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Abstract. We consider multiprocessing systems where processes make independent, Poisson

distributed resource requests with mean arrival time 1. We assume that resources are not
released. It is shown that the expected deadlock time is never less than 1, no matter how many
processes and resources are in the system. Also, the expected number of processes blocked by
deadlock time is one-half more than half the number of initially active processes. We obtain

expressions for system statistics such as expected deadlock time, expected total processing time,
and system efficiency, m terms of Abel sums. We derive asymptotic expressions for these statistics
in the case of systems with many processes and the case of systems with a fixed number of
processes. In the latter, generahzations of the Ramanujan Q-function arise. We use singularity

analysis to obtain asymptotlcs ot coefficients of generalized Q-functions.
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1, Introduction

Deadlock detection and resolution is a major issue in the design of multipro-

cessing systems (see Bic and Shaw [1988]). Although, in some systems (Unix,

for example) deadlock is rare and the cost of resolution is low, in many others

(such as database systems) the likelihood of deadlock may be quite high and
resolution requires an expensive rollback and recovery. It would be useful to

know under what circumstances deadlock is likely and (especially when resolu-

tion is costly) the expected time for the occurrence of deadlock. This paper

presents a model of multiprocessing systems where processes make resource

requests independently and with Poisson distributions of mean 1. We derive
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exact and asymptotic expressions for system statistics such as expected time to

deadlock, expected total processing time, and system efficiency. We make the

simplifying assumption that resources are never released. Thus, our results may

be viewed as upper bounds or bounds for an extreme case of system behavior.

Let us describe our model a little more precisely. A multiprocessing system is

composed of two types of entities: processes and resources. Processes are the

active entities of the system. They can change the system state by requesting

new resources or releasing resources allocated to them. Resources are serially

reusable: they may be reallocated once they are released. Examples of such

resources are hardware units such as memory pages or printers, and software

resources such as database locks. We do not examine systems with consumable

resources such as messages, signals, and input data. We also assume that each

process requests only one resource at a time.

A system state is represented by a resource allocation graph. This is a directed

graph whose vertices are the processes and resources in the system. The graph

is bipartite; edges are directed from resources to processes or processes to

resources (see Figure 1).

A resource is free if it has not been allocated to a process. If a process p

requests a free resource r, an edge is inserted in the resource allocation graph

from r to p to indicate that r has been allocated to p and is no longer free.

When p releases r the edge is erased. If p requests a resource r that is not

free, an edge is drawn from p to r, indicating that p is waiting for r to be

released. In this case, p becomes inactiue or blocked and can make no more

requests until r is released. Thus, an active process has out-degree O and an

inactive process has out-degree 1. Deadlock occurs when a directed cycle
appears in the resource allocation graph. Since all the processes on the

directed cycle are blocked, the resources on the cycle can never be released.

They become useless until the deadlock is detected and resolved. For example,

if process p ~ requests resource r4 in Figure 1, deadlock occurs because a cycle
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p7 + r4 + p2 + r2 + p3 -+ T5 + p7 results when the edge p~ ~ rd (indicated
by the dotted arrow) is added. A more detailed description of the model is

given in the following section.

Lynch [1994], in enumerating the number of cycle-free resource allocation

graphs for given numbers of resources and processes, used the following

necessary and sufficient conditions for a bipartite directed graph to be a

resource allocation graph.

(i) Every vertex has out-degree at most one.

(ii) Every resource with non-zero in-degree has out-degree exactly one,

To see this, observe that a resource acquires an out-edge the first time it is

requested; thereafter, it acquires only in-edges. A process, on the other hand,

acquires in-edges until it acquires its first out-edge; thereafter, it is inactive.

(For more general models of deadlock and associated references, see Bic and

Shaw [1988].)

From his enumeration, Lynch [1994] derived some system statistics for a

model where resource allocation graphs with the same number of directed

edges are equally likely. Our model is quite different. It is more closely related

to problems such as linear probe hashing (see Knuth [1973] and Vitter and

Flajolet [1990]), computation of random mapping statistics (see Flajolet et al.

[1988] and Flajolet and Odlyzko [1990a]), analysis of union-find algorithms (see

Yao [1976] and Knuth and Schonhage [1978]), and optimum caching (see

Knuth [1985]). These problems are all analyzed in terms of Abel sums (so

called because many of them can be evaluated explicitly by generalizations of

Abel’s identity).

The outline of the paper is as follows: In Section 2, we describe our model

and derive recurrence relations for various system statistics. In Section 3, we

note that all of these recurrences have a common form and give solutions in

terms of Abel sums. We prove a result we call the Half and Half Theorem. It

says that beginning from any state with j active processes, the expected number

of these processes blocked by deadlock time is (j + 1)/2, one-half more than

half the number of initially active processes. In Section 4, we develop a general

theory for the evaluation of Abel sums. This is applied to the recurrence

solutions of Section 3 to give expressions and inequalities for system statistics.

In Section 5, we give asymptotic expressions for these expressions in the case

where systems have many processes. In Section 6, we do the same for the case

where systems have a fixed number of processes. Here, functions generalizing

the Q-function arise, This function was studied by Cauchy [1826], and later by

Ramanujan [1912]. Ramanujan actually denoted it 6’ (as he did several other

functions). Knuth was the one to name it Q in his first expected time analysis

of an algorithm [Knuth 1968, pages 113–1 18] (see also Flajolet, et al. [1992]).

We use singular expansions to obtain the asymptotic of coefficients of func-

tions of this type.

