
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 22(10). 863–877 (OCTOBER 1992)

Monitoring and Debugging Distributed Real-
time Programs

PAUL S. DODD AND CHINYA V. RAVISHANKAR
Real-Time Computing Laboratory, Department of Electrical Engineering and Computer

Science, The University of Michigan, Ann Arbor, Michigan, 48109-2122, U.S.A.

SUMMARY

In this paper we describe the design and implementation of an integrated monitoring and debugging
system for a distributed real-time computer system. The monitor provides continuous, transparent
monitoring capabilities throughout a real-time system’s lifecycle with bounded, minimal, predictable
interference by using software support. The monitor is flexible enough to observe both high-level events
that are operating system- and application-specific, as well as low-level events such as shared variable
references. We present a novel approach to monitoring shared variable references that provides trans-
parent monitoring with low overhead. The monitor is designed to support tasks such as debugging real-
time applications, aiding real-time task scheduling, and measuring system performance. Since debugging
distributed real-time applications is particularly difficult, we describe how the monitor can be used to
debug distributed and parallel applications by deterministic execution replay.

KEY WORDS Program monitoring Debugging Real-time systems

INTRODUCTION

Distributed real-time systems are a complex environment from the perspectives of
software design, development, testing, and operation. Monitoring distributed real-
time systems is a difficult challenge that must be met if software designers, system
architects, and performance evaluators are to measure, debug, test, and develop
systems efficiently. A key requirement for real-time system monitors is low overhead,
but even more important is predictable overhead.

Monitoring can be defined as the measurement, collection, and processing of
information about the execution of tasks in a computer system. System characteristics
may complicate this task. A real-time system requires the monitor itself to operate
under strict reliability and performance constraints. The reliability constraints require
that the monitored system and the monitor continue to operate in the presence of
static or dynamic failures. The performance constraints require that the interference
caused to the system by the monitor’s presence must be predictable, minimal, and
bounded. In particular, the monitor must not introduce or hide timing errors. 1

Distribution also imposes constraints on the monitor. Distributed systems lack
both global state information and a sense of global time. There is no total ordering
defined over events that occur on different nodes. Monitored data must be collected
from several sites and integrated to obtain a coherent view of the system. Further,

0038–0644/92/100863–15$12.50 Received 9 December 1991
© 1992 by John Wiley & Sons, Ltd. Revised 11 June 1992

864 P. S. DODD AND C. V. RAVISHANKAR

when tasks run in parallel, their behavior can be nondeterministic. The monitor
must support the deterministic replay of applications for effective debugging.

This paper introduces HMON, a monitor for an experimental distributed real-
time system called the Hexagonal Architecture for Real-Time Systems (HARTS)
being developed in the Real-Time Computing Laboratory at the University of
Michigan. Our goal is to provide a real-time monitor integrated with its environment
to support tasks such as debugging distributed real-time applications, aiding real-
time task scheduling, and measuring performance. We perform the monitoring
transparently, so the programmer does not need to add special code to applications.
The monitor provides continuous monitoring capabilities throughout a real-time
system’s lifecycle, from design and testing to production. The monitor supports the
deterministic replay of distributed real-time applications to aid debugging. Our
monitor is flexible enough to observe both high-level events that are operating
system- and application-specific, and low-level events like shared variable references.
Our method of monitoring shared variables is novel and transparent. The monitor
uses software integrated into the system call libraries for flexible, transparent moni-
toring. We also dedicate some system hardware to the monitor to minimize inter-
ference with the measured system, but no special hardware is required. Our system
is intended for general-purpose real-time multiprocessors. Although our techniques
were developed for the HARTS environment, they may be applied to other real-
time systems. Our approach is unique because we perform transparent monitoring
and deterministic replay on a distributed real-time system without adding any special
hardware such as a bus probe or a hardware instruction counter.

Monitoring and debugging are topics of active research. Software monitors 2-7 are
popular because they allow users to view the monitored system at various levels of
complexity or abstraction. These monitors are also independent of low-level hard-
ware details, such as data bus width or memory cycle time, and are flexible because
they are easily modified, not being etched in silicon. They can also be integrated into
the operating system and programming environments. However, typical monitors are
invasive and not applicable to real-time systems because of their unpredictable
interference. They typically run on the same CPU as the monitored tasks, so their
interference effects can be considerable. Ad hoc solutions such as turning off the
real-time clock or altering timeout values during monitoring operations, as suggested
in References 8 and 9, will not work when the system interacts with the real world
or uses asynchronous interrupts.

