
I88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 3, MARCH 1994

Designing an Agent Synthesis System
for Cross-RPC Communication

Yen-Min Huang and Chinya V. Ravishankar, Member, IEEE

Abstract-Remote procedure call (RPC) is the most popular
paradigm used today to build distributed systems and applica-
tions. As a consequence, the term “RPC” has grown to include a
range of vastly different protocols above the transport layer. A
resulting problem is that programs often use different RPC proto-
cols, cannot be interconnected directly, and building a solution for
each case in a large heterogeneous environment is prohibitively
expensive. In this paper, we describe the design of a system that
can synthesize programs (RPC agents) to accommodate RPC het-
erogeneities. Because of its synthesis capability, our system also
facilitates the design and implementation of new RPC protocols
through rapid prototyping. We have built a prototype system
to validate the design and to estimate the agent development
costs and cross-RPC performance. Our evaluation shows that
our synthesis approach provides a more general solution than
existing approaches do, and with lower software development
and maintenance costs, while maintaining reasonable cross-RPC
performance.

Index Terms-Heterogeneous RPC, RPC agent synthesis, RPC
run-time

I. INTRODUCTION
EMOTE procedure call (RPC) [6] is perhaps the most R popular paradigm used today to build distributed ap-

plications. Many RPC semantics have been designed and
implemented in recent years to meet application-specific re-
quirements. Examples are synchronous RPC [6], [7], [8];
asynchronous RPC [9], [IO], [l l] ; fault-tolerant RPC [12];
broadcast RPC [7], [8], [13]; maybe RPC (no-return RPC)
[7], [SI, [13], [14]; RPC with atomic transactions [15]; and
RPC with a call-back mechanism [SI. [13]. With emerging
applications like multimedia conferencing and distributed real-
time applications, it is conceivable that even more RPC
protocols will be designed and implemented. Because of this
diversity of RPC protocols, we adopt a general view of RPC
as a protocol above the transport layer in this paper.

The problem with having many different RPC protocols is
that user programs built on top of different RPC protocols
cannot be interconnected directly. This difficulty not only
greatly reduces the availability of software and resources
in a large heterogeneous distributed environment but also
increases the costs of developing and maintaining distributed

Manuscript received May 1992; revised November 1993. This work was
supported in part by the Consortium for lntemational Earth Sciences Infor-
mation Networking. Recommended by J. Zahorjan.

Y.-M. Huang was with IBM Corp., Research Triangle Park, NC. He is
now with the Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48 109-2122.

C. V. Ravishankar is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 9215570.

applications with multiprotocol support. For example, this
difficulty may arise when developers wish to build a multicast
heterogeneous RPC to support fault tolerance, to construct a
server accepting requests from many different RPC protocols,
or to construct a client querying different name servers. Thus,
the goal of this work is to design a system that supports
cross-RPC communication (heterogeneous RPC) in a large
heterogeneous distributed environment in which many systems
are built using different RPC protocols.

The easiest way, and sometimes the only way, to perform
cross-RPC is to introduce intermediaries (RPC agents) to
facilitate communication between clients and servers. This
method requires no changes to existing software. Building
these RPC agents is hard, however, because it requires ex-
tensive knowledge of RPC and network protocols, and is
time-consuming. In a large heterogeneous environment, the
problem is exacerbated because there are too many RPC
protocols, and building a solution for each case is prohibitively
expensive.

We believe that a good cross-RPC solution in a large
heterogeneous environment should meet the following criteria:

Economy: It should require as little software development
and maintenance effort as possible, because we want to
minimize the effort of introducing a new RPC protocol.
Diversity: It must accommodate as many different RPC
protocols as possible, because we want to handle both
existing RPC protocols and future RPC protocols.

Meeting these two criteria allows us to introduce new RPC
protocols easily, and software using these new RPC protocols
can be made available quickly. Also, the evolution of existing
RPC protocols can be supported well.

A . Agent Synthesis

An agent synthesis scheme is a solution that can meet
our design criteria well. An agent synthesis scheme uses
a synthesizer to generate implementations of RPC agents
from high-level descriptions. It is attractive because much
of the effort of coding agents can be saved. Also, there
are few restrictions on what kinds of RPC agents can be
described and generated. Therefore, if designed properly,
a synthesis scheme can provide a more general solution
than can existing approaches [1]-[5], and with much lower
agent development and maintenance costs. There is a major
difference between our agent synthesis scheme and others: In
addition to traditional stubs, we also generate implementations
of RPC protocol machines as a part of the RPC run-time. In

0098-5589/94$04.00 0 1994 IEEE

HUANG A N D RAVISHANKAR: DESIGNING AN AGENT SYNTHESIS SYSTEM

,____..

client i client ~

, agent 7-1 I

I89

................
i server j
I agent 2 1 server
..............

Fig. 1. The RPC agent synthesis scheme.

client

other words, for each different RPC protocol, a different RPC
run-time may be generated along with the necessary stubs.

Broadly speaking, our RPC agent synthesis scheme (see Fig.
1) has two components: a language (Cicero) to describe RPC
protocol constructions and a run-time environment (Nestor)
to synthesize and activate RPC agents automatically. In this
paper, we focus on the design of the synthesis scheme and its
run-time environment.

Because of its synthesis capability, our system can also
be used as a rapid prototyping tool for experimenting with
new RPC protocols. This can be a very useful capability for
developers. Therefore, our design considers this usage as well.
In summary, our system is designed to provide developers with
the following two services:

I) Cross-RPC Service: Supporting cross-RPC communi-
cation to increase software availability.

2) Customized RPC Service: Fast prototyping of cus-
tomized RPC protocols for experimenting with new RPC
features and semantics.

The rest of this paper is organized as follows. Section
I1 describes the design of our RPC agent synthesis scheme.
Section 111 describes the run-time support in Nestor. Section
IV describes a real RPC protocol using Cicero. Section V
describes the validation of the design by evaluating agent
development costs and cross-RPC performance of synthesized
agents. Section VI discusses related work. Finally, Section VI1
prcsents our conclusions.

rpc-A gateway server rpc
agent

11. DESIGNING AN RPC AGENT SYNTHESIS SCHEME

construction

(b)

Fig. 2. (a) Customized RPC service. (b) Cross-RPC service.

(a)

C l i e n t Machine Samer Machine

protocol
sewer

agent agent

link rpC-B

sewer

(b)

Fig. 3. (a) One-agent configuration. (b) Two-agent configuration.

RPC semantics representing the largest common denominator
between two RPC protocols. These semantics are the best
that can be achieved, because the two processes at the end
of the cross-RPC link assume their local RPC semantics in
their dealings with the world. We have no control over them
or over the semantics of their native RPC protocols. The link
protocol may also include some user-specified RPC semantics
in addition to the shared RPC semantics. This flexibility allows
users to tailor existing RPC protocols for special environments
or applications. For example, in implementing a heterogeneous
distributed transaction system, a user may wish to log each
RPC argument and the results for crash recovery. This function
can be implemented by the link protocol if neither the client
nor the server RPC protocol provides this function.