We observe several notational conventions. The expression [z” ]s(z) denotes

the rzth coefficient of the generating function s(z). The expression nn denotes

the falling factorial rz(n – 1) .”. (n – m + 1). Stacked numbers in braces /:;, )

denote Stirling numbers of the second kind (or in the terminology of Graham

et al. [1989] the subset Stirling numbers). The expression j!! denotes the double

factorial function 1.3 “ 5 “”” (2j – 1). E(M is the expectation of the random
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variable X. We write ~ < g if ~(n)/g(n) approaches O as n ~ ~; this is just

another way of writing ~(n) = o(g(n)).

2. Recurrence Equations

In this section, we give a more detailed description of our model and derive

recurrence relations for system statistics.

Let m be the number of resources and n be the number of processes in a

multiprocessing system. Suppose that the system has just entered a state where

there are i free resources and j active processes. Let ~, ~ be a random variable

representing the time to deadlock. ~, ~ depends on m as well as i and j, but for

notational convenience we suppress m. We shall see that ~, ~ does not depend

at all on n.

Consider the arrival time for the next request. If there were just a single

active process, this value would be an exponentially distributed random vari-

able with mean 1. For j active processes, it is the minimum of j independent,

exponentially distributed random variables with mean 1. A straightforward

calculation shows that this is an exponentially distributed random variable with

mean j-l, That is, we may express the arrival time for the next request as

j-lXl,,, where X,:~ is an exponentially distributed random variable with mean 1.

Thus, after a time interval of length j- lX,,,, a process p chooses a resource

r. Now r may be one of the i free resources or one of the m – i allocated

resources. The event that r is free is represented by a random variable ~,,,

where P[A,,, = 1] = 1 – F’[xl,,l = 0] = i/m. When A,,l is 1, an edge is m-

serted from r to p and the system enters a new state in which there are i – 1

free resources and j active processes, When zl,,~ is O, we check to see if an

edge inserted from p to r would result in deadlock. We do this by constructing

a directed path from r as follows: Follow the unique out-edge from r to a

process. If this process has out-degree one, again follow the unique out-edge.

Continue in this fashion. The resource allocation graph contains no directed

cycle yet, so this path terminates. In fact, it terminates at a process, since

resources with non-zero in-degree have out-degree one. If the process in which

this path terminates is p, an edge from p to r would complete a directed cycle

and deadlock results. If the path terminates at any of the other j – 1 active

processes, we do not have deadlock. Thus, the probability that deadlock does

not occur is (j – 1)/j. The event that deadlock does not occur may be

represented by a random variable B,, ~ where P[ B,, ~ = 1] = 1 – P[B,, ~ = 01 =

(j – I)/j. Putting this all together, we have

(1)

where the random variables Al, ~ and B,, ~ are independent of each other and of

the random variables X,,,, ~_ ~~, and ~, ~_,.

This model is counterintuit’ive in one respect. Suppose that process p

requests a resource r and at some later time p requests r again. This is not

precluded in our description of the model. The system enters deadlock at this

point because a 2-cycle appears in the resource allocation gralph. If we do not

allow the possibility of a process requesting a resource already allocated to it,

then the system may never reach deadlock. It may instead reach a state in

which all resources have been allocated to a particular process and all other

processes are blocked. If we wanted to forbid the possibility of a process
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requesting a resource already allocated to it, we would have to be more careful

about what we mean by expected deadlock time. Of course, the main reason

for considering the former model is that it is analytically more tractable.

In the case in which there is a single process, our model is an instance of the

famous birthday problem (see Krmth [1968]). This problem asks how many

people one must choose at random to find a pair with the same birthday. This

is equivalent to labeling 365 resources with the days of the year (we ignore leap

days) and computing the expected deadlock time, which, with just one process,

occurs only when a resource is repeated. In general, Tw, ~ is the expected

number of people one must choose for a year with m days.

Closely related to the problem of finding the expected deadlock time is the

problem of finding the total processing time P,,, before deadlock. This requires

only a minor modification of the argument used to derive eq. (1). Observe that,

if j processes are active for a time interval given by j- IX,,,, then the total

processing time over that interval is Xl,,. Hence,

~,, =Xl,, +A[,,~_l, J + (1 –At, J) Bz, jP,,, _l. (2)

Now if we let ~,1 = E(~,,) and P,,l = E(P,, I ), from (1) and (2) we have,

using linearity of expectation and independence, then multiplying by j,

(3)

(4)

for ~ >0.

A system statistic that will be especially important is ~ ~ = P,, ,/j~, ~ which

measures system efficiency. Note that jT1,, is total processing time in a system

in which j processes are active for a time interval of T,,,. The ratio of actual

total processing time to this quantity is the expected fraction of time that

processes are active.

We will also be interested in the variances of ~,, and P,,,. Therefore, we

wish to compute the expectations ~ ~ = E(Tl~J ) and Q,,, = E(P,~, ). Squaring

both sides of (1) and using the identities A,, j(l – Al,,) = 0, A~,, = A,,,, (1 –

A,,,)z = 1 –A,,,, B~l = B, ~, we have

+2j-]X,,, A,,, ~_l,, + 2j-lx,, J(l –A,,,~B, ,~,l-I.