Simulators have been used as flexible software debugging tools. 10 However, it is
difficult to simulate a complex distributed real-time system, or validate the cor-
rectness of simulations. Simulated execution is also much slower than execution
replay.

Passive hardware monitors 11-14 can provide detailed, low-level information about
a system, such as communication activities, memory accesses, and I/O patterns with
little interference to the monitored system. However, hardware monitors do not
support the interactive modification of task execution that is necessary to support
debugging. It is also difficult to use hardware monitors in computer systems which
include such complexities as on-chip cache memories, coprocessor, and parallel or
distributed processors.

A number of monitoring and debugging systems have been developed specifically
for real-time systems. 15–19 In. addition, some techniques developed for debugging

DISTRIBUTED REAL-TIME PROGRAMS 865

distributed systems may safely be applied to real-time systems during replay since
interference during replay does not alter program execution. However, interactive
debugging of real-time programs without deterministic replay is not sufficient because
debugging commands can destroy the timing-dependent nature of real-time systems.
Similarly, breakpoints must only be inserted during replay to maintain the consistent
timing behavior of the system. Breakpoints inserted during normal execution, as in
References 20 and 21, can nondeterministically alter the execution of a distributed
real-time program. The halted process may timeout, since the real-time clock con-
tinues to run while the process is suspended. Tasks that are not suspended will
continue to run and alter the system state. Breakpoints can safely be used during
replay because event timing is maintained.

Tsai et al. 22 offer a low-interference monitoring-and-replay system for debugging
real-time uniprocessors. There are four differences between their technique and
ours. First, they do not support parallel or distributed systems. Second, their monitor
records considerably more data than ours. For example, a six byte AND Immediate
instruction on a MC68000 generates 256 bytes of log data. We do not monitor
individual instructions, which saves space but lowers the resolution of our monitor.
Third, their dual processor unit causes unpredictable interference on the target
system by generating an interrupt for every event monitored. While HMON adds
more overhead, it is predictable. Finally, their approach can reproduce asynchronous
interrupts only if the CPU has a hardware instruction counter. Without this special
hardware, they cannot perform deterministic replay. HMON supports deterministic
replay without a hardware instruction counter.

Bugnet 23’24 is an older system that provides interactive replay for debugging
distributed programs without using any special hardware. However, it does not
reproduce the exact timing of events, and it uses checkpoints, which are too intrusive
for real-time systems. HMON records all events that occur on a processor in a single
event log and replays events without altering their timing.

Tai et al 25 suggest a system-independent language-level approach to deterministic
execution replay for concurrent Ada programs. Synchronization events are used to
replay the monitored application. However, their system does not support shared
variable operations as synchronization events, and it does not consider issues such
as real-time clock values or dynamic task creation. HMON supports shared variable
operations, the real-time clock, and dynamic task creation, at the expense of losing
language-level generality.

THE HARTS SYSTEM

HMON is a monitoring and debugging environment for HARTS, an experimental
distributed real-time system used for research in the Real-Time Computing Labora-
tory at the University of Michigan. A primary feature of HARTS is its hexagonal
mesh interconnection network 26 (see Figure 1). This network architecture has several
attractive features for general-purpose real-time systems: simple interconnections,
efficient message routing, and high fault tolerance. Each node on the network is
directly connected to six neighbors using point-to-point serial links. The nodes
themselves are shared memory multiprocessors, each consisting of one or more
application processors, a network processor, an Ethernet processor, and a system
controller. The application processors run the experimental HARTOS distributed

866 P. S. DODD AND C. V. RAVISHANKAR

Figure 1. Hexagonal mesh network

operating system kernel, 27 which we are developing on top of the pSOS 28 unipro-
cessor real-time kernel. The network processor handles all internode and intranode
communication to reduce operating system overhead on the application processors.
Synchronous signals and messages can be used to communicate between tasks on
the same application processor, on different application processors, or on different
nodes.

The HARTS system provides a good testbed for monitoring and debugging since
it supports applications that are parallel, distributed, or uniprocessor. HARTS
also provides a testbed for monitoring and debugging applications with real-time
characteristics.

MONITOR ARCHITECTURE

The HMON monitor is a distributed software monitor that runs on a dedicated
application processor, called the monitor’ processor (MP), on each node of HARTS
(see Figure 2). Additional code to collect data runs on the network processor and the
application processors of each node (see Figure 3). Each processor’s local memory is
accessible to other processors. The monitor processor logs the data on an external
user workstation. Though the data collection code interferes with the system being
monitored, in our system this interference is low, predictable, and accounted for in
CPU and network scheduling. Since the monitoring code is always running, the
interference is the same during normal execution as during development. Further,

DISTRIBUTED REAL-TIME PROGRAMS

Figure 2. Structure of a HARTS node

867

Figure 3. Monitor data collection

the interference does not change during replay. Since this deterministic interference
can be measured, the monitoring code is a predictable part of the application.

