain.

We proceed to form the database by choosingn integers (X1, . . . , Xn) from
{0, 1, . . . , N−1}, so that each suchn-tuple representing the database has the same
probability 1/( N

n ) of being selected. By sorting this database, we can construct
the order statisticsX(1) < · · · < X(n), and the corresponding set of spacings
{X(k+1)− X(k)}, k = 1, . . . ,n− 1. As in Section 2.1.1, we form the statistic3U =∑n−1

k=1 ln(X(k+1)− X(k) + 1) to estimate the size of the compressed database.

4.1.1. Prior Work. We need to work with a discrete uniform distribution, and
so we call the problem of estimating3U thediscrete spacingproblem. To the best
of our knowledge, prior work in this area has dealt exclusively with continuous
distributions. See, for example, Darling [1953], Blumenthal [1968], Pyke [1965],
and Shao and Marjorie [1995]. Pyke [1965] reviews the literature in this area.
Darling [1953] uses characteristic function techniques to obtain the following limit
theorem for the continuous spacings of independent random variables uniform
on (0, 1).

THEOREM 4.1. Let U(1) < U(2) < · · · < U(n) be the order statistics of i.i.d.
uniform(0,1) random variables U1, . . . ,Un. Then, ifγ = 0.5771· · · is Euler’s
constant, ∑n−1

i=1 ln
(
U(i+1)−U(i )

)+ (n+ 1)(lnn+ γ )√
n(π2/6− 1)

D−→ N(0, 1).

However, we can not directly extend these results to the discrete case. In par-
ticular, although sampling with and without replacement are equivalent for the
continuous case, they are not so for discrete distributions. Sampling with replace-
ment causes a singularity in the logarithmic term sinceX(k+1) − X(k) = 0 with
nonzero probability.

This difficulty can be overcomed by changing ln(X(k+1) − X(k)) to ln(X(k+1) −
X(k)+ 1). We develop Theorems 4.3 and 4.4 for sampling without or with replace-
ment, respectively.

At first sight, it seems feasible to apply Darling’s Theorem to our situation by
simply substituting the discrete random variablesXi = bNUi c, 1 ≤ i ≤ n for
the continuous random variablesNUi , 1 ≤ i ≤ n. However, this straightforward
substitution becomes problematic since the errors will be large if we replace the
spacing term ln(X(k+1)−X(k)+1) in Theorems 4.3 and 4.4 by the continuous version
ln(NU(k+1)−NU(k) + 1) unlessNU(k+1)−NU(k), 1≤ k ≤ n− 1 are stochastically
large. The reason for this difficulty is obvious: the error ln(t+dt)−ln t ≈ dt/t will be
small for larget . We show that this difficulty may be circumvented whenN is large
enough, and specifically, whenn2 = o(N). A significant aspect of our approach
to the proof of Theorem 4.3 is that we estimate the possible errors caused by the
continuous approximation we use, and show them to be negligible. We then proceed
to obtain the limiting distribution. Although Darling’s Theorem is not helpful in
the proof of Theorem 4.3, it does provide an incidental benefit. The asymptotic
variance we obtain for our limit theorems is hard to estimate analytically, but we
can infer it by comparison with Theorem 4.1.
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4.1.2. A Central-Limit Theorem for Discrete Uniform Spacings.Since3U is
the sum of a large number of random variables, we would expect the statistic to be
distributed normally. However, in order to characterize the performance of TDC,
we are especially interested in the mean and variance of this distribution.

In Theorem 4.3 below, we prove a version of the Central Limit Theorem for this
case, and show that the expected value of3U is approximatelyn[−γ + ln(N/n)],
whereγ = 0.57721. . . is Euler’s constant. In contrast, the number of bits to store
X1, . . . , Xn without compression isn ln N.

In showing Theorem 4.3, we first approximate the sample (X1, . . . , Xn) by the
i.i.d. random variablesX′1, . . . , X′n distributed asbNUc, U is uniformly distributed
over (0, 1). Obviously, because we are sampling without replacement, (X1, . . . , Xn)
are not independent, but ifn = o(N1/2), then we expect then to be asymptotically
independent, since the probability ofXi = X j for some 1≤ i < j ≤ n is
very small. In the proof, we deal with the order statisticsX′(1) ≤ · · · ≤ X′(n), or
equivalently,bNU(1)c ≤ bNU(2)c ≤ · · · ≤ bNU(n)c using the representation(

U(1), . . . ,U(n)
) D= ( S1

Sn+1
, . . . ,

Sn

Sn+1

)
, (5)

whereY1,Y2, . . . are i.i.d. exp(1) random variables, andSj =
∑ j

i=1 Yj .
We use this representation form throughout the article. Therefore,3U can be

approximated by
∑n−1

k=1 ln(NYk+1/Sn+1), which can be analyzed using the Strong
Law of Large Numbers. In the process, however, we encounter sets with small
probabilities, with which we must deal with care. We first prove the follow-
ing lemma.

LEMMA 4.2. Let {Y,Yi , i ≥ 1} be i.i.d.exp(1)random variables. Then

1

n ln n

n∑
i=1

1

Yi

P−→ 1

PROOF. Clearlyn Pr[1/Y > n ln n] = n[1 − exp(−1/(n ln n))] → 0 asn →
∞. Then

1

n ln n

(
n∑

i=1

1

Yi
− nE[Y−11Y−1≤n ln n]

)
P−→ 0

by Klass and Teicher [1977]. Thus, the lemma follows since

lim
ε→0

E[Y−11Y≥ε ]
− ln ε

= lim
ε→0

∫∞
ε

y−1 exp(−y) dy

− ln ε
= lim

ε→0

−ε−1 exp(ε)

−ε−1
= 1

by the L’Hospital rule.

We now present a theorem dealing with the performance of TDC when the
values in the database are uniformly distributed, and when the database sizen and
the attribute domain sizeNn obeyn2 = o(Nn).1 In this case, we are able to obtain

1 It is usual to write f (n) = o(g(n)) when f andg are functions of an independent variablet such
that limn→∞ f (n)/g(n) = 0. So we will frequently writen = o(Nn) to emphasize our view ofN as a
function of the independent variablen and limn→∞ n/Nn = 0.
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accurate results without recourse to the equivalent sampling scheme described in
Section 3. In Section 4.1.3, we show how to extend these results to the case when
n2 = o(Nn) fails to hold.

THEOREM 4.3. Let (X1, . . . , Xn) be n numbers sampled from the set
{0, 1, . . . , Nn − 1} equiprobably, and without replacement. Let X(1) < · · · < X(n)
be the order statistics of(X1, . . . , Xn), and define the random variable3U =∑n−1

k=1 ln(X(k+1)− X(k) + 1). Then, if n2 = o(Nn),

3U − µU

σU/
√

n
D−→ N(0, 1),

whereµU = (n − 1)[ln Nn − ln(n + 1)− γ ], σU = α
√

n(n− 1), andγ, α are
defined in terms of a standard exponential random variable Y asγ = −E(ln Y) =
0.57721. . . , or Euler’s constant, andα2 = Var(ln Y − Y) = π2/6 − 1 =
0.644934. . .

PROOF. We write N = Nn, σ = σU , µ = µU for simplicity. Let X′1, . . . , X′n
be i.i.d. random variables with common distribution Pr[X′1 = k] = 1/N for k =
0, 1, . . . , N − 1. First, we claim the following distributional equality, which will
transform the dependent random variables (X1, . . . , Xn) to i.i.d. random variables
(X′1, . . . , X′n):

(X1, . . . , Xn)
D= (X′1, . . . , X′n|X′1, . . . , X′n are different). (6)

For x1, . . . , xn ∈ {0, 1, . . . , N − 1}, if xi = xj for somei 6= j , then

Pr[X1 = x1, . . . , Xn = xn] = 0
= Pr[X′1 = x1, . . . , X′n = xn|X′1, . . . , X′n are different].