Now take expectations and use eq. (3). Note that E(X~,) = 2. Then multiply by

j to obtain

i

jVJ = 2T,1 + ~j~-~,l
( “1

+ l–~ (j–l)~,,.l. (5)

Performing the same series of computations beginning with (2), we have

(6)
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SJmlml Descrlptlon s LJ x,, Equdt ]on

z] Expected IT, ,1 1 (3)

Deadlock T]me

e, Expected Total j Pi.: J (4)

Processing Time

uJ] Expe( ted Square ‘j U,,j 2T, ~ (s) FIG. 2. Summary of recurrences.

of Deadlock Time

Q, J E\pected Square of jQ,,, 2JP,,l (6)

Tot al Processing Time

R,, Expected Number of JR, ] t~/m (7)

Resources Allocated

The last statistic we consider measures how well the system allocates

resources. This is also important for system design. Even if the expected

deadlock time is fairly long, system performance still might be poor if processes

requesting resources are usually blocked. We are interested, therefore, in the

expected number of resources R, , that will be allocated by the time deadlock

occurs. This is easy to determine from our model. Notice that whenever a

process requests a resource, the probability that the request will be granted is

i/m. Thus,
..

i
x + ;jRl_l,, +jR,, j = m

( “)
1 – ~ (j – l) R,,J_l. (7)

m

3. Solving the General Recurrence

The eqs. (3)–(7) have the form

St,, = X,,j + h,_l>J( “)+1 – ~ st,, _,,
m m

(8)

where S,, ~ = Xl, ~ = O for all i. (Note that there is no need to specify the values

of so , since SO,~ = Xo, ~ ~ So,~– 1.) We summarize the results of the previous

section, with respect to this general form, in Figure 2.

Recurrence (8) is linear in Xi, j; that is, if X,,, = aX~,, + bX~, for all i and j,

then S,,, = aS~,, + bS,,, where $,, and S: ~ are solutions of the equations

obtained from (8) by replacing X,,, with X;, ~ and X:,, respectively.

To solve (8), we might try to form a bivarlate generating function Z,,, S,,, y’z]

and solve the resulting partial differential equation. Unfortunately, the solution

to this equation does not lead easily to a closed-form solution for coefficients

of the generating function. Instead, we form sequences of generating functions
.

St(z) = ~ St,,.d and x,(z) = ixl,lz~.
]=1 1=1

Multiply eq. (8) by z~ and sum over the range j >1 to obtain

( “)s,(z) =x,(z) + q(z) + 1 – ~ 2$(Z).
m m

Solving for s,(z) gives an expression in terms of s,_ Jz) and xl(z):

m i
s,(z) = x,(z) + st_l(z).

m–(m–i)z m–(m–i)z
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Substitute for s,_ ,(z) on the right side of this expression, then substitute for

sl _ Z( z), and so on. We have

s,(z) = ~ at, k(z)x~(z). (9)
k=O

where

n’zi(i - 1)...(k + 1)
a,, k(z) =

(m - (m -i)z)(m – (n? -i + 1)2) ”””(WZ – (m -k)z) “
(lo)

It is instructive to use (9] and (10) to compute T~, ~, which, recall, is the

expectation in the birthday problem for a year with m days. Take Xl,, = 1 for
i > () and j > 0. Then, T~ ~ is the linear coefficient of s~( z) and hence is the

sum of the constant coefficients of am, ~. Thus,

m–l (7?’2– l)(nl – 2) +
T =1+1+ ———— + . . +(~ - l)(m -2)...1

m.1
m m’ m m—1

We may regard this as a function of m, The function T~, ~ – 1 is the Ramanu-

jan Q-function. T~, ~ is the linear coefficient of s~(z) and thus is just the first

of a family of functions given by the successive coefficients of s~(z). The

techniques used by Knuth and others to obtain the asymptotic of coefficients

of the Q-function do not seem to extend easily to other functions in the family.

In a later section, we will develop other asymptotic methods to deal with these

functions.

Let us return to our analysis of (9) and (10). By partial fraction decomposi-

tion,

Thus,

[2’1%,(2) = i (-l) ’-’(i _ ,,/_ ~,k)(l - ;)[-’+’
l=k

and consequently

s,,, = ~ ‘il([z’laL, k(z)) ([z’-’ lxk(z))
k=or=o

)( )

L–k+r

—_ ~’~’ &l) ’-k(i_l, ;_~, ~ m ‘k]-r
l–~

k= Or= Ol=k

= }.(;) :O(;](; - l) ’-k:~(l - ;)[-’+’%

= i%+ i (f)>o(~j(; - 1)[-’2J - ;] ’-’’’x,,,_r. ,11,
~=1 1=1
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This appears a little cumbersome, but for many choices of X,,J there is a

considerable simplification. In particular, if X, ~ can be written as a product

X,,, = ~Z, then we can write

where 1{ = 1 – l/m. The sums Z~. ~(~)y,(-ll)i-’ and Z;j~ZJ.,l~ can then

be evaluated separately. Results below follow in this way. It is convenient to

introduce the notation

Ji)(:)[-p(l-$+’c,(P, !l) = z ~ (13)

Note that c,(p + 1,q + 1)= Ci(p + 1,q) – c,(p, q). In the next section, we

explain how Ci(p, q) may be computed in closed form for some values of p and

q.

THEOREM 3.1. We have the following expressions for expected deadlock time,

expected total processing time, and expected number of resources allocated at

deadlock time.

(i) ~,, = 1 + (Ct(l, O) – Cl(l, j))/j.

(ii) P, j = (~ + 1)/2 + C,(l, O) - (C,(2, 1) - C,(2, ~ + I))/j.

(iii) R:,, = c,(l, O) – (c,(2, 1) – c,(2, j + 1))/”.

PROOF. For (i), take X,, ~ = 1 in eq. (8) so that 1( = <j = 1. Use the

Binomial Theorem and summation of geometric series to obtain

~,,=,+ ;-’(;)(;)’-l(,- $’(1- (l-
Similarly, (ii) and (iii) follow from the identities

~ (;)k(-~l)’-k = 1(1 _ ~)~-11>
k=O

]–1

~(j-r)I[=&-

1, – q+l

~=o 1 (1 - 1{)2 ‘

which are derived by standard techniques. ❑

l]
— ))m“

(14)

(15)

Parts (ii) and (iii) of the theorem already provide useful information about

system behavior. The expected total processing time Pi, ~ is also the expected

number of requests since the request arrival time for each process is 1. The

difference between this value and R,, ~, the expected number of resources

allocated, is the expected number of processes blocked by deadlock time. We

see that this quantity is always (j + 1)/2, one half more than half the number

of initially active processes. Thus, we have the following surprising result about
system performance.