Although the RPC agent synthesis scheme is straightforward
(see Fig. l) , designing an RPC agent synthesis scheme is not
easy, because many design issues must be considered and
trade-offs carefully balanced. The design of the RPC agent
synthesis scheme is the focus of this section. We first motivate
the scheme by considering how the scheme and agents will be
used (Sections 1I.A and 1I.B). Then we discuss how different
RPC heterogeneities are handled (Section 1I.C).

A. Agent Synthesis Scenarios

Two agent synthesis scenarios are illustrated in Fig. 2(a)
and 2(b). Fig. 2(a) illustrates the case where client and server
programs may be modified. In this situation, RPC agents
may be linked into user code. Fig. 2(b) illustrates the agent
synthesis scenario where client and server programs may not
be modified. The synthesized agents are independent processes
in this case. Fig. 2(a) is the most likely scenario for customized
RPC service, and Fig. 2(b) applies to cross-RPC service.

Both synthesis scenarios require a link protocol to connect
the client and server agents. This link protocol is generated
by our synthesis scheme. For customized RPC service, the
link protocol represents the specified RPC protocol. For cross-
RPC service, the link protocol usually implements cross-

B . Agent Configuration

The best agent configuration for customized RPC service
is a two-agent configuration with the agents linked into the
client and server (see Fig. 3). However, there are two possi-
ble configuration choices for cross-RPC service: a one-agent
configuration and a two-agent configuration (see Fig. 3(a) and
3(b)). The one-agent configuration consists of a gateway agent
that interconnects two programs using different RPC protocols
(see Fig. 3(a)). The two-agent configuration can be constructed
by splitting the gateway agent into two agents connected by a
link protocol (see Fig. 3(b)). These two agents, the client and
the server agent, are placed on the client and server machines,
respectively. I

We use the two-agent configuration for our synthesis scheme
because it results in a much cleaner synthesis scheme than does

'Placing agents on client and server machines is an access control issue,
not a limitation of the scheme.

190 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 20. NO. 3 . MARCH 1994

the one-agent configuration. It is cleaner because each agent
needs to know only the local and the link RPC protocols, and
the run-time support for both the native and the link RPC
protocols are locally available. In contrast, a one-agent con-
figuration does not have all of the run-time support available
locally, because the single gateway agent must be located on
either the client machine or server machine. In either case, it
must be aware of the details of the RPC that are not available
locally, complicating agent construction and synthesis. Fur-
ther, it is easy to handle both customized RPC service and
cross-RPC service with the two-agent configuration, because
customized RPC service must use a two-agent configuration.

To examine the performance implications of a two-agent
configuration, we use the following equations to determine S ,
the slowdown in performance with respect to a reference RPC
ref:

Ttotal represents the total elapsed time for our RPC, which is
the sum of the elapsed time for passing data from a client to
the client agent (TClient), from the client agent to the server
agent (Tlink), and from server agent to the server (T,,,,,r). The
slowdown S is defined as the ratio of the total elapsed time of
our RPC to Tref, the elapsed time of the reference RPC (the
RPC we are compared with).

Surprisingly, using a two-agent configuration causes little
degradation of RPC performance for most cases. For the
customized RPC case, performance is unaffected, because both
agents can usually be linked with the corresponding client
and server programs directly. This fact is expressed by the
following conditions:

The first condition assumes that the link protocol is well im-
plemented and has performance competitive with the reference
RPC. This assumption will be supported by the performance
data in Section V-B. The second condition represents the
fact that local procedure calls are much faster than remote
procedure calls. With these two conditions, (1) reduces to the
following:

In some cases, using knowledge about the client and server
machines, it may be possible to build customized RPC whose
performance may even exceed the performance of the native
RPC system. For example, if it is known that the client
and server machines both use the same data representation
and compiler, the programmer can synthesize agents that
bypass the marshalling/unmarshalling routines. For an RPC
that supports only one external data representation (like SUN
RPCKDR), however, such a bypass cannot be accomplished
without changing the RPC protocol.

For cross-RPC, the slowdown is determined by the ratio of
the elapsed time of the native RPC (Tr~,er,t. T,,,,,,,) to the
elapsed time of the link protocol (ql&). If the client and

the server hosts are connected through a wide-area network,
we will have slowdown ratios close to 1.0, because the two
conditions mentioned above are still valid (i.e., network delay
is the dominating term in TtOt,l). In the worst case, when
the client and the server hosts are on the same local area
network, and TIlnk M Tcllent M T,,,,,,, the slowdown ratio
may be as high as 3.0. The absolute value of the elapsed
time in these cases may still be acceptable, however. For
example, we believe that a slowdown in communication
from 2 ms to 6 ms is quite tolerable and should not cause
problems in most cases. In addition, for most cross-RPC
cases, programmers have control over the client program code
and can link the synthesized agent with the client program
directly. In these cases, the scheme degenerates to the one-
agent configuration, and the performance becomes even more
acceptable. Therefore, we conclude that the slowdown in two-
agent configuration is acceptable and is a reasonable price to
pay for a clean design and implementation.

C. Handling RPC Hetesogeneities
One crucial issue in designing an RPC agent synthesis

scheme is determining how different RPC heterogeneities
should be handled. We have found that a proper classification
of RPC heterogeneities to be very useful in providing insights
on how to handle various RPC heterogeneities.

We define an RPC protocol simply as a protocol above
the transport layer. Although the general scheme discussed
here can be applied to other layers, we limit our discussion
to the heterogeneity issues above the transport layer. For
accommodating heterogeneities at the transport layer, readers
can refer to [2] for more information.

Two RPC systems can be very different. Differences may
exist in the call semantics,2 in the failure semantics,3 in
the RPC topology: in the external data representation,'
in the naming and binding mechanism: in the authen-
tication/encryption mechanism,' and so on. Clearly, with
so many heterogeneities to be accommodated, building a
solution for each case is prohibitively expensive. Even using
a synthesis scheme, we must minimize the amount of code to
be synthesized to make the scheme manageable.

Our approach is to first classify RPC heterogeneities
into those that are semantics-dependent, and those that are
semantics-independent. For example, heterogeneities in call
semantics and failure semantics are semantics-dependent,
whereas heterogeneities in RPC message format are semantics-
independent because they are artifacts of implementation.

We handle RPC heterogeneities differently depending
upon their type. Semantics-dependent heterogeneities are

call semantics (ASTRA).

(ARGUS).

many-server (SUN broadcast RPC).

'Examples are synchronous call semantics (SUN RPC) and asynchronous

Examples are at-most-once (HP/Apollo NCA RPC) and exactly-once

Examples are one-client-one-server (Xerox Cedar RPC) and one-client-

'Examples are NDR (HP/Apollo NCA RPC) and XDR (SUN RPC).
hExamples are UUID/Location Broker (HP/Apollo NCA RPC) and (pro&#,

7Examples are Grapevine DatabaseDES (Xerox Cedar RPC) and
ver#)/Portmapper (SUN RPC).

UNIXDES (SUN RPC).