The monitoring can be divided into three phases: data extraction on the application
processors and network processor, data compression on the monitoring processor,
and data logging on an external workstation. Data on monitored events is acquired
through code inserted into the monitored system. We acquire much of our data by
monitoring system calls and context switches transparently. HMON monitors inter-
rupts and shared variable references to allow deterministic replay of tasks for
debugging. HMON also provides monitoring calls which programmers can use to
monitor any activity not monitored by default. The overhead of this monitoring is

868 P. S. DODD AND C. V. RAVISHANKAR

low because the data records are only 16 bytes long, on average, and because
monitored events are relatively infrequent. All extracted data is sent to the monitor
processor, which orders and compresses it before sending it to the user workstation
for logging.

The classes of events monitored are: pSOS system calls, HARTOS system calls,
context switches, interrupts, shared variable references, and application-specific
events. We now describe how we monitor each type of event.

Monitoring system calls

We monitor all pSOS and HARTOS system calls by modifying the existing system
call libraries to include monitoring code. No kernel changes are necessary because
only the library routines that marshal the arguments for C programs are modified.
HMON monitors interprocess communication system calls, such as message and
signal processing, to order distributed events in the manner described in Reference
29. Process management calls, such as creating and deleting processes, are also
monitored to follow process interactions. Time management calls that set or read
the clock are monitored to record real-time properties for debugging. The calling
task’s process ID and the call parameters are collected by the monitoring code. To
collect data such as the message ID, remote communication system calls are also
monitored by the network processor.

Monitoring context switches

We monitor all context switch events through a hook provided by the pSOS
kernel. The process IDs of the tasks being switched in and switched out are logged.
Task scheduling and CPU usage are determined by studying the order and timing
of these events.

Monitoring interrupts

Interrupts are asynchronous sources of input data that can affect the execution of
a real-time application. Recording the occurrence of an interrupt and the data
transferred with it is straightforward. The difficulty is that the ‘time’ that the interrupt
occurred is needed in order to replay it.

We insert monitoring code into interrupt handlers to log where each interrupt
occurs within the dynamic execution trace of a process, so that its timing can be
reproduced. Reproducibility is guaranteed by recording an instruction counter (IC)
value for each interrupt. This IC value is a count of the total number of instructions
that have been executed by the process. The IC can be maintained by special
hardware 30 by counting the machine instructions as they are executed by the pro-
cessor. Commercial processors do not have hardware instruction counters, so we
simulate a counter by using a software instruction counter (SIC) to count backward
branches, traps, and subroutine calls, as described in Reference 31. The SIC value
and program counter value together define a unique state in a task execution. We
can reproduce an interrupt by invoking the interrupt handler at the state defined by
these values.

DISTRIBUTED REAL-TIME PROGRAMS 869

Monitoring shared variables

For tightly-coupled multiprocessors, such as the nodes in HARTS, shared variables
enable fast, efficient interprocess communication. However, applications that use
shared variables are difficult to debug since the order of shared variable operations
is often nondeterministic. The key to debugging such applications is to monitor the
order of shared variable accesses. We have developed a novel method to monitor
these accesses with low overhead which enables the events to be deterministically
replayed.

The HARTOS operating system does not currently provide support for shared
variables. We therefore provide language library routines that coordinate access to
shared variables and perform the monitoring. We chose to implement a mutual
exclusion protocol because of its simplicity and low overhead. Concurrent reader
protocols could be used instead of mutual exclusion on a more tightly coupled system
than HARTS.

Protocol details

Our method for monitoring shared variables is based on the insight that read
operations do not need to be replayed in the exact order that they originally occurred.
The relative timing of other read operations does not matter, only that of write
operations. In fact, a read operation can be replayed at any point between the two
write operations that bound it—the last write operation before it and the first write
operation after it. This insight enables us to support deterministic replay by only
logging write operations.

Each shared variable is associated with a set of access counters, one for each
process that uses the variable. Each access counter keeps track of the number of
times the variable is read or written by the corresponding process. These access
counter values are used to reproduce the order of access when the tasks are replayed
for debugging.