THEOREM 3.2 (THE HALF AND HALF THEOREM). Beginning from any state

with j active processes, the expected number of these processes blocked by deadlock

time is (j + 1)/2.
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There is an easier way to prove the Half and Half Theorem. The theorem is

clearly true when j = 1. Now suppose the system is in a state where the

number j of active processes is more than one and assume the Half and Half

Theorem holds for states with j – 1 processes. The system may change states a

number of times before it changes from a state with j active processes to a

state with j – 1 active processes. Let us call state changes where the number

of active processes decreases critical. A system can deadlock only at a critical

state change. The probability of deadlock at the first critical state change is

l/j; in this event, just one of the original processes is blocked. The probability,

then, that deadlock does not occur at the first critical state change is (j – 1)/j;

in this event, the system enters a state with j – 1 active processes and the

expected number of remaining processes that will be blocked by deadlock times

is j/2, by the induction hypothesis. Thus, the expected number of processes

blocked by deadlock time is (l/j) + (1 + j/2)(j – 1)/j = (j + 1)/2.

Using these ideas, we can determine how many processes must be blocked

for the probability of deadlock to exceed 8>0. The probability of reaching

deadlock after k critical state changes is

1~+j–l 1 j–lj–2 1
—+——— +

J
j j–l j j_lj_’2 ““”

j_lj–’2 j–k+l 1 k
+——j j_ l”””

j–k+2j–k+l=~

so we set k = tij. We have the following result

THEOREM 3.3. If we allow a system with j initially actiue processes to operate

until 8j of those processes are blocked, the probability that deadlock has occurred

is 8.

Before concluding this section, let us explore another consequence of eq.

(11). Consider the case where i = m, that is, where all resources are initially

free. Changing the order of summation we have

The last equation follows from formula (6.19) of Graham et al. [1989]. Al-
though this is a more pleasing form than eq. (12) (and shows, in particular, that

s m.] is a positive linear combination of the quantities X~, ,), it is not as useful.

4. Evaluation of Abel Sums

Abel’s identity is expressed in several different forms in the literature. Here is

one of them (see Riordan [1968, page 18]):

1

xx (1j (x+l)l- l(y+i–l)’-l= (.x+y+ i)’.
[=0
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It follows immediately that

1.

X()( (x+y+i)’–(y+ i)’
; x+l)l-l(y+i– l)’-’=

1=1 x

Taking the limit as x approaches O we have

‘~(~)l’-’(y +i -1) ’-’ =i(y +i)’-’.
1=0

If we put y = m – i and divide by m’-l, we have one of the cases of (13)
needed to evaluate the expression in Theorem 3.l(i), viz., CL(l, O) = i. Riordan

[1968, pages 18-23] considers several generalizations of Abel’s identity. These

give some of the other cases c,( p, q) by the same argument. (N.B. There are

some typographical errors in Riordan’s formulas.) However, in order to get

good asymptotic results, we must develop a more general theory for expres-

sions of the form

and then evaluate c,(p, q) = Cl(p, q, m – i)\m’-P+~. First note that C,(p,

q, Y) is a convolution. Let

fp(~) = ,:1:=’ m (y + k) ’’+qz,
and gq(z) = x

k=o
k! “

(If p = O, then it will be convenient to begin the summation for ~p(z) at k = O
rather than k = 1 so that the constant coefficient is 1.) Then CL( p, q, y) =

[z’/i!]fp(z)gq(z). The function ~l(z) = ~(z) is well known in combinatorial
enumeration. A standard textbook application of the Lagrange Inversion

Formula is to show that jlz) is the solution of the functional equation

~(z) = zef(z) (see Wilf [19901). If we differentiate both sides of this equation,
substitute ef(z) = ~(z)/z, and solve for ~’(z) we have zfl(z) = jlz)/(1 – ~(z)).

Thus,

Zf(x)
f,(z) = ~ y :dx = J (1 –f(x))f’(x)dx =f(z) – ;f(z)~,

from which it follows that

f,(x)
f,(z) “ ~ yal

—. J-( )z1 – :f(x) (1 – f(x)) fl(x) ah
o

=f(.z) – ;f(z)’ + ;f(z)s.

If we use the Lagrange Inversion Theorem to compute the coefficients of

e ‘f(z) and then substitute f(z)/z for ef(z), we have

k–1

f(z)’ =Y : ‘y‘k:) Zy+k,

h=l
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Differentiate, multiply by z, and replace z~’(z) with ~(z)/(1 – ~(z)). We

obtain

m (y+k)’zk _ f(z) y 1

(1
go(z)= ~ ~, – —

L=o “ z 1 –f(z) “

It follows that

f(z) ‘+’ 1

()
fl(z)go(z) = z —

z 1 –f(z)

k– 1

= 5 ‘(y y Zk>
k=l

and so C,(l, O,y) = i(y + i)[-l. A similar evaluation of ~2(z)go(z) and

~,(z) go(z) shows that

1
c,(2,0, y) = i(y + 0-1 – #(y + i)’-z,

c1(3,0, y) = i(y + 0-1 – ;iqy + ~) ‘-2 + :ij(y + ~)’-s.