HUANG AND RAVISHANKAR: DESIGNING AN AGENT SYNTHESIS SYSTEM 191

, RPC S,:,,tics ,
Call Failure RPC
Semantics Semantics Topology

Fig. 4. Aspects of RPC semantics implementation

TABLE I
LINES OF SOURCE CODE FOR DIFFERENT RPC IMPLEMENTATIONS

Function
Minimal SUN

RPC Client Agent
DCE RPC SUN RPC

BASIC
CONV
CLNT
NS
AUTH
sv
OTHER

Total

5549 (21.2%)
4803 (18.4%)
3852 (14.7%)
4899 (18.8%)
2202 (8.4%)
3906 (I S.O'%)
918 (3 . 5 %)

26129 (lOO.O%)

342 (6.6'A)

1212 (237%)
494 (9.6%)
1082 (21.1%)
1008 (19.7%)

933 (18.2%)

so (10%)

5121 (lOO.O%)

342 (39.8%)
179 (20.8%)
185 (21.5%)
119 (l3.8'%)
35 (4 .1%)
0 (0.0%)
0 (0.0%)

860 (100.0%)

handled by synthesizing the implementation of the specified
semantics directly, and semantics-independent heterogeneities
are handled by providing a default implementation of each
mechanism. For performance reasons, programmers must
be able to control the implementation of RPC seman-
tics. Therefore, we use a synthesis approach designed to
give programmers the maximum flexibility in describing
their RPC semantics implementation. Fig. 4 summarizes
three aspects of RPC semantics: call semantics, failure
semantics, and RPC topology, which must be described in
the protocol construction language and synthesized by the
synthesizer.

Semantics-independent heterogeneities are encapsulated in
the link protocol and have little effect on applications. For
example, users need not be concerned with what external
data representation is used, as long as the link protocol pro-
vides one. Therefore, all mechanisms pertaining to semantics-
independent heterogeneities are provided through libraries or
as run-time services. Because there is no need to describe
semantics-independent implementations, our construction lan-
guage need describe only RPC semantics-dependent imple-
mentations. This not only makes the construction language
simpler but also greatly reduces the complexity of the synthesis
scheme, with little or no detriment to the generality of the
solution.

To quantify the reduction in complexity due to this RPC
heterogeneity classification, we classify the source codeX of
different RPC implementations (OSF/DCE and SUN) into sev-
eral categories, based on the common functionalities provided
by the RPC run-time. This classification provides information
about the complexities of implementing or synthesizing each
functionality. Results are listed in the first two columns of
Table I .

'The source code consists of both C source files and related include tiles.
The number of lines of source code is estimated by counting ':'. The number
of lines of include files is estimated by counting ':' and '#'.

The categories listed in Table I are defined as follows.
BASIC: Routines for implementing the common data
structures, the basic utilities, and the infrastructure of the
run-time.
CONV: Routines related to data representation conver-
sion.
CLNT: Routines to implement the client protocol ma-
chine.
NS: Routines related to name service.
AUTH: Routines perform encryption/decryption and au-
thentication.
SV: Rroutines to implement the server protocol machine.
OTHER: Routines not belonging to any of the above
categories (e.g., debugging related routines).

The last column in Table I deserves some additional ex-
planation. This column estimates the effort of hand crafting
a client agent that provides minimal SUN RPC functionality.
This minimal client agent implements SUN RPC at-most-once
semantics on top of TCP.' The implementation of the client
agent also includes the basic functionalities of, for example,
marshalling and server binding. The estimate in Table I was
arrived at by extracting related source code from the current
SUN RPC implementation.

From Table I, we can see that it is too complex to synthesize
an entire RPC run-time. This is because there are simply
too many different aspects and details to be described, such
as RPC protocol machines, the naming scheme, the security
mechanisms, and data representation.

If we synthesize only the code related to semantics-
dependent heterogeneities (CLNT + SV), however, more
than 60% of code can be provided by either the run-time
or libraries. In other words, the maximal amount of code
to be synthesized (CLNT + SV) is 30% to 40% of the
entire RPC package, and includes all of the different RPC
semantics supported by a specific RPC package. Luckily,
most of the time, only one of the many supported RPC
semantics is used, and usually only a client agent need
be synthesized.'" In such cases, the amount of code to
be synthesized can be further reduced to 4% (= s)
of an entire RPC run-time, Nevertheless, the CLNT code
still accounts for more than 20% of the entire client agent
code. Therefore, we would like to develop a language to
further reduce the coding effort for implementing RPC
protocols. We have developed Cicero, a protocol construction
language, is developed for describing RPC protocols. We
will only briefly describe Cicero in this paper, however,
because the semantics of Cicero language constructs are
issues orthogonal to the synthesis scheme and are described
elsewhere [161.

111. NESTOR: RUN-TIME SUPPORT FOR AGENT SYNTHESIS

The major difference among Nestor, our run-time, and
traditional RPC run-times is that Nestor provides additional
support for facilitating agent synthesis. Therefore, we focus

'It would require more code if the client agent were built on top of UDP.
"'The server and the server agents have already been built.

I92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 3. MARCH 1994

on details about how our agent synthesis scheme works and
how Nestor supports agent synthesis.

A. Specifications and Agent Synthesis

Synthesizing agents involves two steps:
1) constructing necessary synthesis specifications, and
2) synthesizing agents from specifications.

The first step involves describing RPC semantics, interfaces,
and instructions for synthesis. The second step involves gener-
ating code, compiling, and linking all of the components and
libraries to create executable images of agents.

To synthesize an RPC agent, three specifications are re-
quired: the RPC protocol construction, the RPC interface
specification, and the RPC agent profile specification. The RPC
protocol construction and the RPC interface together determine
what agent will be synthesized. Specifically, the RPC protocol
construction (written in Cicero) describes the implementation
of RPC semantics (i.e., call semantics, failure semantics, and
RPC topology). The RPC interface specification describes the
remote interface specification and is used to generate stubs,
which are used to interface with the client, the server, and our
run-time libraries. The agent profile specification determines
how an agent will be synthesized and managed. The agent
profile specification is a configuration file, containing instruc-
tions for synthesizing and managing agents. For example, the
agent profile specification defines the synthesis environment
and activation parameters for an agent. For each protocol, two
sets of these specifications are needed: one for the client agent
and one for the server agent.

Nestor uses a set of libraries and utility programs to syn-
thesize executable images of RPC agents. These libraries
include the protocol construction library and the extemal
data representation library. The protocol construction library
provides the functions to implement the link protocol between
two agents. The extemal data representation library provides
the marshalling/unmarshalling routines for RPC agents. The
utility programs used by Nestor consist of compilers for Cicero
and C, a stub generator, and a software packaging utility (like
the UNIX make).

