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Designing an Agent Synthesis System 
for Cross-RPC Communication 

Yen-Min Huang and Chinya V. Ravishankar, Member, IEEE 

Abstract-Remote procedure call (RPC) is the most popular 
paradigm used today to build distributed systems and applica- 
tions. As a consequence, the term “RPC” has grown to include a 
range of vastly different protocols above the transport layer. A 
resulting problem is that programs often use different RPC proto- 
cols, cannot be interconnected directly, and building a solution for 
each case in a large heterogeneous environment is prohibitively 
expensive. In this paper, we describe the design of a system that 
can synthesize programs (RPC agents) to accommodate RPC het- 
erogeneities. Because of its synthesis capability, our system also 
facilitates the design and implementation of new RPC protocols 
through rapid prototyping. We have built a prototype system 
to validate the design and to estimate the agent development 
costs and cross-RPC performance. Our evaluation shows that 
our synthesis approach provides a more general solution than 
existing approaches do, and with lower software development 
and maintenance costs, while maintaining reasonable cross-RPC 
performance. 

Index Terms-Heterogeneous RPC, RPC agent synthesis, RPC 
run-time 

I. INTRODUCTION 
EMOTE procedure call (RPC) [6] is perhaps the most R popular paradigm used today to build distributed ap- 

plications. Many RPC semantics have been designed and 
implemented in recent years to meet application-specific re- 
quirements. Examples are synchronous RPC [6], [7], [8]; 
asynchronous RPC [9], [IO], [ l l] ;  fault-tolerant RPC [12]; 
broadcast RPC [7], [8], [13]; maybe RPC (no-return RPC) 
[7], [SI, [13], [14]; RPC with atomic transactions [15]; and 
RPC with a call-back mechanism [SI. [13]. With emerging 
applications like multimedia conferencing and distributed real- 
time applications, it is conceivable that even more RPC 
protocols will be designed and implemented. Because of this 
diversity of RPC protocols, we adopt a general view of RPC 
as a protocol above the transport layer in this paper. 

The problem with having many different RPC protocols is 
that user programs built on top of different RPC protocols 
cannot be interconnected directly. This difficulty not only 
greatly reduces the availability of software and resources 
in a large heterogeneous distributed environment but also 
increases the costs of developing and maintaining distributed 
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applications with multiprotocol support. For example, this 
difficulty may arise when developers wish to build a multicast 
heterogeneous RPC to support fault tolerance, to construct a 
server accepting requests from many different RPC protocols, 
or to construct a client querying different name servers. Thus, 
the goal of this work is to design a system that supports 
cross-RPC communication (heterogeneous RPC) in a large 
heterogeneous distributed environment in which many systems 
are built using different RPC protocols. 

The easiest way, and sometimes the only way, to perform 
cross-RPC is to introduce intermediaries (RPC agents) to 
facilitate communication between clients and servers. This 
method requires no changes to existing software. Building 
these RPC agents is hard, however, because it requires ex- 
tensive knowledge of RPC and network protocols, and is 
time-consuming. In a large heterogeneous environment, the 
problem is exacerbated because there are too many RPC 
protocols, and building a solution for each case is prohibitively 
expensive. 

We believe that a good cross-RPC solution in a large 
heterogeneous environment should meet the following criteria: 

Economy: It should require as little software development 
and maintenance effort as possible, because we want to 
minimize the effort of introducing a new RPC protocol. 
Diversity: It must accommodate as many different RPC 
protocols as possible, because we want to handle both 
existing RPC protocols and future RPC protocols. 

Meeting these two criteria allows us to introduce new RPC 
protocols easily, and software using these new RPC protocols 
can be made available quickly. Also, the evolution of existing 
RPC protocols can be supported well. 

A .  Agent Synthesis 

An agent synthesis scheme is a solution that can meet 
our design criteria well. An agent synthesis scheme uses 
a synthesizer to generate implementations of RPC agents 
from high-level descriptions. It is attractive because much 
of the effort of coding agents can be saved. Also, there 
are few restrictions on what kinds of RPC agents can be 
described and generated. Therefore, if designed properly, 
a synthesis scheme can provide a more general solution 
than can existing approaches [1]-[5], and with much lower 
agent development and maintenance costs. There is a major 
difference between our agent synthesis scheme and others: In 
addition to traditional stubs, we also generate implementations 
of RPC protocol machines as a part of the RPC run-time. In 
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Fig. 1. The RPC agent synthesis scheme. 
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other words, for each different RPC protocol, a different RPC 
run-time may be generated along with the necessary stubs. 