If x1, x2, . . . , xn are mutually different, then

Pr[X′1 = x1, . . . , X′n = xn|X′1, . . . , X′n are different]
= Pr[X′1 = x1, . . . , X′n = xn]/Pr[X′1, . . . , X′n are different]

=
(

1

N

)n
{

n−1∏
j=1

(
1− j

N

)}−1

=
(

N
n

)−1

= Pr[X1 = x1, . . . , Xn = xn].

Hence, for fixedλ ∈ R,

Pr

[
1

(n− 1)1/2α
(3U − µ) < λ

]
=Pr

[
n−1∑
k=1

ln(X′(k+1)− X′(k) + 1)− µ < λ(n− 1)1/2α|X′1, . . . , X′n are different

]
=Pr[Bn|An] (say),

where X′(1) ≤ · · · ≤ X′(n) is the order statistics of (X′1, . . . , X′n), and ln+ x =
ln(max(1, x)). Observing that Pr[An] = ∏n−1

j=1(1 − j/N) = 1 + O(n2/N) =



The Performance of Difference Coding for Sets and Relational Tables 675

1+ o(1), and that

Pr[Bn]

Pr[An]
≥ Pr[AnBn]

Pr[An]
= Pr[Bn|An] ≥ Pr[Bn]

Pr[An]
+ 1− 1

Pr[An]
,

we find that Pr[Bn|An] is close to Pr[Bn]. Hence, it suffices to show
limn→∞ Pr[Bn] = 8(λ) = 1√

2π

∫ λ
−∞ e−t2/2dt as n → ∞. Since X′k

D= bNUk],
whereU1, . . . ,Un are i.i.d. random variables uniformly distributed over (0, 1), we
know

(X′1, . . . , X′n)
D= (bNU1c, . . . , bNUnc),

which yields (
X′(1), . . . , X′(n)

) D= (⌊NU(1)
⌋
, . . . ,

⌊
NU(n)

⌋)
. (7)

Let Y,Y1, . . . be i.i.d. exp(1) random variables, and letSm =
∑m

i=1 Yi . We now
make use of Eq. (5), and let event

B̂n =
{

n−1∑
k=1

ln(bNSk+1/Sn+1c − bNSk/Sn+1c + 1)− µ < λ(n− 1)1/2α

}
.

From Eq. (7), Pr[Bn] = Pr[B̂n]. Now we can estimate Pr[Bn] by approximat-
ing the integer parts by the values themselves. Roughly speaking, the summand
bNSk+1/Sn+1c − bNSk/Sn+1c in the logarithmic terms will be close toNYk+1/n,
which is stochastically large since we haveN/n→∞ andSn+1/n→ EY= 1, by
the usual Strong Law of Large Numbers.

To be more precise, we introduce the eventsCn, Dn, as follows:

Cn =
{

NY2

Sn+1
> 2, . . . ,

NYn

Sn+1
> 2

}
, Dn =

{∣∣∣∣Sn+1− (n+ 1)√
n ln n

∣∣∣∣ > 1

}
.

Event Dc
n, the complement of eventDn, leads us to the approximationSn+1 ≈

n. If event CnDc
n occurs, then we can show by a straightforward approach that

ln(bNSk+1/Sn+1c − bNSk/Sn+1c + 1) can be approximated by ln(NYk+1/Sn+1).
Hence, we really need to show that Pr[CnDc

n] = 1 + o(1), or, that Pr[Cc
n] +

Pr[Dn] = o(1). To prove this, first Pr[Dn] ≤ (n ln n)−1E[Sn+1− (n+ 1)]2 = o(1).
Next, for largen, we have Pr[Cn] ≥ Pr[CnDc

n] ≥ Pr[NY2 > 3n, . . . ,NYn >

3n, Dc
n] ≥ (exp(−3n/N))n−1− Pr[Dn] = 1+ o(1).

Let {x} denote the fractional part ofx (i.e., {x} = x − bxc), and letεnk =
{NSk/Sn+1} − {NSk+1/Sn+1} + 1 ∈ (0, 2). If ω ∈ CnDc

n, and n is sufficiently
large, we can obtain the following estimates:|Sn+1/(n + 1)− 1| < (ln n/n)1/2,
|Sn+1/(n+1)−1− ln(Sn+1/(n+1))| ≤ (Sn+1/(n+1)−1)2 < ln n/n. From these
estimates, we now have∣∣∣∣∣n−1∑
k=1

ln

(⌊
NSk+1

Sn+1

⌋
−
⌊

NSk

Sn+1

⌋
+ 1

)
− µ−

(
n−1∑
k=1

(ln Yk+1+ γ )− Sn+1+ n+ 1

)∣∣∣∣∣
=
∣∣∣∣∣n−1∑

k=1

ln

(
1+ Sn+1εnk

NYk+1

)
+ 2

(
Sn+1

n+ 1
− 1

)
+ (n− 1)

(
Sn+1

n+ 1
− 1−ln

Sn+1

n+ 1

)∣∣∣∣∣
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FIG. 1. Uniform distribution: Agreement between Theorem 4.3 and experiment.

≤
n−1∑
k=1

2Sn+1

NYk+1
+ 2

(
ln n

n

)1/2

+ ln n

≤ 3n

N

n−1∑
k=1

1

Yk+1
+ 2 lnn

By Lemma 4.2, notice that Pr[CnDc
n] = 1+ o(1) andn2 = o(Nn), we obtain

lim
n→∞

1

n1/2

∣∣∣∣∣ n−1∑
k=1

ln

(⌊
NSk+1

Sn+1

⌋
−
⌊

NSk

Sn+1

⌋
+ 1

)
−µ−

(
n−1∑
k=1

(ln Yk+1+ γ )− Sn+1+ n+ 1

) ∣∣∣∣∣ P= 0,

which leads to Theorem 4.3 via Slutsky’s Theorem and the classical central limit
theorem [(n − 1)1/2α]−1∑n−1

k=1(ln Yk+1 + γ − Yk+1 + 1)
D−→ N(0, 1). The exact

value of the asymptotic varianceα2 is presented in Corollary 4.6 below.

Figure 1 compares the estimates of3U from Theorem 4.3 with the results of
experiments on databases of different sizes containing integers drawn uniformly
without replacement from{1, 2, . . . ,231 − 1}. Theory and experiment agree to
within a fraction of one percent even for databases as large as 2· 106 (showing the
robustness of the theorem, since

√
N ≈ 46, 000 in this case).

The major idea in the proof of Theorem 4.3 was to first show the asymptotic equiv-
alence of the sample (X1, . . . , Xn) without replacement andn i.i.d. uniform(Nn)
random variables under the constraintn2 = o(Nn) and hence reduce to the classi-
cal central limit theorem based on the i.i.d. case. After some minor modifications,
the proof in the second part also implies the following theorem for then i.i.d.
uniform(Nn) random variables.

THEOREM 4.4. Assume that n2 = o(Nn). Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the
order statistics of i.i.d. uniform(Nn) random variables X1, . . . , Xn. Define3U =
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∑n−1
k=1 ln(X(k+1)− X(k) + 1). Then,

3U − µU

σU/
√

n
D−→ N(0, 1),

whereµU , σU are the same as that in Theorem4.3.

Remark4.5. Theorems 4.3 and 4.4 can be used to construct confidence intervals
based on the limiting distributions.