Fig. 5 illustrates how these specifications and utility pro-
grams work together to synthesize an agent. The Cicero
compiler compiles the RPC protocol construction and outputs
a C-code implementation of the specified RPC semantics.
This C code will be compiled by the native C compiler and
linked with the libraries to implement the link protocol. The
stub generator compiles the RPC interface specifications and
generates the stub routines that interface with the client or
server program and with the link protocol implementation.
For customized RPC service, Nestor provides its own stub
generator and library to the user. For cross-RPC service,
Nestor expects stub generators from the native RPC facilities,
which it uses to synthesize the native RPC stub for the agent.
When a stub generator is not available, users are required to
provide RPC stubs. Finally, RPC stubs, libraries, and the link-
protocol implementation are linked together to form an agent.
This entire synthesis process is specified in the RPC agent

RPC protocol
specification

compilers

software t
packaging RPC agent profile
utility specification

Fig. 5. Using the synthesis support to synthesize an agent.

profile specification and controlled by the software packaging
utility.

B . Other Related Support for Agent Synthesis

There are two other kinds of support related to agent
synthesis: the specification-transfer support and the agent-
management support. The specification-transfer support facil-
itates importing or exporting protocol constructions between
sites, and is useful because the protocol constructions may not
be available at the machine where an agent will be synthesized.
For example, a user may wish to perform a heterogeneous RPC
using server RPC semantics, and the client-agent construction
for the server RPC protocol may not be available at the client
machine. To synthesize the client agent, the client can import
the client-agent construction from the server. This support is
provided to encourage sharing of RPC protocol constructions
in a large heterogeneous environment, so that programmers
can use or customize existing protocol constructions instead
of writing new ones themselves.

The ability to import protocol constructions from the outside
not only reduces agent development costs but also offers other
advantages. It provides immediate software availability after
a protocol construction is created or updated. Clients would
import the new specifications and synthesize local agents.
It minimizes disturbance when updating existing RPC’s and
introducing new RPC’s. Hence, RPC protocol evolution is
well supported. It also offers the opportunity to synthesize
specialized code to improve performance. Finally, it also
makes the synthesis solution scalable, and makes each site
fully autonomous.

The agent management support is responsible for all activi-
ties related to agent management, including agent run-time ac-
tivities and agent caching. At run-time, the agent-management
support is responsible for controlling the activation, execution,
and termination of agents. All of these activities are specified
in RPC agent profile specifications. For example, users can
provide the activation instructions for a newly synthesized
agent in the RPC agent profile specification, so that Nestor
can automatically activate the synthesized agent. If an agent is
linked with a client or server program, the agent management
support is used to activate the client and the server directly.

HUANG AND RAVISHANKAR: DESIGNING AN AGENT SYNTHESIS SYSTEM I93

C l i e n t

Fig. 6. The agent synthesis process in Nestor.

The agent management support can also be instructed to
cache synthesized agents for future use to avoid synthesizing
frequently used agents repeatedly.

C. An Agent Synthesis Scenario

To describe how Nestor synthesizes agents, we will present
a cross-RPC service scenario where agents are synthesized
and activated automatically. We also assume that the user has
already discovered the server host address through the Nestor
name service support (see Section 1II.D for details). The steps
in the agent synthesis process are shown as numbered arcs in
Fig. 6.

The Nestor run-time environment consists of two compo-
nents: an Internet RPC Service Daemon (IRSD), and an agent
manager (AM). IRSD is a process that handles all synthesis
requests and is brought up at machine initialization time.
It initializes itself by reading files containing configuration
information and the specifications of services exported from
the site. It then waits for requests from local clients and remote
IRSD's. Upon receiving a request, IRSD forks off a copy of
the Agent Manager (AM) to serve the request. The AM is
responsible for synthesizing, executing, and terminating an
agent. To facilitate interaction between the user and Nestor,
the user is provided with a command-line interpreter called
the Nestor Client Interface. It allows the user to interact with
Nestor by issuing commands. Here we assume that the user
uses this interface to contact Nestor.

Initially, Nestor runs as an IRSD daemon on the local
machine and listens on well-known ports. When the user first
contacts the local Nestor instance, it creates an AM to handle
the user's requests. The user issues the synthesis request to
the client AM (step I). The client AM locates the client-agent
synthesis specifications and contacts the server-side Nestor
instance (step 2). The server-side Nestor instance now forks
off an AM to handle the requests from the client AM. After
the server AM verifies the client's requests, both the client and
the server AM synthesize the agents (steps 3 and 4). After the
server agent is synthesized, the server agent is activated. The
port number used by the server agent is returned to the client
agent through AM's (steps 5 through 7). Now the agents are
ready to perform the specified heterogeneous RPC.

D. Other RPC-Related Support

search topic by itself. It is not the focus of the current design,
however; therefore, for our system, we simply apply existing
mechanisms as appropriate for our purposes.

The Nestor name service support helps a client contact a
server by using two items of information: the server host
address and the port number of its agent. The server host
address is discovered by querying a global database" that has
knowledge of all available services in the network. The port
number is obtained through cooperation between the client-
side and the server-side Nestor instances. More specifically,
the server-side Nestor instance obtains the port number ex-
ported by the server agent and passes it to the client-side
Nestor instance. The client agent can now obtain the port
number from its local Nestor instance.

The Nestor name-service support is a default name-service
mechanism provided to bypass heterogeneity problems in
name service. For cross-RPC communication, different naming
mechanisms may be used for the client and the server RPC
systems. In our scheme, the differences in naming mechanisms
are subsumed by RPC agents, because the client and the
server always contact their agents by using the native RPC
run-time support. How the client agent locates the server
agent is independent of the native naming mechanisms. Thus,
Nestor provides its own name service support to locate agents
without interfering with the native naming mechanism. This
is advantageous because no explicit mapping is necessary
between the native naming model and the Nestor naming
model. The Nestor name service support exemplifies how
we handle semantics independent heterogeneities (see Section
1I.C).

IV. AN EXAMPLE

The example given in this section serves two purposes. First,
it illustrates how to use Cicero to construct an RPC protocol.
Second, it provides a basis for estimating agent development
costs using our scheme, which is discussed in Section V.

The example uses Cicero to construct a synchronous mul-
ticast RPC protocol with at-least-once failure semantics. That
is, a client can contact more than one server at a time by
making one remote procedure call, and the caller is blocked
until all of the replies are received or until an error occurs.
We implement these semantics in two steps. First, we describe
the at-least-once semantics. Then we add the code for the call
semantics and the topology.

Let us assume that the original protocol specification for
the at-least-once semantics are specified by an extended finite
state machine (FSM) shown in Fig. 7, where input events can
be associated with conditions.

To prepare readers for the example, we first briefly introduce
Cicero and its constructs. Cicero is an event-driven specifica-
tion language derived from POST [171. Unlike specifications
in languages like LOTOS [181 and Estelle [19], which are
declarative (nonexecutable), Cicero specifications are con-
structive (executable). This feature allows programmers to
provide execution information to guide the protocol synthesis

Name is provided by In heterogeneous " I t does not matter whether the database is distributed or replicated. Here
distributed environments, name service is an important re- we treat it as a single entity.