Broadly speaking, our RPC agent synthesis scheme (see Fig. 
1) has two components: a language (Cicero) to describe RPC 
protocol constructions and a run-time environment (Nestor) 
to synthesize and activate RPC agents automatically. In this 
paper, we focus on the design of the synthesis scheme and its 
run-time environment. 

Because of its synthesis capability, our system can also 
be used as a rapid prototyping tool for experimenting with 
new RPC protocols. This can be a very useful capability for 
developers. Therefore, our design considers this usage as well. 
In summary, our system is designed to provide developers with 
the following two services: 

I ) Cross-RPC Service: Supporting cross-RPC communi- 
cation to increase software availability. 

2) Customized RPC Service: Fast prototyping of cus- 
tomized RPC protocols for experimenting with new RPC 
features and semantics. 

The rest of this paper is organized as follows. Section 
I1 describes the design of our RPC agent synthesis scheme. 
Section 111 describes the run-time support in Nestor. Section 
IV describes a real RPC protocol using Cicero. Section V 
describes the validation of the design by evaluating agent 
development costs and cross-RPC performance of synthesized 
agents. Section VI discusses related work. Finally, Section VI1 
prcsents our conclusions. 

rpc-A gateway server rpc 
agent 
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Fig. 2. (a) Customized RPC service. (b) Cross-RPC service. 
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Fig. 3. (a) One-agent configuration. (b) Two-agent configuration. 

RPC semantics representing the largest common denominator 
between two RPC protocols. These semantics are the best 
that can be achieved, because the two processes at the end 
of the cross-RPC link assume their local RPC semantics in 
their dealings with the world. We have no control over them 
or over the semantics of their native RPC protocols. The link 
protocol may also include some user-specified RPC semantics 
in addition to the shared RPC semantics. This flexibility allows 
users to tailor existing RPC protocols for special environments 
or applications. For example, in implementing a heterogeneous 
distributed transaction system, a user may wish to log each 
RPC argument and the results for crash recovery. This function 
can be implemented by the link protocol if neither the client 
nor the server RPC protocol provides this function. 

Although the RPC agent synthesis scheme is straightforward 
(see Fig. l ) ,  designing an RPC agent synthesis scheme is not 
easy, because many design issues must be considered and 
trade-offs carefully balanced. The design of the RPC agent 
synthesis scheme is the focus of this section. We first motivate 
the scheme by considering how the scheme and agents will be 
used (Sections 1I.A and 1I.B). Then we discuss how different 
RPC heterogeneities are handled (Section 1I.C). 

A. Agent Synthesis Scenarios 

Two agent synthesis scenarios are illustrated in Fig. 2(a) 
and 2(b). Fig. 2(a) illustrates the case where client and server 
programs may be modified. In this situation, RPC agents 
may be linked into user code. Fig. 2(b) illustrates the agent 
synthesis scenario where client and server programs may not 
be modified. The synthesized agents are independent processes 
in this case. Fig. 2(a) is the most likely scenario for customized 
RPC service, and Fig. 2(b) applies to cross-RPC service. 

Both synthesis scenarios require a link protocol to connect 
the client and server agents. This link protocol is generated 
by our synthesis scheme. For customized RPC service, the 
link protocol represents the specified RPC protocol. For cross- 
RPC service, the link protocol usually implements cross- 

B .  Agent Configuration 

The best agent configuration for customized RPC service 
is a two-agent configuration with the agents linked into the 
client and server (see Fig. 3). However, there are two possi- 
ble configuration choices for cross-RPC service: a one-agent 
configuration and a two-agent configuration (see Fig. 3(a) and 
3(b)). The one-agent configuration consists of a gateway agent 
that interconnects two programs using different RPC protocols 
(see Fig. 3(a)). The two-agent configuration can be constructed 
by splitting the gateway agent into two agents connected by a 
link protocol (see Fig. 3(b)). These two agents, the client and 
the server agent, are placed on the client and server machines, 
respectively. I 

We use the two-agent configuration for our synthesis scheme 
because it results in a much cleaner synthesis scheme than does 

'Placing agents on client and server machines is an access control issue, 
not a limitation of the scheme. 
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the one-agent configuration. It is cleaner because each agent 
needs to know only the local and the link RPC protocols, and 
the run-time support for both the native and the link RPC 
protocols are locally available. In contrast, a one-agent con- 
figuration does not have all of the run-time support available 
locally, because the single gateway agent must be located on 
either the client machine or server machine. In either case, it 
must be aware of the details of the RPC that are not available 
locally, complicating agent construction and synthesis. Fur- 
ther, it is easy to handle both customized RPC service and 
cross-RPC service with the two-agent configuration, because 
customized RPC service must use a two-agent configuration. 