The subroutine to synchronize read operations (see Figure 4) uses a semaphore
to guarantee exclusive access to the shared variable. The subroutine increments the

Shared-Read (Variable,

{
if (REPLAY) {

CurrentEntry =

&Value, Process)

ReadMonitorBuffer();
while (Variable.AccessCount[Process] ==

CurrentEntry.Variable.AccessCount[Process]){
pause;
CurrentEntry = ReadMonitorBuffer();

}
}
P(Variable.Lock);
Variable. AccessCount [Process]++ ;
Value = Variable.Value;
V(Variable. Lock);

}

Figure 4. Read shared variable algorithm

870 P. S. DODD AND C. V. RAVISHANKAR

reading task’s access count for that variable and performs the read before releasing
the semaphore. During replay, a task can only read a shared variable if all preceding
write operations have been replayed. This will be the case if the task’s access count
is less than the value recorded in the next logged write event of the monitor log. If
the two values are equal, a pending write must take place before the access counter
changes, so the reading task must wait for the next write to be replayed.

The shared variable write subroutine (see Figure 5) also uses a semaphore to
guarantee exclusive access to the shared variable. All of the variable’s access counter
values are recorded in the monitor log before the writing task’s access count is
incremented and the write operation is performed. During replay, a writing task
must wait until all preceding read and write operations have occurred. Once the
variable’s access counts match the recorded values in the logged write event, all of
the logged operations have been replayed so the write can take place.

Figure 6 shows a sample synchronized execution of three parallel tasks accessing
a single shared variable. The access counter values written to the log and the values
in memory after each operation is completed are listed to the right. During replay,
the first two read operations are allowed to happen in any order. The third read
would be forced to wait until after the first write. Only after this write would the
next log entry hold the access counter values (5,8, 11) of the second write, allowing
the read to occur since the recorded counter value (11) exceeds the current value
(10). In addition, each write operation would be forced to be replayed in exactly
the same order as logged.

The access counters we use are a class of monotonically increasing timestamps.
Other researchers have used similar ideas in different contexts. For example, the

SharedWrite (Variable, NewValue, Process)

{
if (REPLAY) {

}

}
}

Current Entry = ReadMonitorBuffer();
while ((Process != CurrentEntry.Process) or

(Variable.AccessCount [0..N] <
CurrentEntry.Variable.AccessCount [0.. N])) {

pause;
CurrentEntry = ReadMonitorBuffer();

}
P(Variable.Lock);
IncrementMonitorBufferPointer();
Variable.AccessCount [process]++ ;
Variable.Value = NewValue;
V(Variable.Lock);
else {
P(Variable.Lock);
WriteMonitorBuffer(Variable, Process, VariableAccessCount [0.. N]);
Variable.AccessCount [Process]++ ;
ariable.Value = NewValue;
V(Variable.Lock);

Figure 5. Write shared variable algorithm

DISTRIBUTED REAL-TIME PROGRAMS 871

Process 1

Read(S)

Write(S)

Process 2

Write(S)

Process 3

Read(S)

Read(S)

Written
To Log

(5,7,10)

(5,8,11)

Access Count
After Operation

(5,7,9)

(5,7,10)

(5,8,10)

(5,8,11)

(6,8,11)

Figure 6. Shared variable synchronization example

protocol described in Reference 29 uses monotonically increasing timestamps. To
the best of our knowledge, the first use of monotonic timestamps for distributed
debugging was by Schiffenbauer, 32 in a loosely-coupled environment of Xerox Alto
workstations. This system used the notion of a logical clock which was automatically
incremented by the Alto hardware at regular intervals. However, their approach
differs from ours in significant ways. The logical clock corresponding to a process
in this system progressed whether or not the process itself was active. Unfortunately,
that view resulted in some problems. For example, they describe considerable
difficulty in extending the concept to debugging a group of processes that share a
monitor. That would suggest that their technique is not applicable to debugging
processes that share variables.

Monitoring shared variable operations in order to replay execution was first
introduced in a debugging system called Instant Replay. 33 Although HMON and
Instant Replay monitor shared variables differently, the goals are similar. Instant
Replay enables parallel programs to be debugged by reproducing their execution
behavior. All process interactions are modeled as operations on shared objects. For
each shared object, the system maintains a version number and a count of the
number of times the version was read. Write operations increment the current
version number. Each task logs the current version number of each shared object
as it is accessed.

Instant Replay works well for parallel applications, but is not applicable to real-
time systems because unlike HMON, it does not monitor timing behavior, context
switches, or system calls. Instant Replay also loses some information about timing
errors because each task records data in its own log. In order to detect scheduling
errors and other timing errors, we use a common log for all tasks on a processor to
totally order monitored operations. In addition, our method requires us to log data
only for write operations, not for all references. Read operations are replayed
correctly from the data logged by the write operations. Therefore, HMON uses less
log space if the number of shared variable read operations dominates the number
of writes. Finally, Instant Replay adds unnecessary complexity by modeling message
passing operations as operations on shared memory. HMON handles message passing
by monitoring the system calls that process messages.