Obtaining the exact form of the variance term is an interesting exercise. It is
somewhat challenging to obtainα2 = Var(ln Y − Y) directly, but we note that
Theorems 4.1 and 4.4 jointly lead to the following interesting observation.

COROLLARY 4.6. If Y isexp(1)distributed, thenα2 = Var(ln Y−Y) = π2/6−
1= 0.644934. . . .

4.1.3. The Case of Large Databases.Whenn2 = o(Nn) is not satisfied, we
must fall back on the equivalent sampling scheme described in Section 3. Since
for the uniform distribution,p(x) = N−1 for all x ∈ F , we haveE[ Jn] = 1+∑n−1

k=1(1− k/n)−1 by Eq. 3. Under the assumptionn < N/2, we claim that∣∣∣∣E[ Jn] − N ln

(
1− n

N

)∣∣∣∣ < n+ 2

N
(8)

Define functiong(t) = (1− t/N)−1. For integerk ∈ [1, n − 1], if t ∈ [k − 1/2,
k+ 1/2], the Taylor expansion yields

g(t) = g(k)+ (t − k)g′(k)+ (t − k)2

2
g′′(ξ )

for someξ ∈ [k− 1/2, k+ 1/2]. If t ∈ (0, N/2), then

|g′′(t)| =
∣∣∣∣ 2

N2

(
1− t

N

)−3∣∣∣∣ ≤ 16

N2
.

Therefore ∣∣∣∣∣
∫ n−1/2

1/2
g(t) dt−

n−1∑
k=1

g(k)

∣∣∣∣∣ ≤ n−1∑
k=1

∣∣∣∣∣
∫ k+1/2

k−1/2
[g(t)− g(k)] dt

∣∣∣∣∣
≤

n−1∑
k=1

16

N2

∫ k+1/2

k−1/2

(t − k)2

2
dt≤ 2n

3N2
<

1

3N
.

Next,∣∣∣∣∣E[ Jn] − N ln

(
1− n

N

)∣∣∣∣∣ <
∣∣∣∣∣1+

∫ n−1/2

1/2
g(t) dt− N ln

(
1− n

N

)∣∣∣∣∣+ 1

3N

<

∣∣∣∣∣12 + N ln

(
1− 1

2N

)∣∣∣∣∣+
∣∣∣∣∣12 − N ln

(
1− 2n− 1

2N

)
+ N ln

(
1− n

N

)∣∣∣∣∣+ 1

3N

<
n+ 2

N
.
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Inequality 8 means that, on average, we have to drawn′ = −N ln(1−n/N) ≈ E[ Jn]
i.i.d. samples uniformly from{1, 2, . . . , N} to getn distinct values. Therefore, in
applying Theorem 4.4 for a sample of sizen obtained without replacement, we
must use the adjusted sample sizen′ in place ofn to get a reasonable result. We also
observe that under the assumptionn2 = o(Nn) we getn′ = −N ln(1− n/N) =
n+ O(n2/N) ≈ n, supporting our treatment in the proof of Theorem 4.3.

It is instructive to examine the applicability of Eq. (4) here. From this equa-
tion, the adjusted sample sizen′ satisfiesn = ∑N

i=1[1 − exp(−n′/N)] =
N[1− exp(−n′/N)], so that we haven′ = −N ln(1− n/N), which is in excellent
agreement with Inequality 8.

4.2. SINGLE ATTRIBUTE, ZIPF DISTRIBUTION. We say that random variableX
has the Zipf distribution with parameterN if Pr[X = k] = k−1/HN , k = 1,
2, . . . , N, where Hk =

∑k
i=1 i−1. The Zipf distribution is of practical interest

because many attribute domains appear to follow this distribution in practice. It was
first studied in the context of the distributions of word frequencies in documents, but
it was soon found to arise in a wide range of other applications. It is now known [Li
1992] that the Zipf distribution arises naturally in many contexts. For example,
when strings are formed from letters chosen randomly from an alphabet with fixed
probabilities, the distribution of words is Zipf .

The Zipf distribution can pose considerable analytical difficulties, particularly in
the context of the problem we are addressing. When we take a sampleX1, . . . , Xn
without replacement from the setS= {1, . . . , N}, whose elements are distributed
as Zipf (N), the joint distribution of theXi is very complicated. We find the sam-
pling equivalence results of Section 3 especially useful for this case. Theorem 4.7
below and Remark 4.2 give approximations of3Z based on a sampling scheme
with replacement; that is, the sample analyzed is ofn i.i.d. Zipf(N) random vari-
ables. Since repetition is not allowed, we may apply the arguments in Section 3,
and useE[ Jn] in place of n in Theorem 4.7 to obtain reasonable estimates
for 3Z.

A problem is thatE[ Jn] can be calculated directly from Eq. (3) only for very
special cases; the only really tractable case may well be the uniform distribution.
We must therefore solve forn′ from Eq. (4), and proceed as follows: DefineM =∑N

i=1[1 − exp(λ/ i )], λ = n′/HN . By the monotonicity of the functiong(t) =
1− exp(−λ/t) ∈ (0, 1) whent ∈ [1, N],

2 ≥
∣∣∣∣M − ∫ N

1
(1− exp(−λ/t) dt

∣∣∣∣
=
∣∣∣∣M − λ ∫ λ

λ/N

1− exp(−x)

x2
dx

∣∣∣∣
≥ λ

∣∣∣∣Mλ −
∫ ∞

1

1− exp(−x)

x2
dx−

∫ 1

0

1− exp(−x)− x

x2
dx− ln

N

λ

∣∣∣∣
− 1− λ

∣∣∣∣∫ λ/N

0

1− exp(−x)− x

x2
dx

∣∣∣∣
≥ λ

∣∣∣∣Mλ − ln
N

λ
+ 1− γ

∣∣∣∣− 1− O

(
λ2

N

)
.
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Therefore, instead of solving forn′ from Eq. (4) withM = n, we can solve forn′
from the approximated equation

nHN

n′
− ln

NHN

n′
= 1− γ. (9)

Although an explicit formula for the rootn′ of Eq. (9) does not exist, we can use
the fixed-point iteration scheme

fk+1 = f ( fk), f1 = f (1), f (t) = nHN

1− γ + ln(NHN)− ln(t)
, k ∈ N. (10)

Since f (t) is monotone and grows very slowly, the scheme converges to a fixed
point within just a few iterations.

Before proceeding to Theorem 4.7, which deals with the estimation of3Z, we first
adopt the following adjustments. SupposeX′1, . . . , X′n are i.i.d. Zipf (N) random
variables, withX′(1) ≤ · · · ≤ X′(n) being the corresponding order statistics. Let the
quantile functionQN be defined such thatQN(t) = k if Hk−1/HN ≤ t < Hk/HN ,
for k = 1, 2, . . . , N.

Now, for a random variableU uniform on (0, 1), the quantile functionQN(U )
as defined above satisfies Zipf (N)

D= QN(U ). For mathematical convenience, we
may takefN(t) = Nt , t ∈ [0, 1] to approximateQN(t), since we have the estimate
for the total variation distance

dTV(QN(U ), b fN(U )c) := sup{|Pr[QN(U ) ∈ A] − Pr[b fN(U )c ∈ A]|, A ⊂ Z+}

≤
N∑

k=1

∣∣∣∣k−1

HN
− ln(k+ 1)− ln k

ln N

∣∣∣∣+ ln(N + 1)− ln N

ln N
= O

(
1

ln N

)
.

Therefore, we can use1U =
∑n−1

k=1 ln(NU(k+1) − NU(k) + 1) to approximate3Z =∑n−1
k=1 ln(X′(k+1)− X′(k)+1). As to1U , we have the following limit theorem, which

asserts that under suitable conditions, the expected value of1U is 1
2(1−ρn)2n ln N,

whereρn = ln n/ ln N.