We can use the method above to compute values of C,(p, O, y) whenever

p >0. We can show easily by induction that

f,(z) = i D,,kf(z)’.
k=l

where for all positive p, DP, I = 1 and DP+ ~,k+ ~ = (DP, k+l – DP, ~)\k. These

coefficients are the “differences of reciprocals of unity” appearing on page 248

of David et al. [1966]. (This source was located with the help of Sloane [1973];

cf. sequences 2049 and 2305.) It follows that

C,(p, o,y) = f Dp,,iqy + i)’-k.

k=l

We can now compute the values of c,(p, q) when p > q >0. The first few
values are as follows.

c,(l, O) = i,

i(i – 1)
c,(2,0) = im –

2’

3i(i – 1) i(i – l)(i – 2)
c,(3,0) = imz –

4
m+

6’

i(i + 1)
c,(2,1) = c,(2,0) – cz(l, O) = im –

2’

(3i + l)i ~ + (i + l)i(i – 1)
c,(3,1) = c,(3,0) – c,(2,0) = imz –

4 6’

(3i + 5)i (i + 2)(i + l)i
c,(3,2) = c,(3,1) – c,(2,1) = imz –

4
m+

6“
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In general,
P

Ct(p, o) = ~ qzi%rz~-~

k=l

and values of Cl( p, q) for 1 < q < p are obtained by differencing.

Substituting these values for Ci( p, q) into Theorem 3.1, we have the follow-

ing theorem giving expressions for various system statistics in terms of Abel

sums.

THEOREM 4,1. The expected deadlock time, upected total processing time, and

expected number of resources allocated at deadlock time are as follows:

(i) ~,, = 1 + i/j - c,(l, j)/j.

(ii) P,,, = (j + 1)/2 + i – ire/j + i(i + 1)/2j + c,(2, j + 1)/j.

(iii) Ri,J = i – ire/j + i(i + 1)/2j + CL(2, j + I)/j.

From eq. (13), we see immediately that c,(1, j) s c,(1, O) and c,(2, j + 1) <

c,(2, 1), so we have the following important corollary:

COROLLARY 4.2. The expected deadlock time, expected total processing time,

and expected number of resources allocated at deadlock time satisfj the following

inequalities:

(i)l<~, sl+i/j.

(ii) (j + 1!)/2 + i – im\j + i(i + 1)/2j s P,,, S (j + 1)/2 + i.

(iii) i – ire/j + i(i + 1)/2j s R,,, < i,

The first of these inequalities suggests that we may want to do deadlock

detection at regular intervals rather than at each change of the system state. It

shows that even in the worst possible circumstance where resources are never

released, expected deadlock time is never less than 1. There is an absolute

lower bound for expected deadlock time.

5. Systems with Many Processes

The case of systems with many processes is important for applications, This

occurs, for example, when i, the number of free resources, is much less than j,

the number of active processes. A few of our results require slightly stronger

assumptions, either that m, the total number of resources, is much less than j

or that m log log m is much less than j. The following result is an immediate

consequence of Corollary 4.2.

THEOREM 5.1. Suppose that a system that begins from a state with m resources,

i Pee resources, and j active processes.

(i) (Expected deadlock time.) If i = o(j), then ~,, N 1.

(ii) (Expected total processing time.) If i = o(j) and m = 0(j), then P,,l N j/2,

(iii) (Expected number of allocated resources, and system ejj’iciency.) If m = o(j),
then R, ~ N i, and F, ~ = P, ~/jT, ~ N 1/2.

We see that a system with many processes performs well; it assigns nearly all

resources before deadlock and even though most requests result in a blocked
process (since the total number of requests is asymptotically j/2 which is much

larger than i, the number of resources allocated) system efficiency is still

reasonably good. Now let us consider the variances of T,, j and PI, ~. The proofs

are more involved so we state the results separately.



574 K. J. COMPTON AND C. RAVISHANKAR

THEOREM 5.2. In a system that begins from a state with m resources, i free

resources, and j actioe processes, if m log log m = O(j), then the uariance of

deadlock time approaches 1.

PROOF. We must first obtain bounds on ~,,, the mean square of ~, ~.

Recall from Figure 2 that we take X,, J = 2~, ~ in eq. (8). Direct substitution

gives a very complicated expression, so we substitute instead the lower and

upper bounds given by Corollary 4.2.

First, let us derive a lower bound. Let X, , = 2 in eq. (8). Then, we have

immediately from Corollary 4.2 that S,, ~/j is at least 2.

To obtain an upper bound, we need to solve (8) when Xi , = 2 + 2i\j. By

linearity, we may solve the cases where X, ~ = 2 and X,,, = 2’i/j separately. In

the first case, S, ,/j has an upper bound of 2 + 2 i/j by Corolla~ 4.2. In the

second case, an explicit solution seems difficult. Instead, we obtain estimates

on eq. (12) with ~ = 2i and 21 = I/j. By eq. (14), we have

Recall that

Thus, S,, ,/j is a weighted average of the values

y~+;)r.
r

(16)

where 1 ranges from 1 to i. These values can be expressed as [ z~ ]gl( z ) where

2il log(l – z)
gl(z) = –—

j l–(1–l/m)z”

We will show that (16) is o(l) uniformly in 1 as j e CXJ.We do this using
ideas related to singularity analysis originally formulated by Darboux (see

Henrici [1977] and Flajolet and Odlyzko [1990b]), The dominant singularity of

gl(z) is a logarithmic singularity at z = 1 and the only other singularity is at
z = 1 + l/(m – 1). Apply Cauchy’s formula [Markushevich 1977] to obtain

log(l – z)
dz. (17)[z’]gl(z) = – ~~j~(l _ (1 – l/m) Z)z~+’

We choose a contour r consisting of several parts and bound the integral on

each part (see Figure 3). Let ~ vary with j so that O < – 8 log i5 < l/j. Take
~ = l\(2m) and let ~ > e be a fixed constant less than 1. r consists of six

pieces rl, ..., rb. 171 is a circle of radius 8 centered at 1 taken clockwise

beginning at 1 + 8. rz is a line segment from 1 + 8 to 1 + ●. r~ is a line

segment at an angle of 77-/3 beginning at 1 + e ending at a point on the circle

of radius 1 + q centered at O. We obtain rd by following this circle counter-

clockwise from this point to its conjugate. r~ is a reflection of rq through the

real axis, but with reversed orientation. rb is 17j with reversed orientation. In
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I

FIG. 3. Contour for evaluation of ~ ,,

Figure 3, r~ and rb are shown a small distance from the x-axis for illustrative

purposes; they really lie on the x-axis. Note, however that we use the principal

branch of log z. That is, the complex plane is slit from 1 to ~ with 172and 17bon

opposite sides of the slit.