872 P. S. DODD AND C. V. RAVISHANKAR

Monitoring application events

Application-specific events are extracted from user tasks through calls to a monitor-
ing procedure that the programmer inserts as appropriate. While such calls will affect
the running time of the application tasks, the effects of the monitor code are
predictable because its execution time is constant.

PROCESSING MONITORED DATA

Special monitor code runs on its own processor on each HARTS node in order to
reduce the interference from the monitor. We refer to this processor as the monitor
processor. We dedicate a processor to the monitor to allow monitored data to be
processed locally on the node without hampering the real-time tasks on other
processors. Because the monitor processor shares memory with the application
processors, it is able to provide scheduling feedback and debugging support. Either
the Ethernet processor or an application processor could be dedicated as the monitor
processor. We chose an application processor to demonstrate generality and applica-
bility to other shared memory multiprocessors.

A block of memory on the monitor processor is dedicated to holding monitored
data for each application processor. Data extraction code on the application pro-
cessors writes data directly to the monitor processor memory over the node’s shared
system bus. The monitor processor retrieves the data from the application processor
buffers by periodic polling. Thus, application processors are not affected if a monitor
processor fails. More importantly, monitoring can be enabled at any time, without
changing the interference, simply by starting to poll. This means production systems
can be debugged after development. Post-development debugging is identified in
Reference 34 as an issue important to users. It is especially vital in real-time systems
since they may be operated and maintained for tens of years.

The monitor processor creates a partial order for events on different application
processors by periodic sampling. At regular intervals, the monitor processor samples
the status of each application processor buffer into another log. Each pair of
consecutive samples defines a time interval. Each monitored event occurs between
two consecutive samplings, so events on any application processor during two differ-
ent intervals are totally ordered.

Before sending the data from the node to an external user-level process running
on a non-real-time workstation outside the HARTS system, each monitor processor
compresses the log data in order to reduce overhead and transmission time. The
user process receives and archives data coming in from all monitor processors so
that the events can be replayed for debugging. The monitor processors use the
Ethernet controller on each node to send their data to the user workstation. The
real-time hexagonal mesh network remains unaffected by the transmission of data
over the Ethernet.

USING THE MONITOR FOR DEBUGGING

The HMON monitor is intended to be a general-purpose monitor suitable for many
tasks. One important task is debugging distributed real-time applications. A common
and effective method of debugging is cyclic debugging, where the programmer follows
a cycle of executing the application, watching for errors, modifying the code, and

DISTRIBUTED REAL-TIME PROGRAMS 873

re-executing to observe the results. However, distributed real-time applications do
not lend themselves to cyclic debugging for two reasons. Firstly, they are often
nondeterministic: two executions of the same application with the same input data
may not generate the same output. Program execution is nondeterministic because
the timing of interactions between tasks may vary. Secondly, modifying the code of
a real-time application can nondeterministically change the results by altering the
timing and order of events.

HMON supports debugging by providing deterministic replay of distributed real-
time applications. While the code of the application must not be modified, HMON
enables the programmer to deterministically replay an monitored execution in order
to study an application in detail.

HMON provides support for deterministic replay on HARTS by allowing the user
to correctly reconstruct the timing and execution of monitored events. Events during
replay do not match the original execution in ‘wall clock time’ but the effects on the
tasks are the same. Real time is mapped to software instruction counter and real-
time clock values, which are recorded. In all respects, the replayed execution matches
the original, although it is slower if breakpoints are used.

There are two sources of nondeterminism in HARTS: interrupts and shared
variable accesses. Because interrupts cause an unscheduled transfer of control, their
timing can alter the execution of an application. The order that each process gains
access to shared variables can also alter the resulting execution because of race
conditions.

HMON can reproduce an interrupt during replay because it records the task’s
software instruction counter value when an interrupt occurs. During replay, the
interrupt is invoked by a trap instruction inserted into the application code at
the same program counter and software instruction counter value. This technique
guarantees that interrupts occur deterministically in replay.

Shared variable accesses are also replayed in the original order. During replay,
HMON guarantees the same order of write operations by ensuring that the access
counters have the same value as during the original execution. Write operations that
start too soon are suspended until the access counters reach the correct values. Read
operations need not occur in their original order, but they do need to occur between
the same two write operations. HMON uses the access counters recorded in the log
from the write operations to ensure that reads happen during the correct interval.