To examine the performance implications of a two-agent 
configuration, we use the following equations to determine S ,  
the slowdown in performance with respect to a reference RPC 
ref: 

Ttotal represents the total elapsed time for our RPC, which is 
the sum of the elapsed time for passing data from a client to 
the client agent (TClient), from the client agent to the server 
agent (Tlink), and from server agent to the server (T,,,,,r). The 
slowdown S is defined as the ratio of the total elapsed time of 
our RPC to Tref, the elapsed time of the reference RPC (the 
RPC we are compared with). 

Surprisingly, using a two-agent configuration causes little 
degradation of RPC performance for most cases. For the 
customized RPC case, performance is unaffected, because both 
agents can usually be linked with the corresponding client 
and server programs directly. This fact is expressed by the 
following conditions: 

The first condition assumes that the link protocol is well im- 
plemented and has performance competitive with the reference 
RPC. This assumption will be supported by the performance 
data in Section V-B. The second condition represents the 
fact that local procedure calls are much faster than remote 
procedure calls. With these two conditions, (1) reduces to the 
following: 

In some cases, using knowledge about the client and server 
machines, it may be possible to build customized RPC whose 
performance may even exceed the performance of the native 
RPC system. For example, if it is known that the client 
and server machines both use the same data representation 
and compiler, the programmer can synthesize agents that 
bypass the marshalling/unmarshalling routines. For an RPC 
that supports only one external data representation (like SUN 
RPCKDR), however, such a bypass cannot be accomplished 
without changing the RPC protocol. 

For cross-RPC, the slowdown is determined by the ratio of 
the elapsed time of the native RPC (Tr~,er,t. T,,,,,,,) to the 
elapsed time of the link protocol (ql&). If the client and 

the server hosts are connected through a wide-area network, 
we will have slowdown ratios close to 1.0, because the two 
conditions mentioned above are still valid (i.e., network delay 
is the dominating term in TtOt,l). In the worst case, when 
the client and the server hosts are on the same local area 
network, and TIlnk M Tcllent M T,,,,,,, the slowdown ratio 
may be as high as 3.0. The absolute value of the elapsed 
time in these cases may still be acceptable, however. For 
example, we believe that a slowdown in communication 
from 2 ms to 6 ms is quite tolerable and should not cause 
problems in most cases. In addition, for most cross-RPC 
cases, programmers have control over the client program code 
and can link the synthesized agent with the client program 
directly. In these cases, the scheme degenerates to the one- 
agent configuration, and the performance becomes even more 
acceptable. Therefore, we conclude that the slowdown in two- 
agent configuration is acceptable and is a reasonable price to 
pay for a clean design and implementation. 

C. Handling RPC Hetesogeneities 
One crucial issue in designing an RPC agent synthesis 

scheme is determining how different RPC heterogeneities 
should be handled. We have found that a proper classification 
of RPC heterogeneities to be very useful in providing insights 
on how to handle various RPC heterogeneities. 

We define an RPC protocol simply as a protocol above 
the transport layer. Although the general scheme discussed 
here can be applied to other layers, we limit our discussion 
to the heterogeneity issues above the transport layer. For 
accommodating heterogeneities at the transport layer, readers 
can refer to [2] for more information. 

Two RPC systems can be very different. Differences may 
exist in the call semantics,2 in the failure semantics,3 in 
the RPC topology: in the external data representation,' 
in the naming and binding mechanism: in the authen- 
tication/encryption mechanism,' and so on. Clearly, with 
so many heterogeneities to be accommodated, building a 
solution for each case is prohibitively expensive. Even using 
a synthesis scheme, we must minimize the amount of code to 
be synthesized to make the scheme manageable. 