Let us derive bounds on factors of the integrand in (17). First note that r

was chosen so that it does not come close to the point 1 + l/(m – l); the

distance is always at least v%l/(4(nz – 1)) > i\(3(m – 1)) so for all z on r

1 3nl
<—

1 – (1 – l/m)z 1“

For 171,we take z = 1 – de~~ for –m< 6 s n-. Thus, log(l –z) = log 8

+ HO and so \log(l –z)I < –log 8 + w. Also, 1 – 8< Izl so l/lz~+ll <

1/(1 – 8 )~+ 1. Thus, (17) is bounded in modulus by

6im8(–log 8 + n)

j(l – 8)’+’ ‘
which approaches O as j increases since — 8 log 8 < 1/j.

Next combine the contributions to (17) from rz and rb. These two contours

are the same, except for orientation, but the branches of Iog(l – z) used differ

by – 277-=. Therefore, the total contribution is

which approaches O as j increases.

Next, for r~ we take z = 1 + ● + we HT13 where w ranges from O to a

value slightly less than 2(q – ●)—the exact value is not crucial.
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We claim that – log(l – z) = – log( – e – w exp(d – 1 n/3)) attains its max-

imum modulus on r~ when w = O. Consider the function F(x, y) = I – log(x +

=Y)12. The directional derivative of F in the direction given by the unit

vector ( – 1/2, – fi/2) (which is in the direction of the contour) is

where x + my = rexp(~d). If 6 < 0, r < 1, and y s 6X s O, this

quantity will be negative. Notice that these conditions are satisfied by x

+ my = – e – we=”\3 when O < w s 2(T – E). We see that the modu-

lus of – log(l – z) decreases along the contour and, thus, attains a maximum

value of ~(log ~)’ + rr2 s log(2nz) + T. Notice also that Izl > 1 + .E+ x/2

on 17~so the contribution is bounded by

6irn(log(2m) + w) x

/

h 12im log nt

(

lJ
l–

] 0 (1 + E +X/2)J+1 – jz 2m–1 1

12im log m
< .2

e–J/(~~l–l)

J

which approaches O since m log log m ~ j. We obtain a bound on r~ in exactly

the same way.

Finally, on rl we see that the modulus of the denominator of the integrand

grows exponentially in j and the numerator is bounded, so the contribution to

(17) approaches O.
We conclude that L(, 1- 2 and hence that the variance of ~, 1 approaches

1. ❑

The log log m factor in the preceding theorem is somewhat annoying. It

seems likely that it can be eliminated. Note that the only place in the proof

where we used this condition, rather than the weaker assumption that m = o(j),

was in bounding the integral on I’j and r~. We could instead have used the

condition that i < m/log nt.

THEOREM 5.3. In a system that begins from a state with m resources, i free

resources, and j acti6je processes, if i = o(j) and m = 0(j), therl the c,ariance of

total processing times is a~mptotic to j 2/ 12.

PROOF. We begin similarly to the proof of the previous theorem. We obtain

bounds on Q,,,, the mean square of P, , by substituting the lower and upper

bounds given by Corollary 4.2. For the lower bound we take X, , = j(j + 1) +

2j – 2inZ + i(i + 1) in eq. (8) and for the upper bound we take ‘X,,, = j( j + 1)
+ 2 ~. Thus, by linearity, we have four cases to consider.

Case 1. Xl, ] = j(j + 1). In (12), we let ~ = 1 and Z] = j(j + 1). Use the

identities

~r(r+ 1) = j(j+ l~(j+2)
~= 1 3’

and
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to obtain

s [.1 = (j + I)(j + 2)
+ (j + l)c, (l, O) – 2c,(2,1) + 2(c, (3,2)

j 3

cl(3, j + 2))
—

]
Case 2. X,,, = 2ij. In (12), we let ~ = 2i and Z, = j. We have from (14)

and (15) that

s l,] = 2rnc,(l,0) – 2nz(c[(2, 1) – c,(2, j + 1))

j j

Case 3. X,, J = –2im. In (12), we let ~ = –2im and Z, = 1. WIe have

s
131 = _

2m2(c,(l,0) – c,(l, j))

j j

Case 4. Xl,, = i(i + 1). In (12), we let ~ = i(i + 1) and Z, = 1. Use the

identity

i (~)k(k + 1)(-I,) ’-’ = 1(1 – 1)(1 – 11)1-2 + 21(1 – 11)/-’,
k=O

to obtain

s (m’ + m)(c,(l, O) – cl(l, j))l>] _ m(cl(2,0) – cL(2, j))

j j j

A lower bound for S,, ,/j in case 1 is

(j + l)(j + 2)

3
+ i(j + 1) – 2im +i(i + 1).