Tasks also interact through messages and signals. Tasks cause these synchronous
events through systems calls. HMON can deterministically replay these events
because it records their order. Recording the order of these events is sufficient
because replayed tasks will generate the same data values if the order of events is
the same. However, both the order and value of data items received from the
environment and the real-time clock must be recorded since these are not generated
by replayed tasks. Monitoring code collects this data during system calls.

Debugging is straightforward once deterministic replay is guaranteed. On a single
processor, tasks are scheduled in the same order because all interprocess events and
clock interrupts are replayed. Across processors, the monitoring routines ensure
correct synchronization. Interprocess events that occur too soon during replay are
suspended waiting for the matching remote event. The programmer can insert
breakpoints in any task of a distributed application. When the breakpoint is taken,
all tasks that interact with the halted task will eventually become suspended, waiting

874 P. S. DODD AND C. V. RAVISHANKAR

for the halted task to complete some message, signal, or shared variable operation.
Once the halted task is resumed, execution will continue for all tasks. Waiting tasks
will not suffer from timing errors, such as real-time clock timers running out, because
all interrupts are deterministically replayed as they occurred in the original execution.

Once a process is halted by breakpoint, the programmer can conduct detailed
observations of the state of the processor, including register values and memory
contents. Additional breakpoints can be set before execution is resumed. The entire
execution trace can be replayed as many times as necessary.

Johnson 35 states that two fundamental capabilities of a debugger are control over
execution flow and control over the program’s data state. Debuggers for distributed
real-time systems must also be able to control the timing of asynchronous events,
task scheduling, and the order of interprocessor events. HMON provides full replay
of the order and timing of events, as well as task scheduling. System execution can
be studied in detail, but event order and timing cannot be altered since this could
nondeterministically change the execution. Enabling a programmer to alter an
execution during replay could greatly improve the debugging of distributed real-time
systems. We are studying the feasibility and implications of this concept.

PERFORMANCE MEASUREMENTS

In order to determine the interference of the monitor, we have timed the performance
overhead on several operations. This interference is low and predictable, so the real-
time properties of the system are not violated. Timing measurements were made by
performing each operation between 1000 and 1,000,000 times, recording the elapsed
time, and then averaging over the number of iterations. Over so many iterations,
any irregularities in the kernel clock are effectively suppressed. The clock values
were read from the pSOS kernel software clock, which is accurate to 1 millisecond.

The first set of data displays the interference of the monitoring code on a sample
set of pSOS system calls from a C-language application (see Table I). Each call
takes an average of 20 µs longer.

Our second table displays the interference of monitoring on shared variable
references (see Table II). These values represent the time required for a C-language
application to call the shared variable synchronization subroutines. The monitoring
overhead on individual read operations is only 17 per cent. The high overhead on
writes will have lower impact on actual applications because reads commonly domi-
nate writes. If the ratio of reads to writes is 4 to 1, the average overhead drops to

Table I. Monitor interference on pSOS System calls

System call Time (µs)
Without monitoring With monitoring

spawn_p (create process) 201·2 222·9
activate_p (start process) 152·3 174·0
delete_p (delete process) 208·4 230·1
signal_v (send signal) 95·3 114·4
send_x (send message) 119·9 139·5
req_x (receive message) 110·7 129·9

DISTRIBUTED REAL-TIME PROGRAMS

Table II. Monitor interference on shared variable operations

875

Operation Time (µS)
Without monitoring With monitoring

Read shared variable 21·82 25·57
Write shared variable 21·76 45·02

Table III. Monitor interference on FFT polynomial multiplication

Measurement Degree of polynomials
8 16 32 64

Time (s) 6·908 18·116 44·973 107,771
Time with HMON 7·080 18·518 45·994 110·064
Time difference 0·172 0·402 0·971 2·293
HMON overhead (per cent) 2·5 2·2 2·1 2·1

Table IV. Monitor interference on busy beaver task

Clock interrupt frequency (Hz) 100 250 500 750 1000
HMON overhead (per cent) 0·01 0·07 0·29 0·66 1·2

35 per cent. We cannot compare our performance to that of Instant Replay, 33

since the overhead incurred on individual operations is not stated in Reference 33.
However, the overhead on an entire application execution can be compared.

Our third table shows the interference on a sample bounded buffer application of
polynomial multiplication with one producer and one consumer on parallel pro-
cessors. The producer task generated two arrays of random polynomial coefficients
in shared memory, and then signalled the consumer task. The consumer multiplied
these polynomials using Fast Fourier transforms and then requested another set of
numbers. This sequence repeated for 100 iterations. Our measurements are presented
in Table III. While our overhead is greater than the 1 per cent incurred by Instant
Replay, Table IV shows that most of our overhead is from monitoring 1000 clock
tick system calls every second. We feel that the net overhead is low enough to be
acceptable for a real-time system monitor, since it is predictable.