194 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 3, MARCH 1994

TABLE I1
SEMANTICS OF VARIOUS WHEN CONSTRUCTS

\.rl = NUMBER OF OCCURRENCES OF EVENT .I’ TO DATE

recv-msg Syntax Description

Fig. 7. An extended FSM diagram for at-least-once semantics

process in generating efficient implementations. Cicero has
five constructs: emit, when, cond, bundle, and escape. The
emit construct is used to generate event instances. Each when
construct represents one thread of control and can trigger
actions each time that specified events are observed. The
cond construct implements conditional branches. The bundle
is a modularization construct similar to the procedure and
is invoked synchronously. The escape construct is used to
include C statements in Cicero by enclosing them in “{” and

Although the Cicero specification for the at-least-once se-
mantics can be more compact, we present a version that is
slightly longer, in order to make the implementation easier to
understand. There is a one-to-one mapping in events between
the FSM specification in Fig. 7 and the Cicero code segment,
except that the sendmsg event is replaced by a library call.
The correspondence between the Cicero code segment and the
original specification is indicated within the comments of the
code segment. Table I1 describes the semantics of various event
syntax associated with the when constructs in the Cicero code
segments.
1 bund le c l i e n t - r p c (C C - h a n d l e - t hand le ,

‘‘1.’’

C C m s g - t * m s g)

2 {
3 i n t err-code ;
4 l o n g w a i t -t i m e ;
5 e v e n t recvmsq, w a i t , r e t r y ;
6
7 w h e n (I N I T) : / * FSM: s t a r t -> w a i t * /

9 w a i t - t i m e = 6 0 ; / * w a i t
f o r 60 sec. * /

1 0 C C - s e t - u d e f - s e n d m s g (h a n d l e ,
m s g) ;

11 C C - i o c t l (h a n d l e , RECVBLOCK,
T R U E) ;

1 2 C C - s e n d - u d e f m s g (h a n d l e) ;
/ * sendmsg * /

8 {

13 }
1 4 e m i t recvmsg;
1 5 e m i t w a i t ;
1 6 e n d ;
17 w h e n (recvmsg) : / * FSM: w a i t

18 { err-code = C C - r e c v - u d e f m s g

1 9 e m i t r e t u r n : (val=err-code) ;
20 e n d ;

-> done * /

(h a n d l e) ;}

when (r): .A end;

when (x?i):.A end;

executes action .A when .I’ occurs.
same as the above, with variable / =
14
if 1 . 1 . 1 < N executes .A 1 else executes
.A 2

when (.r)*N: .A, end: .A2

when (INIT): .4 end; .4 is the first executed action when
enclosing bundle is invoked.

TABLE I11
DESCRIPTION OF FUNCTIONS USED IN BUNDLE CLIENTRPC()

Function Description

CC-send-udef-msg
CC-recv-udefmsg
CC-wait

CC-ioc t I

CC-set-udef-sendmsg

sends out an RPC message.
waits for an RPC reply message.
pause for a period of time before
continuing.
set input/output control options
(similar to UNlX i o d ()) .
associates an RPC message with the
communication handle, so that i t can
be sent out later.

21
22
23
24
25

26

27
28

w h e n (w a i t) : / * FSM: w a i t -> r e t r y * /
{ C C - w a i t (w a i t - t i m e) ; }
e m i t r e t r y ;

end;
w h e n (r e t r y) *MAX-RETRY: / * FSM:
-> r e t r y w a i t / e r r * /

{ C C - s e n d - u d e f m s g (h a n d l e) ; }
/ * sendmsg * /
e m i t w a i t ;

end: e m i t r e t u r n : (v a l = E - R P C F A I L) ;
/ * rpc f a i l e d * /

291

After sending out the message (line 12), two when con-
structs (lines 17 and 21) run concurrently, waiting for a reply
or a time-out, respectively. If a reply is received, the bundle
retums. If a time-out occurs, the original message is sent again.
Such retry continues until either a reply is received or the
number of retries exceeds the limit MAX-RETRY. In the later
case, the bundle retums with an error. All of the functions with
prefix name “CC-” are provided by the Cicero communication
library, and their functionality is briefly described in Table
111. The Cicero communication library is derived from our
universal RPC toolkit [20], which is a toolkit for prototyping
a variety of RPC systems rapidly.

We now complete the description of the synchronous mul-
ticast RPC and specify the synchronous call semantics and
multicast topology. The description is listed below.

One multicast RPC is broken into a number of component
RPC’s, one for each server binding (represented by handles).
Each component RPC (client_rpc()) runs with its own thread
and has the at-least-once semantics described previously (lines
12-18). Each time a component RPC completes, a reply event
instance is emitted (line 16). If enough reply instances have
been collected, the multicast RPC completes (lines 19-24). If

HUANG AND RAVISHANKAR: DESIGNING AN AGENT SYNTHESIS SYSTEM 194

TABLE IV
CODING EFFORT SAVING FOR CLIENT AGENTS

_____ ~~

Case (language) BASIC CONV CLNT NS AUTH SV OTHER Total

Handcrafted client agent 342 179 I85 1 I9 35 0 0 860

Synthesized client agent
(C) 39 8% 20 8% 21 5% 13 8% 4 1% 0 0% 0 0% 100 0%

(Cicero) 0 0 35 0 0 0 0 35

2

3

4

5 {
6
7
8
9
10
11
12
13
14

15

16
17
18
19
2 0

21

22

2 3
24
25
26 1

any error occurs, the multicast RPC returns with an error (line
21).
1 bundle syncmulticast-rpc (

int num; / * num. of
handles * /
CC-handle-t handle-array [] ;

CCmsg-t *msg / * message
to be sent * /)

/ * handles * /

event rpc, reply;
int ret;

when (INIT) :

end;
when (rpc?i) :

emit rpc; / * the 1st rpc * /

cond (i < num) :
emit rpc; / * invoke the
another simple rpc * /
ret = client-rpc
(handle-array [i-11 ,msg) ;
emit reply : (val=ret) ;

end; / * i > num: do nothing * /
end;
when (reply? j) :

cond (reply.va1 ! = OK) :
/ * error * /

emit return: (Val=
reply.va1);
(j = num) : / * multicast
rpc completes * /
emit return: (val=OK) ;

end;
end;

V. EVALUATION
To validate our design, we evaluate our synthesis solution

from two aspects: agent development costs and cross-RPC per-
formance using synthesized agents. We have built a prototype
for both Nestor and Cicero and have ported them to UNIX
BSD 4.3 and Mach 2.5.

A . Agent Development Costs
We use lines of source code to estimate the costs of

developing agents. In the above example, it takes 35 lines" to

"To facilitate comparisons with the results in Table I . Section I1.C. the
number of lines of source code was also computed by countins *':".

describe a synchronous multicast RPC. From Table I in Section
ILC, it takes 860 lines of C code to handcraft a simple SUN
RPC client agent, which has no multicast capability. These
two cases are summarized in Table IV.

Because the example given above implements more com-
plex RPC semantics than does the client agent described
in Section II.C, it takes even less Cicero code to describe
the same RPC semantics implemented by the client agent.
Therefore, we can estimate confidently that more than 95%
of coding effort can be saved by using our agent synthesis
scheme.