Add the values of S,, ,\j for cases 2, 3, and 4. Using the identities for c,(p, q)

developed in Section 3 we have

2im – 3m(cl(2, 1) – cl(2, j + 1)) (m’ - m)(c,(l, O) – c,(l, j))
—

j j

A lower bound for this is

2im – 4im2 i(3i + 5)m
+

j 2j “

Thus, taking all the cases together we have a lower bound for Q,,, of

(j + l)(j + 2) 4im2 i(3i + 5)m

3
+i(j+l)+i(i+l)– — +

j 2j “

To obtain an upper bound for Q,,,, add the values of S,, ~/j in cases 1 and 2.

This is less than

(j + l)(j + 2)

3
+i(j+l)+i(i+l)

2im2 i(3i + 5)m + (i + 2)(i + l)i
+—

j – 2j
Sj .
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We see that under the hypotheses of the theorem that Q,,, - j~/3. The

square of the mean of P, , is asymptotic to j ‘/4 so the variance is asymptotic

to j2/12. ❑

These two results on the variance of ~ ~ and P, ~ show that we must be

cautious if we consider doing deadlock detection only at regular intervals in

systems with many processes. Even though deadlock time and total processing

time have reasonable means, their standard deviations are constant multiples

of their means. For design purposes, we would like to have more information

about the distributions of these random variables. We have not yet succeeded

in determining the distributions explicitly. Perhaps simulations would give

some insight. We will make some brief comments about the distribution in the

last section.

6. Systems with a Fixed Number of Processes

Systems with a fixed number of processes are also important for applications.

We will need more sophisticated asymptotic techniques than in the last section

to carry out the analysis of these systems. We will also need to restrict to the

case i = m, that is, the case where all resources are initially free. By Theorem

4.1, we see that we need to determine asymptotic expansions of c~(l, j) =

[z;~:l:]( f(z)f_,(z)/’mm “- ] ) and cn(2, j + 1) = [z~/m!l(f2(z)f_ J_1(z)/
m ).

We first need to find the singular expansions of the functions ~P. The

singular expansion of f,(z) = f(z) can be derived without too much difficulty

from the Implicit Function Theorem (see Markushevich [1977]) and the defin-

ing equation f(z) = zef(z). Set g(z, w) = w – ze” and note that w = f(z) is

the solution of g(z, w) = O. Now g(l/e, 1) = (dg/dw)(l/e, 1) = O and

( d2g/3w’)(1/e, 1) + O, so f has an algebraic singularity of order 1/2 at
z = l/e. Let d = (2 – 2ez)l\z (the 21/z factor is to simplify succeeding expres-

sions) so z = (2 – 8 ~)/2e. Substituting into the equation g(z, w) = O we have

8 = (2 – 2we 1-” )1/’. That is, f, considered as a function of ~, satisfies
8 = (2 – 2f( ~)el ‘~(aj)liz. In this context, f is the functional inverse of h(w)

= (2 – 2 wel -” )’/’. It is a simple matter to compute the Taylor expansion of h

and then of its inverse (in Maple, the ret’ersion operation accomplishes this).

We obtain

f(z) =l–a++a’+’+;t% J53’ +....
17280

A similar derivation of this formula can be found in Flajolet and Odlyzko

[1990a]. The singular expansion of fz(z) = f(z) – f(z)2/2 can now be seen to

be

Note that application of the operator z(d\dz) to ~(z) gives fi _,( z). Now

z(d/dz)S’n = –mSm-2 + mSm/2 so

fo(z)=rl+-; -;a+
23

&82– _~3 +...,

3456

f_,(z) = 8-’ – ;8-1 – 2 – J.+ . . . .
135 1152
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In general,
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where bl, ~ = kbl_l, ~/2 – (k + 2)b, _l, ~+z. We can solve this recurrence first

for the coefficients bJ, _ ~j _,, then for the coefficients b,, _ ~J and so on. For

j >2, we have

(~-,(z) =j!! ~-2j-1 _ l’2j2 – 1
~-2J+l

24(2j – 1)

144j4 – 384j3 + 264j2 – 23
+

)

&2J+3 + . . . .
l152(2j – l)(2j – 3)

Thus,

149 767
f(z) f_,(z) = a-’ – 6-2 – ;6-’ + ~ – —a+ ““”,

17280

(

~(~)~_~(=) =j!! 8-2 J-J – &zJ –
12j2 – 16j + 7

~-2]+1

24(2j – 1)

18j2 –llj+4
&-2]+2

+ 36(2j – 1)

2160j4 – 11520j3 + 18104jz – 10528j + 3063
+ ~-2J+3 + .+O

17280(2j – l)(2j – 3) )

for j >2, and

[
f2(z)f-, -l(z) = (j + l)!! & – 12j2 + 72j + 358-2, -1

1
+ &

48(2j + 1)

144j4 + 1344j3 – 216j2 – 144j – 47
+ 8-2]+ 1

}

+. . . .

2304(2j+ l)(2j–1)

for j >1. By the Binomial Theorem and Stirling’s formula [z~/rn !]8-” is

TV2 ~m+(a– 1)/2

(

3a2–6a+2

r(a/2) 2(”-lJ/2 1 + 24m

9a~ – 60a3 + 120a2 – 72a + 4 1
+

1152mz ( ))
+o~.

m



580 K. J. COMPTON AND C. RAVISHANKAR

Substituting this into the expressions above and simplifying, we have

(2m)l/2
1 (2*)1/~

c~(l, l) =m – ~ nil/2 + — – ~l–l /’2

3 24

4
–’ + O(n-slz)

+ 135 “

21\zr(j + 1/2) ~l,z + 2j – 1
C,,,(l, j) = nz –

I’(j) 3

21/~r(j + 1/2) djz – 6j + 5m-1,2

361’(j) 2j–1

2j2–4j–6

135 m
-1 + o(n-3/2)

1 2j+l
c.(2, j + 1) = ~m2 – —

2m

21\zr(j + 1/2) 2j + 1 ~,z j2
+

r(j) — 3 m –3
+ o(n-”2)

The asymptotic formula for Cn(l, 1) agrees with eq. (25) in 1.2.11.3 of Knuth

[1968]. Our approach seems somewhat simpler since it does not require

analysis of the incomplete gamma function. From Theorem 4.1, we now have

the main result of this section.