Our approach is to first classify RPC heterogeneities 
into those that are semantics-dependent, and those that are 
semantics-independent. For example, heterogeneities in call 
semantics and failure semantics are semantics-dependent, 
whereas heterogeneities in RPC message format are semantics- 
independent because they are artifacts of implementation. 

We handle RPC heterogeneities differently depending 
upon their type. Semantics-dependent heterogeneities are 

call semantics (ASTRA). 

(ARGUS). 

many-server (SUN broadcast RPC). 

'Examples are synchronous call semantics (SUN RPC) and asynchronous 

Examples are at-most-once (HP/Apollo NCA RPC) and exactly-once 

Examples are one-client-one-server (Xerox Cedar RPC) and one-client- 

'Examples are NDR (HP/Apollo NCA RPC) and XDR (SUN RPC). 
hExamples are UUID/Location Broker (HP/Apollo NCA RPC) and (pro&#, 

7Examples are Grapevine DatabaseDES (Xerox Cedar RPC) and 
ver#)/Portmapper (SUN RPC). 

UNIXDES (SUN RPC). 
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Fig. 4. Aspects of RPC semantics implementation 

TABLE I 
LINES OF SOURCE CODE FOR DIFFERENT RPC IMPLEMENTATIONS 

Function 
Minimal SUN 

RPC Client Agent 
DCE RPC SUN RPC 

BASIC 
CONV 
CLNT 
NS 
AUTH 
sv 
OTHER 

Total 

5549 (21.2% ) 
4803 (18.4%) 
3852 (14.7%) 
4899 (18.8%) 
2202 (8.4%) 
3906 ( I  S.O'% ) 
918 ( 3 . 5 % )  

26129 (lOO.O%) 

342 ( 6.6'A) 

1212 (237%) 
494 ( 9.6%) 
1082 (21.1%) 
1008 (19.7%) 

933 (18.2%) 

so ( 10%) 

5121 (lOO.O%) 

342 (39.8%) 
179 (20.8%) 
185 (21.5%) 
119 (l3.8'%) 
35 (4 .1%)  
0 ( 0.0%) 
0 ( 0.0%) 

860 ( 100.0% ) 

handled by synthesizing the implementation of the specified 
semantics directly, and semantics-independent heterogeneities 
are handled by providing a default implementation of each 
mechanism. For performance reasons, programmers must 
be able to control the implementation of RPC seman- 
tics. Therefore, we use a synthesis approach designed to 
give programmers the maximum flexibility in describing 
their RPC semantics implementation. Fig. 4 summarizes 
three aspects of RPC semantics: call semantics, failure 
semantics, and RPC topology, which must be described in 
the protocol construction language and synthesized by the 
synthesizer. 

Semantics-independent heterogeneities are encapsulated in 
the link protocol and have little effect on applications. For 
example, users need not be concerned with what external 
data representation is used, as long as the link protocol pro- 
vides one. Therefore, all mechanisms pertaining to semantics- 
independent heterogeneities are provided through libraries or 
as run-time services. Because there is no need to describe 
semantics-independent implementations, our construction lan- 
guage need describe only RPC semantics-dependent imple- 
mentations. This not only makes the construction language 
simpler but also greatly reduces the complexity of the synthesis 
scheme, with little or no detriment to the generality of the 
solution. 

To quantify the reduction in complexity due to this RPC 
heterogeneity classification, we classify the source codeX of 
different RPC implementations (OSF/DCE and SUN) into sev- 
eral categories, based on the common functionalities provided 
by the RPC run-time. This classification provides information 
about the complexities of implementing or synthesizing each 
functionality. Results are listed in the first two columns of 
Table I .  

'The source code consists of both C source files and related include tiles. 
The number of lines of source code is estimated by counting ':'. The number 
of lines of include files is estimated by counting ':' and '#'. 

The categories listed in Table I are defined as follows. 
BASIC: Routines for implementing the common data 
structures, the basic utilities, and the infrastructure of the 
run-time. 
CONV: Routines related to data representation conver- 
sion. 
CLNT: Routines to implement the client protocol ma- 
chine. 
NS: Routines related to name service. 
AUTH: Routines perform encryption/decryption and au- 
thentication. 
SV: Rroutines to implement the server protocol machine. 
OTHER: Routines not belonging to any of the above 
categories (e.g., debugging related routines). 