Although the 95% saving may sound dramatic, i t is not
surprising, because our heterogeneity classification allows us
to provide 80% of agent code through libraries and run-time
services for semantics-independent mechanisms. The remain-
ing 15% is generated by the Cicero compiler or provided
by the Cicero run-time library. Similar savings can also
be found for the corresponding server agent, because the
implementations of the client and server agent are symmetrical
and are comparable in their code sizes. (See CLNT and SV
in Table I.)

There are two other factors in our scheme that can further
reduce agent development costs. First, a large portion of Cicero
code can often be written to mirror some existing protocol
specification, making it easier to construct correct protocol
implementations. We have illustrated this process in the above
example, translating an extended FSM protocol specification
into Cicero code segment. Second, the effort of coding agents
can be eliminated altogether if the agent constructions are
available elsewhere on the network. Programmers can use
Nestor's specification-transfer support to obtain these con-
structions.

B . Cross-RPC Pei-jbfor.mat1c.e

Cross-RPC performance depends on the performance of na-
tive RPC's and the link protocol implemented by synthesized
agents. Since we have no control over the performance of
native RPC's, we focus on the performance of synthesized
agents. Agent performance depends on two factors: the Cicero
run-time overhead and the performance of the communication
primitives provided by the Cicero communication library. The
Cicero run-time overhead is about 0.3 ms on average, which
mostly comes from the overheads of thread management and
mutual exclusion support [161.

The performance of the communication primitives is repre-
sented by the performance of an RPC protocol constructed us-
ing these primitives. These RPC protocols, ATM I-RPC/UDP
and ATMI-RPCPCP, are constructed on top of UDP and
TCP, respectively, with at-most-once semantics. The perfor-

196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 3, MARCH 1994

TABLE VI
CROSS-RPC PERFORMANCE WITH ONE-AGENT CONFIGURATION

Apollo DN 5500

RPC1-RPC2 Remote ATMl Local RPC Cross-RPC S,, I ,,, 1

Sun 3/60 Sun Sparc 1 ATMl - Mach 4.48f0.01 ms 1.38f0.04 ms 5.78f0.02 ms 1.29 Mach RPC, Sun RPC,
ATMl - SUN 2.58f0.04 ms 3.70f0.03ms 6.34k0.03ms 2.45
ATMl - NCS 12.0f0.5 ms 5.14ZO.Ims IY.Yf0.5ms 1.65 Proteon

Token Ring
Ethernet

TABLE VI1
Sun RPC.
A T M I RPC CROSS-RPC PERFORMANCE WITH TWO-AGENT CONFIGURATION

Fig. 8 . The network environment for the performance measurement. RPCl - (ATM1) - RPC2 TCP Socket Cross-~pC ,s,,,,

SUN - (ATMI) - Mach 3.6f0. lms 9.7f0. Ims 2.69
NLLL RPC PERFORMANCE SUN - (ATM1) - NCS l l . l f 0 . 5 m s 21.4fI.Oms 1.94

Mach - (ATMI) - NCS I2.6f0.8ms 20.Sf 1 .Oms 1.62

TABLE V

Transport SUN RPC ATMl-RPC S,,, ,)

UDP 2.58f0.01ms 2.29f0.04ms 0.88
TCP 3.33f0.02ms 2.58h0.04ms 0.77

mance data measured were the round-trip elapsed time for null
RPC under lightly loaded network and workstations, including
language run-time overheads. The null-WC performance of
SUN RPC/UDP and SUN RPC/TCP are provided for compar-
ison. (See Table V.)

As Table V indicates, our RPC performance is competitive,
even with the Cicero overheads included. The range of RPC
performance is about 2.5 ms and up. Adding this performance
with the average language overhead (~ 0 . 3 ms), the perfor-
mance is still competitive with SUN RPC. With normal daily
workloads on the network and workstations, the round-trip
elapsed time will be even longer (5 ms - 10 ms), making the
language overhead even smaller in relative terms.

Two sets of measurements were carried out for cross-RPC:
one set each for a one-agent configuration and for a two-
agent configuration. Each set of measurements consisted of
three cross-RPC cases involving SUN RPC, Mach RPC, and
HP/Apollo NCS/NCA RPC, respectively. These RPC’s all
passed a one-character string to their servers and get back an
integer. Both sets of measurements used the ATM 1 -RPC/TCP
as the link protocol.

The machines and the RPC’s used in these measurements
are illustrated in Fig. 8 as shaded boxes. Specifically, the Sun
Sparc 1 workstation used SUN RPC; the Sun 3/60 used Mach
RPC; and the HP/Apollo DNSSOO used NCS RPC. These
machines were connected through our campuswide network
(Fig. 8). In measuring the one-agent configuration cases (Table
VI), a Sun Sparc 1 workstation was used as the client machine
running ATM I-RPCRCP in all three cases. This machine was
also used as the client machine running SUN RPC in the
two-agent configuration cases (Table VII).

Table VI lists the cross-RPC performance for three one-
agent configuration cases with an RPC agent running at
the server machine. The first two are cross-RPC cases
(ATMI/SUN and ATMl/Mach) on our local Ethemet, and the
last case (ATM I/NCS) is cross-RPC through several gateways.
For each case, a breakdown of remote ATMl RPC and the
local RPC overheads is provided for analysis. Depending on

the relative performance between the remote ATMl RPC and
the local RPC, the cross-RPC slowdown over ATMl RPC
(Sat,,) ranges from 1.29 to 2.45.

Table VI1 lists the cross-RPC performance for three two-
agent configuration cases. The first case is two-agent cross-
RPC on our local Ethernet, and the rest are cross-RPC’s
across several gateways. For comparison, we also provide the
round-trip time measurements for TCP sending a one-byte
message directly between the client and the server. These
measurements are used to approximate homogeneous RPC
performance, and, because no RPC layer overhead is included
here, the measurements give us a conservative estimate of a
homogeneous RPC performance on top of TCP.

The two-agent configuration is the worst-case scenario for
cross-RPC, when client and server programs may not be
modified. In this worst-case scenario, the cross-RPC slowdown
ranges from 1.6 to 2.7 over our estimated homogeneous
RPC performance. Because the client and the server may
not be modified in this case, however, handcrafted cross-
RPC implementations do just as poorly. To compare with
handcrafted implementations of one-agent configurations, one-
agent cross-RPC’s (Table VI) are used to approximate their
performance. The two-agent cross-RPC is only slightly slower
(3% to 7%) slower) than the one-agent RPC in the cross-
gateway cases. In the worst case, it is about 50%) slower than
the one-agent implementation. This happens when a remote
RPC takes about the same amount of time as a local RPC, a
somewhat unlikely scenario.

VI. RELATED WORK

Most related work can be categorized into four classes: pro-
tocol libraries/architecture, remote evaluation schemes, remote
interface synthesis, and specification compilers. Our solution
is a hybrid of these four classes of solutions.