CONCLUSIONS

We have presented a monitoring and debugging system for a distributed real-time
computer system that provides predictable, transparent monitoring. The monitor
uses software support and some dedicated system hardware for flexibility. Our
monitor enables deterministic replay of tasks by reproducing nondeterministic events.
Our approach to monitoring shared variables is novel and helps detect timing errors.
Our performance measurements have shown that the overhead of monitoring is

876 P. S. DODD AND C. V. RAVISHANKAR

acceptable. Our approach is applicable to other general-purpose real-time multipro-
cessors since we do not add any special hardware to the system.

In the current version of HMON, monitoring data is collected on all pSOS system
calls. HARTOS system calls are monitored at both the source and destination nodes.
Context switches and interrupt handlers have been instrumented with monitoring
and replay code. Shared variable synchronization, monitoring, and replay is sup-
ported. We provide a utility to instrument applications with software instruction
counter code. Preliminary code for the monitor processor collects data from the
application processors and displays the logs on a user workstation.

Additional work is continuing on this project to improve the debugging features.
An improved debugger user interface will be developed using the Gnu Debugger.
Code on the monitor processor and network processor will be further developed to
enhance replays and network monitoring, and support CPU scheduling. Finally, a
utility to analyze monitored data on a user workstation will be explored.

ACKNOWLEDGEMENTS

We are grateful to Prof. Kang Shin and Dilip Kandlur of the Real-Time Computing
Laboratory at the University of Michigan for useful discussions during the progress
of this work, and to one of the anonymous reviewers for bringing the early work of
R. D. Schiffenbauer to our attention.

The work in this report is supported in part by the U.S. Office of Naval Research
under Contract No. N00014-85-K-0122.

REFERENCES

1. J. Gait, ‘A probe effect in concurrent programs’, Software–Practice and Experience, 16, 225–233
(1986).

2. H. Agrawal, R. A. DeMillo and E. H. Spafford, ‘An execution backtracking approach to debug-
ging’, lEEE Software, 8, (3), 21–26 (1991).

3. D. Bhatt, A. Ghonami and R. Ramanujan, ‘An instrumented testbed for real-time distributed
systems development’, Proc. 7th IEEE Real-Time Systems Symposium, 1987, pp. 241-250.

4. P. Corsini and C. A. Prete, ‘Multibug: interactive debugging in distributed systems’, IEEE Micro,
6, (3), 26–33 (1986).

5. G. S. Goldszmidt, S. Katz and S. Yemini, ‘High-level language debugging for concurrent programs’,
ACM Trans. Computer Systems, 8, (4), 311–336 (1990).

6. F. Halsall and S. C. Hui, ‘Performance monitoring and evaluation of large embedded systems’,
Software Engineering Journal, 2, (5), 184–192 (1987).

7. R. E. McLear, D. M. Scheibelhut and E. Tammaru, ‘Guidelines for creating a debuggable
processor’, Proc. Ist Int. Conf on Architectural Support for Programming Languages and Operating
Systems, published in ACM SIGPLAN Notices, 17, (4), 100–106 (1982).

8. A. D. Maio, S. Ceri and S. C. Reghizzi, ‘Execution monitoring and debugging tool for Ada using
relational algebra’, ACM Ada Letters, V, (2), 109–123 (1985).

9. P. K. Rowe and B. Pagurek, ‘Remedy: a real-time, multiprocessor, system level debugger’, Proc.
7th IEEE Real- Time Systems Symposium, 1987, pp. 230–240.

10. J. C. Huang, M. Ho and T. Law, ‘A simulator for real-time software debugging and testing’,
Software–Practice and Experience, 14, 845–855 (1984).

11. T. Bemmerl and G. Schoder, ‘A portable realtime multitasking kernel with debugging support’,
Proc. Int. Conf. on Software Engineering for Real Time Systems, 1987, pp. 165–171.

12. B. Lazzerini, C. A. Perle and L. Lopriore, ‘A programmable debugging aid for real-time software
development’, IEEE Micro, 6, (3), 34–42 (1986).

13. B. Sundermeier, ‘Real-time multiprocessing debugging’, Western Electronic Show and Convention
Conference Record, 27/3/1–5 (1987).

14. D. Wybranietz and D. Haban, ‘Monitoring and performance measuring distributed systems during

DISTRIBUTED REAL-TIME PROGRAMS 877

operation’, ACM SIGMETRICS Conference on Measurement and Modelling of Computer Systems,
1988, pp. 197–206.