The last column in Table I deserves some additional ex- 
planation. This column estimates the effort of hand crafting 
a client agent that provides minimal SUN RPC functionality. 
This minimal client agent implements SUN RPC at-most-once 
semantics on top of TCP.' The implementation of the client 
agent also includes the basic functionalities of, for example, 
marshalling and server binding. The estimate in Table I was 
arrived at by extracting related source code from the current 
SUN RPC implementation. 

From Table I, we can see that it is too complex to synthesize 
an entire RPC run-time. This is because there are simply 
too many different aspects and details to be described, such 
as RPC protocol machines, the naming scheme, the security 
mechanisms, and data representation. 

If we synthesize only the code related to semantics- 
dependent heterogeneities (CLNT + SV), however, more 
than 60% of code can be provided by either the run-time 
or libraries. In other words, the maximal amount of code 
to be synthesized (CLNT + SV) is 30% to 40% of the 
entire RPC package, and includes all of the different RPC 
semantics supported by a specific RPC package. Luckily, 
most of the time, only one of the many supported RPC 
semantics is used, and usually only a client agent need 
be synthesized.'" In such cases, the amount of code to 
be synthesized can be further reduced to 4% (= s) 
of an entire RPC run-time, Nevertheless, the CLNT code 
still accounts for more than 20% of the entire client agent 
code. Therefore, we would like to develop a language to 
further reduce the coding effort for implementing RPC 
protocols. We have developed Cicero, a protocol construction 
language, is developed for describing RPC protocols. We 
will only briefly describe Cicero in this paper, however, 
because the semantics of Cicero language constructs are 
issues orthogonal to the synthesis scheme and are described 
elsewhere [ 161. 

111. NESTOR: RUN-TIME SUPPORT FOR AGENT SYNTHESIS 

The major difference among Nestor, our run-time, and 
traditional RPC run-times is that Nestor provides additional 
support for facilitating agent synthesis. Therefore, we focus 

'It would require more code if the client agent were built on top of UDP. 
"'The server and the server agents have already been built. 
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on details about how our agent synthesis scheme works and 
how Nestor supports agent synthesis. 

A. Specifications and Agent Synthesis 

Synthesizing agents involves two steps: 
1) constructing necessary synthesis specifications, and 
2 )  synthesizing agents from specifications. 

The first step involves describing RPC semantics, interfaces, 
and instructions for synthesis. The second step involves gener- 
ating code, compiling, and linking all of the components and 
libraries to create executable images of agents. 

To synthesize an RPC agent, three specifications are re- 
quired: the RPC protocol construction, the RPC interface 
specification, and the RPC agent profile specification. The RPC 
protocol construction and the RPC interface together determine 
what agent will be synthesized. Specifically, the RPC protocol 
construction (written in Cicero) describes the implementation 
of RPC semantics (i.e., call semantics, failure semantics, and 
RPC topology). The RPC interface specification describes the 
remote interface specification and is used to generate stubs, 
which are used to interface with the client, the server, and our 
run-time libraries. The agent profile specification determines 
how an agent will be synthesized and managed. The agent 
profile specification is a configuration file, containing instruc- 
tions for synthesizing and managing agents. For example, the 
agent profile specification defines the synthesis environment 
and activation parameters for an agent. For each protocol, two 
sets of these specifications are needed: one for the client agent 
and one for the server agent. 

Nestor uses a set of libraries and utility programs to syn- 
thesize executable images of RPC agents. These libraries 
include the protocol construction library and the extemal 
data representation library. The protocol construction library 
provides the functions to implement the link protocol between 
two agents. The extemal data representation library provides 
the marshalling/unmarshalling routines for RPC agents. The 
utility programs used by Nestor consist of compilers for Cicero 
and C, a stub generator, and a software packaging utility (like 
the UNIX make). 