THEOREM 4.7. Let U(1) < U(2) < · · · < U(n) be the order statistics of i.i.d.
uniform(0,1) random variables U1, . . . ,Un. If limn→∞ n/N1/2

n = 0 , and
supn>1 ln Nn/ ln n = C <∞, then we have

1U

n ln Nn
− 1

2
(1− ρn)2 P−→ 0,

and

E1U

n ln Nn
− 1

2
(1− ρn)2 −→ 0,

as n→∞, whereρn = ln n/ ln N.

PROOF. We write N = Nn for simplicity. The Zipf distribution is very
skewed towards the high-probability elements, so for any integerk0 ∈ N, the
first k0 values in the order statisticsX(1) < X(2) < · · · < X(k0) are very likely
to be 1, 2, . . . , k0. We takek0 = bnρnc here. This observation suggests that
3′U =

∑k0−1
k=1 ln(X(k+1)− X(k) + 1) should be stochastically small. In terms of our
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approximation, for the corresponding sum1′U =
∑k0−1

k=1 ln(NU(k+1)−NU(k)+1), we
will prove1′U/(n ln N)

P−→ 0. Since the logarithm function is concave, we may
apply Jensen’s inequality to get

1

k0− 1
1′U ≤ ln

(
1

k0− 1

k0−1∑
k=1

(
NU(k+1) − NU(k) + 1

)) ≤ ln

(
1

k0− 1
NU(k0) + 1

)
.

Now for anyε > 0,

Pr

[
k0− 1

n ln N
ln

(
1

k0− 1
NU(k0) + 1

)
> ε

]
≤ Pr

[
U(k0) >

ln(k0− 1)+ ln(Nε/ρn − 1)

ln N

]
= Pr

[
Sk0/k0

Sn+1/(n+ 1)
>

n+ 1

k0

ln(k0− 1)+ ln(Nε/ρn − 1)

ln N

]
.

Since
Sk0/k0

Sn+1/(n+1)
P−→ 1 by the Weak Law of Large Numbers and

lim inf
n→∞

n+ 1

k0

ln(k0− 1)+ ln(Nε/ρn − 1)

ln N
≥ lim inf

n→∞

(
1+ ε

ρ2
n

)
≥ 1+ ε

C2
,

we have limn→∞1′U/(n ln N)
P= 0. Next define

1′′U =
n−1∑
k=k0

ln
(
NU(k+1) − NU(k) + 1

)
D= ln N

Sn+1

n−1∑
k=k0

Sk+1+
n−1∑
k=k0

ln
(
1− N−Yk+1/Sn+1 + N−Sk+1/Sn+1

)
= In + Jn(say).

Elementary calculations show thatE[
∑n−1

k=k0
(Sk+1−k−1)]2 ≤ n3, since for exp(1)

random variableY, we knowE(Y − 1)= 0, E(Y − 1)2 = 1. Hence,

Sn+1

n

(
In

n ln N
−
∑n−1

k=k0
(k+ 1)

nSn+1

)
= 1

n2

n−1∑
k=k0

(Sk+1− k− 1)
P−→ 0,

or, (n ln N)−1In− (1− ρ2
n)/2

P−→ 0. Now we considerJn. Given anyε > 0, since
0≥ ln(1− N−Yk+1/Sn+1 + N−Sk+1/Sn+1) ≥ ln(1− N−Yk+1/Sn+1),

Pr

[
1

n ln N
|Jn| > ε

]
≤ Pr

[
1

n ln N
Jn < −ε, ln N

Sn+1
< 1

]
+ Pr

[
ln N

Sn+1
≥ 1

]
≤ Pr

[
1

n ln N

n−1∑
k=k0

ln(1− exp(−Yk+1)) < −ε
]
+ Pr

[
ln N

Sn+1
≥ 1

]
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FIG. 2. Zipf distribution: Agreement between Theorem 4.7 and experiment.

Observe that ifYk+1 is exp(1), then 1− exp(−Yk+1) is uniform(0,1),E ln(1−
exp(−Yk+1)) = −1, hence by Markov’s inequality, the first term≤ −(ε ln N)−1

E ln(1 − exp(−Yk+1)) = (ε ln N)−1. Obviously, the second term goes 0 via the
Weak Law of Large Numbers, which completes the proof of the first statement of
Theorem 4.7. By Jensen’s inequality,

0<
1U

n ln Nn
≤ 1

ln Nn
ln

[
1

n− 1

n−1∑
k=1

(
NU(k+1) − NU(k) + 1

)]
<

ln(Nn + n)

ln Nn
< 2,

hence random variables{1U/(n ln Nn) − (1− ρn)2/2, n ≥ 2} are uniformly inte-
grable. Then the second convergence result stated in the theorem follows easily from
the first one and the Mean Convergence Criterion [Chow and Teicher 1988].

Remark4.8. Under the conditions of Theorem 4.7, a more careful analysis
leads to the stronger result

lim
n→∞

1U − µ′n
n

P= 0,

whereµ′n = (1/2)(1−ρ2
n)n ln N+n(1−ρn)(ln ln N−γ − ln n), γ = 0.5772. . . is

Euler’s constant. Since the details of the proof are complicated, we omit the proof
and only provide an outline here. First, to obtain1′U/n

P−→ 0, we use the Law of the
Iterated Logarithm [Chow and Teicher 1988] lim supn→∞ |(Sn − n)/

√
n ln ln n| =√

2, a much finer estimate than we can obtain from WLLN. ForIn, the estimate
used in the proof of Theorem 2 can yieldn−1In − (1/2)(1− ρ2

n) ln N
P−→ 0.

Since lnN−Yk+1/Sn+1
P−→ 0, we can use Taylor’s expansion 1− N−Yk+1/Sn+1 ≈

(ln N)Yk+1/Sn+1. HenceJn can be further approximated by−(n− k0)(γ + ln n) by
the usual SLLN (n− k0)−1∑n

k=k0
ln Yk+1→ E ln Y = −γ andSn+1/n→ 1 a.s..

Together, these facts imply the refined limit theorem.

Figure 2 evaluates how well Remark 4.8 matches the results of experiments on
databases of different sizes containing integers drawn without replacement from a
Zipf distribution over{1, 2, . . . ,231− 1}. To validate both the analysis and the ap-
proximations driving it, we used the actual value of3Z obtained from experiments
in place of1U . Figure 2 shows the percentage difference between3Z/(n ln N)
andµ′n/(n ln N). Agreement is to within a few percent even for databases that
are quite large, suggesting that our formula is an excellent predictor of experi-
mental results.
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We appear to have satisfactorily addressed the problem of estimating3Z for
relatively large databases. However, the situation for small databases is somewhat
different, since the small number of samples means that the spacings between them
are likely to be larger. We now address the case where the database is small, and
present the following result.

THEOREM 4.9. Let U(1) < U(2) < · · · < U(n) be the order statistics of i.i.d.
uniform(0,1) random variables U1, . . . ,Un. If limn→∞ n/ ln Nn = 0, then we have

lim
n→∞

1U

n ln Nn
− 1

2
P= 0.

and

lim
n→∞

E1U

n ln Nn
− 1

2
= 0.

PROOF. As in the proof in Theorem 4.7, we write

1U =
n−1∑
k=1

ln
(
NU(k+1) − NU(k) + 1

)
D= ln N

Sn+1

n−1∑
k=1

Sk+1+
n−1∑
k=1

ln
(
1− N−Yk+1/Sn+1 + N−Sk+1/Sn+1

)
= In + Jn(say).