In general, solutions based on protocol libraries or ar-
chitecture provide programmers with a library interface and
an architecture for constructing protocols. The interface and
the architecture are engineered by factoring out common
protocol functionalities and abstractions. HCS/HRPC [I] , x-

HUANG AND RAVISHANKAR: DESIGNING AN AGENT SYNTHESIS SYSTEM I97

kernel (211, [22],13 and TACT [2]14 are examples of this type
of solution. However, library architectures are restricted by
the number of implementations provided in their libraries.
Therefore, introducing a new RPC protocol often requires
updates to every library on the network, a requirement that is
not desirable in large heterogeneous distributed environments.
Our solution resolves this difficulty by importing the remote
protocol construction to synthesize a local agent that subsumes
the heterogeneities and facilitates communication with the
remote protocol. Our solution can easily incorporate exist-
ing libraries/architecture solutions as a special synthesis case
that only requires packaging RPC agents using the available
libraries.

Remote evaluation schemes require a client to pass a piece
of code to the remote machine, where it is evaluated to provide
service to the client. Although all remote-evaluation systems
have similar code distribution mechanisms, the context and the
language used in these systems are very different. For example,
HDS/NCL [SI uses the special-purpose programming language
NCL (based on LISP) to implement a heterogeneous network
file system. Another example is REV [4], which is embedded
in the programming language CLU for supporting general pur-
pose remote evaluation. Because our goal is to accommodate
RPC protocol heterogeneities, which is very different from the
focus of such earlier work, our system provides programmers a
special protocol construction language (Cicero) for describing
RPC protocols. The protocol descriptions are then used to
synthesize RPC agents.

Remote interface synthesis schemes generate communi-
cation code according to some interface definition, so that
procedures/modules written in different languages can com-
municate with each other in a heterogeneous environment.
Examples of this type of scheme are the POLYLITH software
bus [23] and the Horus stub generator [24]. All of these
solutions are focused on resolving heterogeneities in data types
and data representations. They all provide mappings from local
data types and data representation to predefined data types and
representations. Although our system also uses this approach to
resolve heterogeneities in data types and representations, it also
allows programmers to synthesize RPC agents to interconnect
programs by using different RPC protocols. This feature is
absent in remote interface synthesis solutions.

The work on specification compilers [25], [26], [27], [28]
has been focused on generating correct implementations from
the formal protocol specifications, as in the LOTOS and Estelle
languages. The portions of a protocol implementation that can
be generated, however, depend on the environment and the
specification language used, and the efficiency of generated
code is also a concem [29]. Code quality is an important
consideration, especially in the RPC context. Based on a
protocol construction language, our prototype implementa-
tion can produce synthesized RPC agents with performance
competitive with handcrafted RPC implementations. In some
customized RPC cases, we believe that the synthesized code

I3The .r-kernel is included here because of its protocol synthesis capabili-
ties.

l4 TACT is used for accommodating heterogeneities for Transport layer
protocols, not for RPC. i t is included here, however. for its library approach.

may even perform better than handcrafted solution. This ap-
parent paradox arises because synthesis can always tailor code
for each case to improve performance, whereas handcrafted
solutions usually incur overhead, targeting the general case. A
good example of this principle is seen in the Synthesis kemel
[30], which provides significant speedup for UNIX kemel
calls by generating specialized kemel routines for specific
situations. In our context, for example, agents may bypass
data conversion routines if both the client and the server use
the same data representation.

VII. CONCLUSION

Our work illustrates that an agent synthesis scheme is an
effective method for dealing with the many instances of RPC
heterogeneity in heterogeneous distributed environments. Our
agent synthesis scheme provides a solution with low soft-
ware development and maintenance costs while maintaining
reasonable cross-RPC performance.

The two-agent configuration is key to the handling of
large numbers of heterogeneity instances. This configuration
allows us to concentrate on synthesizing agents to handle
only RPC semantics-dependent heterogeneities, and to encap-
sulate the semantics-independent heterogeneities within a local
agent through run-time support and libraries, resulting in an
80% saving of agent development costs (see Section V-A).
This encapsulation also greatly reduces the complexity of the
synthesis scheme. For example, it allows us to bypass the
heterogeneity problems in name service, which would other-
wise add another dimension of complexity to the synthesis
scheme. The two-agent configuration also allows clients to
import protocol constructions from outside, which can further
reduce agent development costs and support evolution of RPC

The ability of our system to import protocol constructions
from the outside provides immediate software availability after
a protocol construction is created or updated. Clients would
import the new specifications and synthesize local agents.
It minimizes disturbance when updating existing RPC’s and
introducing new RPC’s. Hence, RPC protocol evolution is
well supported. It also offers the opportunity to synthesize
specialized code to improve performance. Finally, it makes
the synthesis solution scalable and makes each site fully
autonomous.

It can be difficult to get performance on cross-RPC’s
equivalent to that of homogeneous RPC. This is because a
slow native RPC can easily become a performance bottleneck,
especially when the programs involved may not be modified.
However, it is still much better to get work done with cross-
RPC than to get no work done at all. More importantly, by
using our synthesis scheme, cross-RPC can be accomplished
with little software development and maintenance costs, and
can achieve performance acceptable by most applications, even
in the worst-case scenario.

We end with a comment on general cross-RPC’s. Automatic
synthesis works best for cross-RPC within the same class
of RPC semantics, for example, cross-RPC among at-most-
once RPC’s or among at-least-one RPC’s. Although cross-

protocols.

19X IEEE TRANSACTIONS ON SOFrWARE ENGINEERING, VOL. 20. NO. 3, MARCH 1994

RPC between dissimilar RPC classes is possible in general
and is allowed in our scheme, it is clearly impossible to

the two RPC classes. The semantics of the local RPC’s are
often deeply embedded in the user code. Any solution that

to resolve all semantics mismatches probably requires
modifications to client, server, or even native RPC run-time.
Because it is impossible for us to determine the user-level

[I 91 -, ~nfiirmation Proc.essiq . sys temsapen system [nterconnec.-
t in i tEs te l le (Formal Desi,r.iption Technique Based on an E-rtended
State Transition Model), IS09074 1988, 1987.

CSE-TR-17G93, Dept. of Elec. Eng. and Comput. Sci., University of
Michigan, Ann Arbor, Michigan, 1993.

1211 L. Peterson, N. Hutchinson, S. O’Malley, and H. Rao, “The .c.-kemel:
A platform for accessing Internet resources,” IEEE Coniput., vol. 23,
pp. 23-33, May 1990.

1221 S. W. O’Malley and L. L. Peterson, “A dynamic network architecture.”
ACM Trans. Compur. Sysr., vol. 10, pp. 110-143, May 1992.

Sci. and Inst. for Advanced Comput. Studies, Univ. of Maryland, 1990.
1241 P. B. Gibbons, “A stub generator for multilanguage RPC in heteroge-

neous environments,” IEEE Trans. Srgmwe En,?., vol. 13. pp. 77-87,
Jan. 1987.

more than preserving the semantics ‘‘”On to [20] y. Huang and C, V , Ravishankar, “A universal RPC toolkit,” Tech. Rep.

semantics intended, it is the user’S to ‘lake sure 123) J , M. purtilo, ‘.The polylirh software bus,” Tech, Rep. TR.2469, Comput.
that the client and the server programs can be meaningfully
interconnected and to provide the appropriate agent synthesis
specifications to interconnect them.