Fig. 5 illustrates how these specifications and utility pro- 
grams work together to synthesize an agent. The Cicero 
compiler compiles the RPC protocol construction and outputs 
a C-code implementation of the specified RPC semantics. 
This C code will be compiled by the native C compiler and 
linked with the libraries to implement the link protocol. The 
stub generator compiles the RPC interface specifications and 
generates the stub routines that interface with the client or 
server program and with the link protocol implementation. 
For customized RPC service, Nestor provides its own stub 
generator and library to the user. For cross-RPC service, 
Nestor expects stub generators from the native RPC facilities, 
which it uses to synthesize the native RPC stub for the agent. 
When a stub generator is not available, users are required to 
provide RPC stubs. Finally, RPC stubs, libraries, and the link- 
protocol implementation are linked together to form an agent. 
This entire synthesis process is specified in the RPC agent 

RPC protocol 
specification 

compilers 

software t 
packaging RPC agent profile 
utility specification 

Fig. 5.  Using the synthesis support to synthesize an agent. 

profile specification and controlled by the software packaging 
utility. 

B .  Other Related Support for Agent Synthesis 

There are two other kinds of support related to agent 
synthesis: the specification-transfer support and the agent- 
management support. The specification-transfer support facil- 
itates importing or exporting protocol constructions between 
sites, and is useful because the protocol constructions may not 
be available at the machine where an agent will be synthesized. 
For example, a user may wish to perform a heterogeneous RPC 
using server RPC semantics, and the client-agent construction 
for the server RPC protocol may not be available at the client 
machine. To synthesize the client agent, the client can import 
the client-agent construction from the server. This support is 
provided to encourage sharing of RPC protocol constructions 
in a large heterogeneous environment, so that programmers 
can use or customize existing protocol constructions instead 
of writing new ones themselves. 

The ability to import protocol constructions from the outside 
not only reduces agent development costs but also offers other 
advantages. It provides immediate software availability after 
a protocol construction is created or updated. Clients would 
import the new specifications and synthesize local agents. 
It minimizes disturbance when updating existing RPC’s and 
introducing new RPC’s. Hence, RPC protocol evolution is 
well supported. It also offers the opportunity to synthesize 
specialized code to improve performance. Finally, it also 
makes the synthesis solution scalable, and makes each site 
fully autonomous. 

The agent management support is responsible for all activi- 
ties related to agent management, including agent run-time ac- 
tivities and agent caching. At run-time, the agent-management 
support is responsible for controlling the activation, execution, 
and termination of agents. All of these activities are specified 
in RPC agent profile specifications. For example, users can 
provide the activation instructions for a newly synthesized 
agent in the RPC agent profile specification, so that Nestor 
can automatically activate the synthesized agent. If an agent is 
linked with a client or server program, the agent management 
support is used to activate the client and the server directly. 
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C l i e n t  

Fig. 6. The agent synthesis process in Nestor. 

The agent management support can also be instructed to 
cache synthesized agents for future use to avoid synthesizing 
frequently used agents repeatedly. 

C. An Agent Synthesis Scenario 

To describe how Nestor synthesizes agents, we will present 
a cross-RPC service scenario where agents are synthesized 
and activated automatically. We also assume that the user has 
already discovered the server host address through the Nestor 
name service support (see Section 1II.D for details). The steps 
in the agent synthesis process are shown as numbered arcs in 
Fig. 6. 

The Nestor run-time environment consists of two compo- 
nents: an Internet RPC Service Daemon (IRSD), and an agent 
manager (AM). IRSD is a process that handles all synthesis 
requests and is brought up at machine initialization time. 
It initializes itself by reading files containing configuration 
information and the specifications of services exported from 
the site. It then waits for requests from local clients and remote 
IRSD's. Upon receiving a request, IRSD forks off a copy of 
the Agent Manager (AM) to serve the request. The AM is 
responsible for synthesizing, executing, and terminating an 
agent. To facilitate interaction between the user and Nestor, 
the user is provided with a command-line interpreter called 
the Nestor Client Interface. It allows the user to interact with 
Nestor by issuing commands. Here we assume that the user 
uses this interface to contact Nestor. 

Initially, Nestor runs as an IRSD daemon on the local 
machine and listens on well-known ports. When the user first 
contacts the local Nestor instance, it creates an AM to handle 
the user's requests. The user issues the synthesis request to 
the client AM (step I). The client AM locates the client-agent 
synthesis specifications and contacts the server-side Nestor 
instance (step 2). The server-side Nestor instance now forks 
off an AM to handle the requests from the client AM. After 
the server AM verifies the client's requests, both the client and 
the server AM synthesize the agents (steps 3 and 4). After the 
server agent is synthesized, the server agent is activated. The 
port number used by the server agent is returned to the client 
agent through AM's (steps 5 through 7). Now the agents are 
ready to perform the specified heterogeneous RPC. 