Using the same argument as in Theorem 4.7, we have (n ln N)−1In−1/2
P−→ 0.

For anyε > 0, letn > n0 be large enough such that (lnN)−1(n+ 1)< 1/2, then

Pr

[
1

n ln N

∣∣Jn

∣∣ > ε

]
≤Pr

[
1

n ln N

n−1∑
k=1

ln
(
1− N−Yk+1/Sn+1

)
< −ε, Sn+1

n+ 1
≤ 2

]
+ Pr

[
Sn+1

n+ 1
≥ 2

]
≤Pr

[
1

n ln N

n−1∑
k=1

ln(1− exp(−Yk+1)) < −ε
]
+ Pr

[
Sn+1

n+ 1
≥ 2

]
.

Again by the same arguments as in Theorem 4.7, we know (n ln N)−1JN
P−→ 0.

Thus the second convergence result stated in the theorem follows from the first
one via uniform integrability, which is an immediate consequence of the uniform
boundedness of the random sequence{(n ln Nn)−11U − 1/2, n ≥ 2}.

Remark4.10. Under the conditions of Theorem 4.9, we have limn→∞ ln n/
ln Nn = 0, thusρn ≈ 0. Then interestingly enough, both Theorem 4.9 and
Theorem 4.7 are consistent, and give the resultE1U ≈ (1/2)n ln Nn.

4.3. SPACINGS FORDISTRIBUTIONS WITH HIGH CONCENTRATION. A nonnega-
tive integer-valued random variableZ is said to be highly concentrated ifZ takes
values in a set of few elements with high probability. Thus, the Binomial, Pois-
son, Geometric, or general Zipf distribution are highly concentrated. (The general
Zipf distribution is defined by Pr[Z = k] ∼ ck−α, ask → ∞, α > 1.) When
highly concentrated distributions are sampled without replacement, the spacings
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FIG. 3. Two uniform attributes: Effect of attribute reordering on (3U1U2 −3U2U1)/3U1U2.

Z(2) − Z(1), . . . , Z(n) − Z(n−1) are very likely to be 1, whereZ(1), . . . , Z(n) are the
order statistics ofn samplesZ1, . . . , Zn. Thus, the total number of bits required
in this case is likely to be close toO(n). Defining3Z simply as the sum of the
logarithms of the difference will lead to a smaller estimate since the logarithmic
terms corresponding to differences of 1 will be zero. Fortunately, adopting the con-
servative form3Z =

∑n−1
k=1 ln(Z(k+1) − Z(k) + 1) suggested in Section 3 leads to

3Z ≈ n ln 2, in perfect agreement with practice.

5. Optimal Ordering of Attribute Domains

When multiple attribute fieldsX1, X2, . . . , Xk are present in a database tuple, it is
clear that the ordering of the attribute fields in will influence the value resulting
from the application ofϕ (see Section 2) to the tuples. In this section, we consider
the question of how to order the attribute fields so thatE3 reaches its minimum.

5.1. UNIFORM ATTRIBUTE DOMAINS. Consider first the case when thek fields
are all uniformly distributed, so thatXi is uniform over (1, |Di |). Somewhat contrary
to intuition, E3will remain unaffected in this case by attribute domain reordering,
since the random integerX1 · |D2| · |D3| · · · |Dk|+X2 · |D3| · |D4| · · · |Dk|+· · ·+Xk
is, regardless of field ordering, always distributed uniformly over the set{a+1,a+
2, . . . ,a+b}, if we definea = |D2|·|D3| · · · |Dk|+|D3|·|D4| · · · |Dk|+· · ·+|Dk|,
andb = |D1| · |D2| · · · |Dk|. This somewhat paradoxical result is confirmed by our
simulations, which are shown in Figure 3.

5.2. NONUNIFORM ATTRIBUTE DOMAINS. The case of non-uniform attributes
is more complex. In fact, the optimal attribute ordering actually depends on the
database size. A full analysis is elusive, but we provide general characterizations
of behaviors for different cases.

5.2.1. Small Databases.Let us first consider the simplest case, where there are
only two fields, and the database contains just two records. We use the analysis
for this case to provide insights into more general situations. Suppose thatX,Y
are independent random variables distributed as Zipf (m) and Zipf (n) respectively.
Therefore,Z = (X,Y) = nX+ Y has distribution function

FZ(z) = Pr[Z ≤ z] = Hx−1

Hm
+ Hy

x Hn
≈ ln x + γ

ln m+ γ ≈
ln(z/n)+ γ

ln m+ γ := F̃ Z(z)
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for z = y + nx, x = 1, . . . ,m, y = 1, . . . ,n. HenceZ can be approximated by
random variablẽF−1

Z (U ) = n exp[U (ln m+γ )−γ ], whereU is uniform on (0, 1).
TakeZ1, Z2 to be i.i.d. copies ofZ with order statisticsZ(1) ≤ Z(2). Now,

E3xy = E ln
(
Z(2)− Z(1)+ 1

) ≈ E ln
(
neU(2)(ln m+γ )−γ − neU(1)(ln m+γ )−γ )

= ln n− γ + (ln m+ γ )
[
EU(1)+ E

(
U(2)−U(1)

)] = ln n+ 2

3
ln m− γ

3

We may, but do not derive this asymptotic formula from the original distribution
function F(z) since that route involves elementary but tedious calculations. We
observe that the random variableF̃−1

Z (U ) does not take the distribution ofY into
account, which appears reasonable as the first field will dominate3 when dealing
with a sample size of two. Hence, this approach also works for any discrete random
variablesY taking possiblyn values.

The same idea works whenX is uniform on (1,m).
For integer valued random variableY taking at mostn values, We usẽFU

−1
(U ) =

mnUto replaceZ = (X,Y) since

FU (z) = Pr[nX+ Y ≤ nx+ y] ≈ x

m
≈ z

mn
.

As before,

E3xy = E ln
(
Z(2)− Z(1)+ 1

) ≈ E ln
(
mnU(2)−mnU(1)

) = ln m+ ln n− 11

6
,

whereZ(1) ≤ Z(2) is the order statistics ofZ1, Z2.
Now let us assumen > m. From the formulas above, ifX is Zipf (m) andY is

Zipf (n), then

E3xy ≈ ln n+ 2

3
ln m− γ

3
> ln m+ 2

3
ln n− γ

3
≈ E3yx

suggests that we need to put fieldY first to minimizeE3.
This result also appears paradoxical, since the domain ofX is smaller than that

of Y. Intuition might have suggested that placingX beforeY would result both
in smaller values ofϕ, as well as longer runs of leading zeroes in the sequence
of differences, leading to a lower value of3. This apparent contradiction can be
resolved by considering the skew and concentration effects of the distributions
involved. For anyp ∈ (0, 1), the order (X,Y) gives thep-percentileP1(p) =
F̃−1

Z (p) = n exp[p(ln m+ γ ) − γ ], by Pr[(X,Y) ≤ P1(p)] = p, while the order
(Y, X) gives thep-percentileP2(p) = mexp[p(ln n+γ )−γ ] < P1(p). Hence, the
latter is more skewed than the former, and consequently, the sample data is more
likely to be concentrated on the left extreme, reducingE3. Figure 4 convincingly
suggests this relationship by displaying the quantiles.