REFERENCES

B.N. Bershad, D.T. Ching, E.D. Lazowska, J . Sanislo, and M.
Schwartz, “A remote procedure call facility for interconnecting
heterogeneous computer systems,” IEEE Trans. Sojhvure EnL?., vol.
13, no. 8, pp. 880-894, Aug. 1987.
J. Auerbach, “TACT: A protocol conversion toolkit,” IEEE .I. Select.
Areas Commun., vol. 8, pp. 143-159, Jan. 1990.
Sun Microsystems, Open Network C o m p u t i n M P C Pi-ogronimiri,?,
Mar. 1991.
J. W. Stamos and D. E. Gifford, “Implementing remote evaluation,”
IEEE Ti-am. Softwore Eng., vol. 16, pp. 710-722, July 1988.
J. R. Falcone, “A programmable interface language for heterogeneous
distributed systems.” ACM Trans. Compur. Syst., vol. 5 , pp. 331-351.
1987.
A. P. Birrell and B. J. Nelson, “Implementing remote procedure calls.”
ACM Trans. Cnmput. Syst., vol. 2, no. I , pp. 39-59, Jan. 1984.
Sun Microsystems. “Remote procedure call protocol specification ver-
sion 2 (RFC 1057),” Network Inf. Center, SRI Int., June 1988.
T. H. Dineen, P. J. Leach, N. W. Mishkin, J .N. Pato, and G.L. Wyant,
“The network computing architecture and system: An environment for
developing distributed applications. Proc Summer USENIX Cor$, 1987,

B. Liskov and L. Shrira, “Promises: Linguistic support for efficient
asynchronous procedure calls in distributed system, Proc. S/GPLAN’RX
Conf. P rogrummin,? Lunguage Design and lniplementution. June 1 988,
pp. 260-267.
E.F. Walker, R. Floyd, and P. Neves, “Asynchronous remote opera-
tion execution in distributed systems,” Proc.. 10th / / i t . Colif. Distrih.
Computin,? Syst., pp. 253-2.59, May 1990.
A. L. Ananda, B. H. Tay, and E. K. Koh, “ASTRA-An asynchronous
remote procedural call facility. Prnr.. I I th Int. Co~l f , Distrih. Coniputin,?
S w , May 1991, pp. 172-179.
K. S. Yap, P. Jalote, and S. Tripathi. “Fault tolerant remote procedure
call,” PI-oc.. 8th I t i t . Conf: Distrih. Computing Syst.,, San Jose, CA, 1988,

L. Zahn. T. H. Dineen, P. J. Leach, E.A. Martin, N. W. Mishkin, J.N.
Pato, and G. L. Wyant, Netu.orX Computing Architec.rure. Englewood
Cliffs, NJ: Prentice-Hall, 1990.
D. K . Gifford and N. Glasser, “Remote pipes and procedure5 for efficient
distributed communication.” ACM Trans. Compur. .Swt . , vol. 6, pp.
258-283, Aug. 1988.
B. Liskov and R. ScheiHer. “Guardians and actions: Linguistic support
for robust, distributed programs,” ACM Trans. P rngraniniiirg Luii,?ua,qr.s
Syst.. vol. 5. pp. 381404, July 1983.
Y. Huang and C. V. Ravishankar, “Cicero: A protocol construction
language,” Tech. Rep. CSE-TR-171-93. Dept. of Elec. and Comput.
Sci., Univ. of Michigan, Ann Arbor. 1993.
C. V. Ravishankar and R. Finkel, “Linguistic support for dataflow,”
Tech. Rep. CSE-TR-I&89. Dept. of Elec. Eng. and Comput. Sci., Univ.
of Michigan, Ann Arbor, 1989.
ISO, Itiformarinn Prni.es.sin,q Systems-Open Sjstem Iitteru)iitiecc
tiottLOTOS-A Formal De.sc.ription Technique Based on the Temporal
Orr/eri/t,q nf Ohser-iutiouul Behavior, IS0 8807 1988, 1985.

pp. 385-398.

pp. 48-54,

1251 J.P. Ansart, P.D. Amer, V. Chari, J.F. Lenotre, L. Lumbroso, E.
Mariani, and E. Mattera, “Software tools for Estelle,” in Prorocd
Sper.ific.ution. Testing and Vet.rfimiotl VI (IFIPIWG 6 . I) . B. Sarikaya and
G. v. Bochmann, Eds. Amsterdam, The Netherlands: North-Holland.
1987.

1261 J. P. Briand, M. C. Fehri, L. Logrippo, and A. Obaid, “Executing LOTOS
specifications,” infrotocd Spec~ifrc~atiou. Tesrrn,q und Ver/fic.ution V/
(IF/PIWG 6 J j , B. Sarikaya and G. v. Bochmann, Eds. Amsterdam,
The Netherlands: North-Holland, 1987.

[27] S. T. Vuong. A. C. Ldu, and R. 1. Chan, “Semiautomatic implementation
of protocols using an Estelle-C compiler,” IEEE Trans. Softwue Eng. ,
vol. 14, pp. 384-393, Mar. 1988.

1281 D. P. Anderson, “Automated protocol implementation with RTAG,”
IEEE Truns. Sofmare Eiig. , vol. 14, pp. 291-300, Mar. 1988.

[291 L. Svobodova, “Implementing OS1 systems.” IEEE J . Selec,t. Areas
Commun., vol. 7, pp. 1 115-1 130, Sept. 1989.

[301 C. Pu, H. Massalin. and J. Ioannidis, “The synthesis kernel,” Computing
Sjst.. vol. I , pp. 11-32. Winter 1988.

Y.-M. Huang received the B.S. degree in chemical
engineering from National Taiwan University in
1982; dual M.S.E. degrees in chemical engineering
and computer information and control engineering
(CICE) from the University of Michigan, Ann Ar-
bor, in 1986; and the Ph.D. degree in computer
science and engineering from the University of
Michigan, Ann Arbor, in 1993.

He is currently with IBM Corp., Research Trian-
gle Park, NC. His current research interests include
distributed systems and computer networks.

C. V. Ravishankar (S’82-M’84-S’85-M’85-S’86-
M’Xh) reLeived the B Tech degree in chemical
engineering from the Indian h t i tu te of
Technology, Bombay, in 1975: dnd the M S
and P h D degree\ in computer science\ from the
University of Wisconsin, Madi\on, in 1986 and
1987, rc\pectively

He hd\ been with the Department of Electricdl
Engineering dnd Computer Science at the
Univenily of Michigdn, Ann Arbor, w e e 1986
Hi\ teaching dnd resedrch at the University of

Michigan hdve been in the ared\ of progrdmming langudgu and distributed
sy\tems His present resedrch Inlere\t\ include Idrge-wale di\tribution,
heterogeneity, protocol synthev\, redl-time \y\tem\, and ddtaba\e sy\tem\

Dr Rdvi\hankar 15 a member of the IEEE Computer Society. ACM,
and the Software System Resedrch Labordtory and Real Time Computing
Ldboratory dt the Univervty of Michigan