THEOREM 6.1. Fix j. For systems beginning from a state with j processes and

all resources free, we haz,)e the following asymptotic formulas for expected deadlock

time, expected total processing time, expected number of resources allocated at

deadlock time, and system efficiency.

(2=)1/2
2 (2m)”2

T
4

ml/2 + — + –1/2
m,l = ‘1 + 0(n-31~),

2 3 24 ‘n 135 m

2’12r(j + l/2)m1,q + j + 1
Tm>] = r(j + 1) - 3j

2’/2(4j2 – 6j + 5)1’(j – 1/2) _1,2
+

72r(j + 1)
m

2jz–4j–6
+

135j ‘z
-1 + o(n-3/2), when j >2

23/211j + 3/2) m1,z + j + 3
Pm,] = 3r(j + 1) 6

+ O(m-1/2),

23\217(j + 3/2) “
R=m,J 311j + 1)

mll~ – ; + @m-1/2),

1
F =:m.] + ~ + o(l’wl/~).
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Thus, we find that for a fixed number of processes, deadlock time, total

processing time, and number of resources allocated are asymptotic to a

constant multiple of nzl\2. System efficiency always approaches a value greater

than 2/3. This seems very promising. Unfortunately, we have not yet deter-

mined the order of the variances for deadlock time and total processing time

and we have no idea of the distribution.

7. Conclusions

Our results suggest that it may be worthwhile to investigate doing deadlock

detection at regular intervals in some systems. The most compelling evidence

for this is the absolute lower bound for expected deadlock time (Corollary

4.2(i)). Also, the high values for system efficiency for systems with many

processes (Theorem 5.l(iii)) and systems with a fixed number of processes

(Theorem 6.1) are encouraging.
If we knew the distribution of deadlock time ~ ~ we could determine, for a

given 8>0, the length of time the system must operate for the probability of

deadlock to be i3. We could then compare the cost of continuously updating to

do deadlock detection versus the expected cost of resolution and rollback when

doing deadlock detection at regular intervals. Even though we do not know the

distribution, Theorem 3.3 provides a similar, but less satisfactory, approach.

We can count blocked processes. This requires some communication between

processes and may therefore cost more than waiting for a fixed time interval,

but it is still likely to cost less than deadlock prevention.

What do we have to do to determine the distribution of deadlock time ~ , as

i or j increase? A standard approach for determining the distribution of a limit

random variable is to find its characteristic function (see Feller [1971]). ~rom

eq. (l), we have the following recurrence for the characteristic function ~ , of

T:l]

This may lead to a solution, but it does not seem to work well with the

generating function methods used here.

There are other important questions still to be answered.

First, the absolute lower bound we derived for expected deadlock time,

although theoretically optimal, certainly does not come near what occurs in

practice. The most obvious reason for this is that processes do release re-

sources in multiprocessing systems so deadlock time is usually much greater

than in the model here. We need to develop a more realistic model, but this

will not be easy. It will require adding a queuing-theoretic dimension to the

combinatorial problem of determining when cycles emerge in certain kinds of

random bipartite graphs.

Second, we need to deal with the problem of 2-cycles mentioned in Section 2.

We would expect processes to remember the resources allocated to them and

to avoid making duplicate requests. As we noted, if we prohibit 2-cycles, then it
is no longer clear what is meant by expected deadlock time. It is also not clear

how to modify the model. Should we proceed as before with a process

randomly choosing a resource but have the system to continue in case a 2-cycle

arises? Or should we require a process to choose randomly among resources
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not allocated to it? In either case, the model becomes much more complicated.

We must keep track not only of the number of active processes, but also of the

number of resources allocated to each active process.

In addition to the cases in Sections 4 and 5, we would like to have asymptotic

expressions for system statistics when i = Kj. We would like to know in Section

4 if conditions like m = o(j) and m log log m = o(j) can be replaced with

i = o(j). We would like to solve the general case in Section 5, not just the case

i = m.

Finally, we would like to know the variances and distributions of ~ , and P,,,

for fixed j. There are some unpublished results on certain cases of this

problem. In the case j = 1, variance and distribution can be determined. This
problem should not be confused with one related to the problem of determin-

ing the variance and distribution for the traditional birthday problem. Even

though the mean of Tn , is the expected number of people needed to find a

pair with the same birthday for m day years, variance behaves differently. Tm, ~

models the “street corner birthday problem”: A person stands on a busy street

corner and asks passers-by their birthdays until a repetition is found. Arrival

times of passers-by are exponentially distributed random variables (with nor-

malized mean 1). In the traditional birthday problem (the “classroom birthday

problem”), a teacher in a classroom aski students their birthdays until a

repetition is found. Arrival times are precisely 1. Clearly, the variance for the

street corner birthday problem is greater than for the classroom birthday

problem. Donald Knuth (personal communication) has informed us that using

techniques in Knuth [1985] one may show that variance in this case is

asymptotic to (4 – m )m /2. Guy Louchard of the University Libre de Bruxelles

(personal communication) has informed us that, for both the classroom and
street corner birthday problems, the random variable for a repeated birthday,

suitably normalized, converges in distribution to a Rayleigh distributed random

variable. Alfredo Viola of the University of Waterloo (personal communica-

tion) has some preliminary results on the variance of ~,,,, for fixed j.
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