We may also interpret this phenomenon in terms of the distribution functions.
Clearly, for integers 1≤ x ≤ m, 1 ≤ y ≤ n, we have Pr[(X,Y) ≤ (x, y)] =
Pr[X < x] + Pr[X = x,Y ≤ y] = Hx−1/Hm + Hy/(xHmHn) and Pr[(Y, X) ≤
(y, x)] = Pr[Y < y] + Pr[Y = y, X ≤ x] = Hy−1/Hn + Hx/(yHmHn). It can
be shown that Pr[(X,Y) ≤ (x, y)] ≤ Pr[(Y, X) ≤ (y′, x′)], if 1 ≤ x, x′ ≤ m, 1 ≤
y, y′ ≤ n andxn+ y = y′m+ x′ through a rather complicated calculation.
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FIG. 4. Two Zipf attributes: Characterizing skew through the distribution of quantiles.

FIG. 5. Attribute reordering: One Zipf and one uniform attribute.

Another extreme case is when all the fields are Zipf distributed so thatXi is
Zipf (|Di |). In this situation, the analysis above suggests that to minimizeE3, we
order fields so that the first Zipf field corresponds to the largest value of|Di |,
the second field has the second largest value, and so on. If there exist both Zipf
and uniform distributions among those fields, one should put those field with Zipf
distributions first, then those with uniform distributions. Similarly, when there are
fields with arbitrary nonuniform distributions, we place the uniformly distributed
fields last and the field with the highest concentration first, and then the field with the
second highest concentration, and so on. Figure 5 illustrates this effect by showing
the values of3ZU and3U Z obtained through experiment.

Our analysis began by assuming a database size of 2, but can clearly be extended
to databases of size small relative toN = ∏

i |Di |. The concentration effect is
again the key to determining the optimal ordering. We note however, that for two
Zipf random variables, the advantage of optimal ordering over an arbitrary ordering
seems small sinceE3xy− E3xy ≈ 1/3 ln(n/m), which is significant only when the
ratio n/m is extremely large. Even forn = 1016 andm = 10, the difference is
merely 5 ln 10, which is not very significant.

5.2.2. Large Databases. Consider now the case when database sizen is large,
but we still have two Zipf attributesX andY. The situation is now quite different,
since the concentration effect will no longer be crucial in determining3. Whether
we order the attributes as (X,Y) or (Y, X), it is very likely that the initial segment
of the order statisticsZ(1) < Z(2) < · · · < Z(d) will be the first consecutived
integers for somed ∈ N. Thus, the lower values in the Zipf range are very likely to
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FIG. 6. Attribute reordering: two Zipf attributes.

be quickly exhausted; so that their contribution to3 are small sincen is relatively
large. The main contributions to3will come from the elements at the right extreme
of the these order statistics.

From Jensen’s inequality, we have3Z ≤ (k − 1) ln[(Z(k) − Z(1))/(k − 1)]. It
is intuitively clear that the two sides of this inequality will be closer together if
spacingsZ(2) − Z(1), . . . , Z(k) − Z(k−1) are close to each other. Sincek is large,
Z(k) is close tomn for both orderings. Therefore, nonuniformity within the set
of spacings is really an issue. Such nonuniformity is most significant at the right
extreme, and more uniformity will lead to higher3. The quantile plot shown in
Figure 4 of (X,Y) and (Y, X) shows that the former displays less uniformity at
the right extreme, so that we expect the corresponding3 to be smaller. Figure 6
illustrates this effect through experiments on two Zipf domains withZ1 < Z2. For
smaller database sizes, the orderZ2Z1 yields lower3 values (in agreement with
our results in Section 5.2.1), while the orderZ1Z2 is better for larger database sizes.

Although this discussion provides adequate intuition for understanding the dif-
ference between the two orderings for small and large database sizes, it appears to
be quite difficult to quantify and compare the effects caused by concentration and
non-uniformity. It also appears difficult to determine the borderline represented by
the value ofk. We suggest that ifk < m= min(m, n), then we use ordering (Y, X)
and otherwise we use (X,Y).

6. Limit Theorems for the Multifield Case

We now turn to the problem of estimating values of3 when the database
has several fields. Suppose the database hask fields drawn from independent
domains D1, . . . , Dk, respectively. Consider the corresponding random vector
EX = (X1, . . . , Xk) with Xi taking values in{1, . . . , |Di |}, i = 1, . . . , k. As in
Section 2, this random vector can be represented by the corresponding random
integerX1 · |D2| · · · |Dk| + · · · + Xk−1 · |Dk| + Xk.

Our analysis in Section 5 showed that lower values of3 result when the uniformly
distributed domains are placed at the least-significant end of the tuple. In this case,
the remaining nonuniform domains will be placed in some suitable order at the
head of the tuple. We may view these nonuniformly distributed domains as jointly
constituting a single composite domain with an arbitrary discrete distribution.

Let us therefore model the nonuniform domainsX1, . . . , Xm−1 as a single ran-
dom variableZ with and arbitrary distribution, and assuming values in the set
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{1, . . . ,d} with probabilities Pr[Z = k] = pk > 0, k = 1, . . . ,d for some
fixedd ∈ N. The remaining fieldsXm, . . . , Xk have uniform distributions, whence
Xm · |D3| · · · |Dk| + · · · + Xk−1 · |Dk| + Xk may be collapsed into a single random
variableU uniformly distributed over the set{a + 1,a + 2, . . . ,a + b}, where
a = |Dm+1| · · · |Dk| + · · · + |Dk−1| · |Dk| + |Dk| andb = |Dm| · · · |Dk|.

Thus, in estimating3, we can collapse the fieldsX1, . . . , Xk into just two fields.
Let Z be an arbitrary discrete random variable assuming values from{1, 2, . . . ,d},
andU be uniform on{1, 2, . . . ,un}. Let Z andU be independent, and form the
random vector (Z,U ). Let Yi = (Zi ,Ui ), i = 1, . . . ,n, ben i.i.d. copies of this
vector. TakeY(1) ≤ Y(2) ≤ · · · ≤ Y(n) to be the order statistics of theYi . Now form
the statistic3DU =

∑n−1
i=1 ln(Y(i+1)− Y(i ) + 1).

If Z is uniform on {1, 2, . . . ,d}, then (Z,U ) can be viewed as single large
uniformly distributed field. Theorem 4.3 can be directly applied to obtain the follow-
ing result.

COROLLARY 6.1. If n2 = o(un), then (3DU − µn)/σ
D−→ N(0, 1), where

σ = αn1/2, µn = (n− 1)(lnd + ln un − γ − ln(n+ 1)).

If the distribution ofZ is not uniform, we may proceed as follows. SinceZ can
take at mostd values, we would expect to see groups of tuples in the database sharing
the same value in their first fields. When the database is sorted, tuples in each such
cluster will appear together, and their differences will show a zero value in the first
field. We call each such cluster of tuples in the sorted database arun. Therefore,
we may split the original database intod smaller databases, each defined by a run
corresponding to a value ofZ, with the j th run havingNj =

∑n
i=1 1(Zi = j )

records. Since we may haveNj = 0, we allow runs to be empty. Consequently,
3DU , the overall statistic to estimate database size, can be decomposed into two
components: one to model the spacings within the runs, and one to model the
spacings across the runs. That is,

3DU
D=

d∑
j=1

3 j +
d−1∑
j=1

ln(U j+1,1−U j,Nj + un + 1) := 3w +3b.

In this formula,3 j =
∑Nj−1

i=1 ln(U j,i+1 − U j,i + 1), or given Nj = l , 3 j =
3 j (l ) =

∑l−1
i=1 ln(U j,i+1−U j,i +1),U j,1 ≤ U j,2 ≤ · · ·U j,l is the order statistics of

Ūj,1, . . . , Ūj,l , where{Ūj,i , 1 ≤ j ≤ d, i ≥ 0}, are i.i.d. random variables uniform
on{1, . . . ,un} and independent ofZ1, . . . , Zn.3w is the contribution to3DU from
within runs, and3b can be regarded as the spacings between consecutive runs.