15. D. Lyttle and R. Ford, ‘A symbolic debugger for real-time embedded Ada software’, Software—
Practice and Experience, 20, 499–514 (1990).

16. J. D. Schoeffler, ‘A real-time programming event monitor’, IEEE Trans. Education, 31, (4),
245–250 (1988).

17. G. Schrott and T. Tempelmeier, ‘Monitoring of real time systems by a separate processor’,
Proceedings of the 12th IFAC/IFIP Workshop on Real-Time Programming, 1983, pp. 69–79.

18. H. Tokuda, M. Kotera and C. W. Mercer, ‘A real-time monitor for a distributed real-time operating
system’, ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, 24, (l), 68–77 (1989).

19. C. A. Witschorik, ‘The real-time debugging monitor for the Bell System 1A processor’, Software—
Practice and Experience, 13, 727–743 (1983).

20. R. Cooper, ‘Pilgrim: a debugger for distributed systems’, Proc. 7th Int. Conf. on Distributed
Computer Systems, 1987, 458–465.

21. C. R. Hill, ‘A real-time microprocessor debugging technique’, Proc. ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on High Level Debugging, published in A CM SIGPLAN Notices,
18, (8), 145–148 (1983).

22. J. J. P. Tsai, K.-Y. Fang, H.-Y. Chen and Y.-D. Bi, ‘A noninterference monitoring and replay
mechanism for real-time software testing and debugging’, IEEE Trans. Software Engineering, 16,
(8) 897–916 (1990).

23. S. H. Jones, R. H. Barkan and L. D. Wittie, ‘Bugnet: a real time distributed debugging system’,
Proc. 6th Symposium on Reliability in Distributed Software and Database Systems, 1987, pp. 56–65.

24. L. D. Wittie, ‘Debugging distributed C programs by real time replay’, ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, published in ACM SIGPLAN Notices, 24, (1),
57–67 (1989).

25. K.-C. Tai, R. H. Carver and E. E. Obaid, ‘Debugging concurrent Ada programs by deterministic
execution’, IEEE Trans. Software Engineering, 17, (l), 45–63 (1991).

26. M. S. Chen, K. G. Shin and D. D. Kandlur, ‘Addressing, routing and broadcasting in hexagonal
mesh multiprocessors’, IEEE Trans. Computers, C-39, (l), 10–18 (1990).

27. D. D. Kandlur, D. L. Kiskis and K. G. Shin, ‘HARTOS: a distributed real-time operating system’,
ACM SIGOPS Operating Systems Review, 23, (3), 72–89 (1989).

28. pSOS-68K Real-Time Operating System Kernel User’s Guide, Software Components Group, Inc.,
1986.

29. L. Lamport, ‘Time, clocks, and the ordering of events in a distributed system’, Communications
of the ACM, 21, (7), 558–565 (1978).

30. T. A. Cargill and B. N. Locanthi, ‘Cheap hardware support for software debugging and profiling’,
Proc. 2nd Int. Conf. on Architectural Support for Programming Languages and Operating Systems,
1987, pp. 82–83.

31. J. M. Mellor-Crummey and T. J. LeBlanc, ‘A software instruction counter’, Proc. 3rd Int. Conf.
on Architectural Support for Programming Languages and Operating Systems, published in ACM
SIGPLAN Notices, 24, (special issue), 78–86 (1989).

32. R. D. Schiffenbauer, ‘Interactive debugging in a distributed computational environment’, MS
Thesis, Massachusetts Institute of Technology, 1981.

33. T. J. LeBlanc and J. M. Mellor-Crummey, ‘Debugging parallel programs with instant replay’,
IEEE Trans. Computers, C-36, (4), 471–482 (1987).

34. R. Seidner and N. Tindall, ‘Interactive debug requirements’, Proc. ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on High Level Debugging, published in ACM SIGPLAN Notices,
18, (8), 9–22 (1983).

35. M. S. Johnson, ‘Some requirements for architectural support of software debugging’, Proc. 1st Int.
Conf. on Architectural Support for Programming Languages and Operating Systems, published in
ACM S[GPLAN Notices, 17, (4), 140–148 (1982).

	Monitoring and Debugging Distributed Real-time Programs
	SUMMARY
	INTRODUCTION
	THE HARTS SYSTEM
	MONITOR ARCHITECTURE
	Monitoring system calls
	Monitoring context switches
	Monitoring interrupts
	Monitoring shared variables
	Protocol details
	Monitoring application events

	PROCESSING MONITORED DATA
	USING THE MONITOR FOR DEBUGGING
	PERFORMANCE MEASUREMENTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