Obviously, (N1, . . . , Nd) follows the multinomial distribution Multi(n;
p1, . . . , pd), so thatNj has distributionBin(n; pj ). As in Shiryayev [1995], we
may therefore write the inequality Pr[|Nj /n − pj | ≥ ε] ≤ 2 exp(−2nε2) for ev-
ery ε > 0. WhenNj = 0 or 1, we use the convention3 j = 0, and define the
corresponding summand in3b to be 0. However, given the large-deviation style
inequality above, we are assured thatNj = 0 or 1 with exponentially small prob-
abilities. Therefore, in pursuing the limiting distribution of3DU in Theorem 6.2,
we may assume without undue concern thatNj ≥ 2.

We now state the main theorem that allows us to estimate the size of a compressed
database with multiple attributes.



688 W. B. WU AND C. V. RAVISHANKAR

THEOREM 6.2. Let each record in the database comprise two discrete random
fields(Z,U ), where Z is an arbitrary distribution on{1, . . . ,d}, and U is uniform
on {1, . . . ,un}. If n2 = o(un), then as n→∞,

3DU − µDU

βn1/2

D−→ N(0, 1),

where

µDU =
d∑

j=1

(npj − 1)(lnun − ln(npj )− γ )+
d−1∑
j=1

ln

(
un

npj
+ un

npj+1

)
:= µw + µb

and

β2 = α2+
d∑

j=1

pj (ln pj )
2−

(
d∑

j=1

pj ln pj

)2

, α2 = π2/6− 1= 0.644934· · · .

PROOF. We first motivate the result with heuristics before proceeding to the
rigorous argument. SinceNj has distributionBin(n; pj ), we can replaceNj with
the meannpj . Then EUj+1,1 ≈ un/(npj+1), E(un − U j,Nj ) ≈ un/(npj ), so we
approximateE3b by µb. By Theorem 4.3, the meanE3w ≈ µw and the variance
is
∑d

j=1 α
2npj = α2n. The partn[

∑d
j=1 pj (ln pj )2 − (

∑d
j=1 pj ln pj )2] in the

overall variancenβ2 can be interpreted as the uncertainty in choosing differences
across runs, which corresponds to3b.

Now let us proceed the rigid argument. Fork ≥ 1, setµ(k) = (k − 1)(−γ +
ln un− ln k), and letµ(k) = 0 if k ≤ 1. To obtain the limiting distribution, we apply
the Lévy Continuity Theorem by analyzing characteristic functions. We first note
that givenN1 = n1, . . . , Nd = nd,31, . . . , 3d are independent. Hence, fort ∈ R,
we have via conditioning,

exp

[√−1t
d∑

j=1

3 j − µ(npj )√
n

]

= E

{
E

[
exp

(√−1t
d∑

j=1

µ(Nj )− µ(npj )√
n

+√−1t
d∑

j=1

3 j − µ(Nj )√
n

)∣∣∣∣∣N1, . . . , Nd

]}

= E

{
exp

(√−1t
d∑

j=1

µ(Nj )− µ(npj )√
n

)

×
d∏

j=1

E

[
exp

(√−1t
3 j − µ(Nj )√

n

)∣∣∣∣∣Nj

]}

We next assert the three convergence results (11), (12), and (13) and proceed to
prove them using the Lebesgue Dominated Convergence Theorem and Slutsky’s
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Theorem. These results will lead to Theorem 6.2 via the L´evy Continuity Theorem.

E

[
exp

(√−1t
3 j − µ(Nj )√

n

)∣∣∣∣∣Nj

]
−→ exp

(−α2 pj t2

2

)
a.s., (11)

d∑
j=1

µ(Nj )− µ(npj )√
n

D−→ N

0,
d∑

j=1

pj (ln pj )
2−

(
d∑

j=1

pj ln pj

)2
 , (12)

and for j = 1, . . . ,d,

1

n1/2

[
ln(U j+1,1−U j,Nj + un + 1)− ln

(
un

npj
+ un

npj+1

)]
P−→ 0. (13)

To show (11), we proceed as follows: Since event{Nj = l } and3 j (l ) are
independent,

E

[
exp

(√−1t
3 j − µ(Nj )√

n

)∣∣∣∣∣Nj = l

]
= E

[
exp

(√−1t
3 j (l )− µ(l )√

n

)]
:= g(t ; n, l ).

Define setIn = {l ∈ N, l ∈ (npj − n2/3, npj + n2/3)}. Observing that

lim sup
n→∞

∣∣∣∣∣E
[

exp

(√−1t
3 j − µ(Nj )√

n

)∣∣∣∣∣Nj

]
− exp

(−α2 pj t2

2

)∣∣∣∣∣
= lim sup

n→∞

(∑
l∈In

+
∑
l 6∈In

) ∣∣∣∣∣g(t ; n, l )− exp

(−α2 pj t2

2

)∣∣∣∣∣1(Nj = l )

≤ lim sup
n→∞

sup
l∈In

∣∣∣∣∣g(t ; n, l )− exp

(−α2 pj t2

2

)∣∣∣∣∣+ 2 lim sup
n→∞

1(Nj 6∈ In) := A+ B,

for (11), we only need to showA = 0, B = 0 a.s. Again, by inequality Pr[|Nj /n−
pj | ≥ ε] ≤ 2 exp(−2nε2), limk→∞

∑∞
n=k Pr

[
Nj 6∈ In

] ≤ 2 limk→∞
∑∞

n=k

exp[−2n(n−1/3)2] = 0. HenceB = 0 a.s. via the Borel–Cantelli lemma. IfA 6= 0,
then there exists anε > 0, a subsequence{n′} ⊂ N and l (n′) ∈ In′ such that
along this subsequence,|g(t ; n′, l (n′)) − exp(−α2 pj t2/2)| > ε. However, by the
Lévy Continuity Theorem, we do have|g(t ; n′, l (n′)) − exp(−α2 pj t2/2)| → 0
following from (n′)−1/2[3 j (l (n′)) − µ(l (n′))]

D−→ N(0, α2 pj ), which is due to
l (n′)/n′ → pj and [α2l (n′)]−1/2[3 j (l (n′)) − µ(l (n′))]

D−→ N(0, 1) asserted by
Theorem 4.3 sincel (n′)→∞.

To prove (12), definep̂n = (N1/n, . . . , Nd/n), p̂ = (p1, . . . , pd), and the
entropy functionν(q̂) = ∑d

j=1 qj ln qj for a d-dimensional probability vec-
tor q̂= (q1, . . . ,qd). By the classical Central Limit Theorem for vectors, we
haven1/2( p̂n − p̂)

D−→ N(0, 6), where6 is a d × d positive definite matrix
with 6i i = pi (1 − pi ), 6i j = −pi pj . Using the Delta method [van der Vaart
1998], which expands a function of random variables about its mean with a 1-step
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Taylor expansion to compute its variance, we now have

n1/2[ν( p̂n)− ν( p̂)]
D−→ N

(
0,
∂ν

∂q̂

∣∣∣∣ p̂6 (∂ν∂q̂

)τ ∣∣∣∣
p̂

)
. (14)

In view of n1/2( p̂n − p̂)
D−→ N(0, 6), Taylor’s expansionν( p̂n) − ν( p̂) ≈

( p̂n − p̂)(∂ν/∂q̂)τ | p̂ gives some intuition of the application of the Delta method
for (14). Now we can use (14) to prove (12) by writing

d∑
j=1

[µ(Nj )− µ(npj )] =
d∑

j=1

ln
p̂n, j

pj
+ n[ν( p̂)− ν( p̂n)],

since

p̂n, j → pj a.s. and
∂ν

∂q

∣∣∣∣
p̂

6

(
∂ν

∂q

)τ ∣∣∣∣
p̂

=
d∑

j=1

pi (ln pi )
2−

(
d∑

j=1

pi ln pi

)2

.

For (13), we only need to show that
npj+1

un
U j+1,1 = OP(1),

npj

un
(un −U j,Nj ) = OP(1).

The notationXn = OP(1), as in van der Vaart [1998], means that the random
sequenceXn is stochastically bounded; that is, for eachε > 0, there exists a
K = K (ε) > 0 such that supn≥1 Pr[|Xn| > K ] < ε. In fact, it is possible to obtain
the stronger result

npj+1

un
U j+1,1

D−→ exp(1),
npj

un
(un −U j,Nj )

D−→ exp(1). (15)

Here we only prove the second case since the first one can be derived similarly.
Actually, for x ≥ 0,

lim
n→∞Pr

[
npj

un
(un −U j,Nj ) > x

]
= lim

n→∞

∞∑
l=1

Pr

[
npj

un
(un −U j,l ) > x, Nj = l

]
= lim

n→∞

∞∑
l=1

(
1

un

⌈
un − unx

npj

⌉)l

Pr[Nj = l ]

= lim
n→∞ E

[(
1

un

⌈
un − unx

npj

⌉)npj
]Nj /(npj )

= exp(−x).

The last step follows from the Lebesgue Dominated Convergence Theorem.

Figure 7 shows how closely Theorem 6.2 agrees with values of3 observed in
practice. We generated two datasets, each with two distributions, one skewed and
one uniform. The skewed distribution in the first dataset was Zipf (100), and its
second field being uniform over (0, 107). The other dataset had its first field dis-
tributed asBinomial(10, 1/3), with its second field being uniform over (0, 105).
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FIG. 7. Multiple fields: Agreement between Theorem 6.2 and experiment.

Agreement in both cases is to within a fraction of one percent over a large range,
illustrating the power of Theorem 6.2.

Remark6.3. The reader may observe that, in order to obtain a more accurate
estimate ofE3b =

∑d−1
j=1 ln(U j+1,1 − U j,Nj + un + 1), one must take advantage

of the limiting distributions ofU j+1,1 andun − U j,Nj specified by (15) since bias
will be caused if we directly replaceU j+1,1, un−U j,Nj by their asymptotic means
un/(npj+1), un/(npj ). This goal can be achieved by the following steps. (We again
omit the details because of the overwhelming complexity.) First, givenNj andNj+1,
U j+1,1, un−U j,Nj are independent, sinceNj , Nj+1 are asymptotically independent.
So we have

npj+1

un
U j+1,1+

npj

un
(un −U j,Nj )

D−→ Y1

pj+1
+ Y2

pj
,

whereY1,Y2 are two i.i.d. exp(1) random variables. Next, following a careful esti-
mation, the random sequence in the proceeding display can be shown to be uniform
integrable. Hence,

lim
n→∞ E3b − (d − 1) ln

un

n
=

d−1∑
j=1

E ln

(
Y1

pj+1
+ Y2

pj

)
.

Finally, an elementary but interesting computation leads to

E ln

(
Y1

pj+1
+ Y2

pj

)
=
∫ ∞

0

∫ ∞
0

exp(−(s+ t)) ln

(
s

pj+1
+ t

pj

)
ds dt

= pj ln pj+1− pj+1 ln pj

pj+1− pj
− γ

through the parameter transformationx = s/pj+1+ t/pj , y = s+ t . To summa-
rize, we outlined a better estimate

E3b = (d − 1)

[
ln

un

n
− γ

]
+

d−1∑
j=1

pj ln pj+1− pj+1 ln pj

pj+1− pj
.

Remark6.4. If the conditionn2 = o(un) does not hold, we would use the
techniques in Section 3. An equivalent sampling scheme must be adopted withn
replaced by the adjusted sizen′.
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7. Conclusions and Future Work

This article provides the theoretical foundations for the Tuple Difference Coding
method for compressing Large databases and data warehouses. As already noted,
practical interest is growing in the TDC method, and the results given in this paper
will help in the task of organizing the data in the warehouse so as to maximize the
effects of compression.

The problem of estimating the effectiveness of compression using TDC reduces
to the problem of estimating the sum of the logarithms of the spacings between el-
ements of samples taken without replacement. This is a nontrivial problem, but for
the purpose of estimating compression efficiency, we may consider the problem ef-
fectively solved using the techniques we have developed. In particular, the approach
we develop in Section 3 to sampling without replacement in terms of sampling with
replacement is likely to be useful beyond its applications in this paper.

This article provides methods for estimating the compression for cases where
the population from which database records are sampled is either uniform, Zipf, or
the product of a uniform distribution and an arbitrary distribution. We have verified
our theoretical results by conducting experiments, and agreement between theory
and practice is always within a few percent, and to within a fraction of a percent in
most cases.

The issue most in need of additional work is that of optimal ordering of attribute
domains for achieving optimal compression. We have made significant progress
on the issue in this paper, but do not yet have strong analytical results. This is
material for further work. Also, our analysis in this article assumes knowledge of
data distributions, but in practice, this information is not always available. Much
more likely is nonparametric knowledge of data characteristics, such as variance,
skew, or information such as “80% of data is formed from 20% of the values.” The
estimation of compression efficiency from such non-parametric information is an
important area of future work.

From the probability theory and statistics viewpoint, it appears quite important to
derive the asymptotic distributions for discrete spacings under proper scaling. The
results available to date require the strong assumption that the distribution functions
are absolute continuous.
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CSÖRGŐ, S., AND WU, W. B. 2000. Random graphs and the strong convergence of bootstrap means.

Combin. Prob. Comput., 9, 315–347.
DARLING, D. A. 1953. On a class of problems relating to the random division of an interrval.Ann. Math.

Stat. 24, 239–253.
HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables.J. ASA 58, 13–30.
KLASS, M., AND TEICHER, H. 1977. Iterated logarithm laws for asymmetric random variables barely with

or without finite mean.Ann. Prob. 5, 861–874.
KOLCHIN, V. F., SEVAST’YANOV, B. A., AND CHISTYAKOV, V. P. 1978. Random Allocations. Wiley, New

York.
LI, W. 1992. Random texts exhibit Zipf-law-like word frequency distribution.IEEE Trans. Inf. Theory

38, 1842–1845.



The Performance of Difference Coding for Sets and Relational Tables 693

NETRAVALI , A. N., AND HASKELL, B. G. 1988. Digital Pictures—Representation and Compression.
Plenum Press, New York and London.

NG, W.-K., AND RAVISHANKAR, C. V. 1997. Block-oriented compression techniques for large statistical
databases.IEEE Trans. Knowl. Data Eng. 9, 314–328.

PYKE, R. 1965. Spacings.J. Roy. Stat. Soc., Ser. B 27, 395–449.
SHAO, Y., AND MARJORIE, G. 1995. Limit theorems for the logarithm of sample spacings.Stat. Prob.

Lett. 24, 121–132.
SHIRYAYEV, A. N. 1995. Probability. Springer-Verlag, New York.
VAN DER VAART, A. W. 1998. Asymptotic Statistics. Cambridge University Press, Cambridge, Mass.
VITERBI, A. J.,AND OMURA, J. K. 1979. Principles of Digital Communication and Coding. McGraw-Hill,

New York.

RECEIVED JANUARY1999;REVISED APRIL2002;ACCEPTED MAY 2003

Journal of the ACM, Vol. 50, No. 5, September 2003.