D. Other RPC-Related Support 

search topic by itself. It is not the focus of the current design, 
however; therefore, for our system, we simply apply existing 
mechanisms as appropriate for our purposes. 

The Nestor name service support helps a client contact a 
server by using two items of information: the server host 
address and the port number of its agent. The server host 
address is discovered by querying a global database" that has 
knowledge of all available services in the network. The port 
number is obtained through cooperation between the client- 
side and the server-side Nestor instances. More specifically, 
the server-side Nestor instance obtains the port number ex- 
ported by the server agent and passes it to the client-side 
Nestor instance. The client agent can now obtain the port 
number from its local Nestor instance. 

The Nestor name-service support is a default name-service 
mechanism provided to bypass heterogeneity problems in 
name service. For cross-RPC communication, different naming 
mechanisms may be used for the client and the server RPC 
systems. In our scheme, the differences in naming mechanisms 
are subsumed by RPC agents, because the client and the 
server always contact their agents by using the native RPC 
run-time support. How the client agent locates the server 
agent is independent of the native naming mechanisms. Thus, 
Nestor provides its own name service support to locate agents 
without interfering with the native naming mechanism. This 
is advantageous because no explicit mapping is necessary 
between the native naming model and the Nestor naming 
model. The Nestor name service support exemplifies how 
we handle semantics independent heterogeneities (see Section 
1I.C). 

IV. AN EXAMPLE 

The example given in this section serves two purposes. First, 
it illustrates how to use Cicero to construct an RPC protocol. 
Second, it provides a basis for estimating agent development 
costs using our scheme, which is discussed in Section V. 

The example uses Cicero to construct a synchronous mul- 
ticast RPC protocol with at-least-once failure semantics. That 
is, a client can contact more than one server at a time by 
making one remote procedure call, and the caller is blocked 
until all of the replies are received or until an error occurs. 
We implement these semantics in two steps. First, we describe 
the at-least-once semantics. Then we add the code for the call 
semantics and the topology. 

Let us assume that the original protocol specification for 
the at-least-once semantics are specified by an extended finite 
state machine (FSM) shown in Fig. 7, where input events can 
be associated with conditions. 

To prepare readers for the example, we first briefly introduce 
Cicero and its constructs. Cicero is an event-driven specifica- 
tion language derived from POST [ 171. Unlike specifications 
in languages like LOTOS [181 and Estelle [19], which are 
declarative (nonexecutable), Cicero specifications are con- 
structive (executable). This feature allows programmers to 
provide execution information to guide the protocol synthesis 

Name is provided by In heterogeneous " I t  does not matter whether the database is distributed or replicated. Here 
distributed environments, name service is an important re- we treat it as a single entity. 
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TABLE I1 
SEMANTICS OF VARIOUS WHEN CONSTRUCTS 

\.rl = NUMBER OF OCCURRENCES OF EVENT .I’ TO DATE 

recv-msg Syntax Description 

Fig. 7. An extended FSM diagram for at-least-once semantics 

process in generating efficient implementations. Cicero has 
five constructs: emit, when, cond, bundle, and escape. The 
emit construct is used to generate event instances. Each when 
construct represents one thread of control and can trigger 
actions each time that specified events are observed. The 
cond construct implements conditional branches. The bundle 
is a modularization construct similar to the procedure and 
is invoked synchronously. The escape construct is used to 
include C statements in Cicero by enclosing them in “{” and 

Although the Cicero specification for the at-least-once se- 
mantics can be more compact, we present a version that is 
slightly longer, in order to make the implementation easier to 
understand. There is a one-to-one mapping in events between 
the FSM specification in Fig. 7 and the Cicero code segment, 
except that the sendmsg event is replaced by a library call. 
The correspondence between the Cicero code segment and the 
original specification is indicated within the comments of the 
code segment. Table I1 describes the semantics of various event 
syntax associated with the when constructs in the Cicero code 
segments. 
1 bund le  c l i e n t - r p c ( C C - h a n d l e - t  hand le ,  

‘‘1.’’ 

C C m s g - t  * m s g )  

2 {  
3 i n t  err-code ; 
4 l o n g  w a i t  -t i m e ;  
5 e v e n t  recvmsq, w a i t ,  r e t r y ;  
6 
7 w h e n  ( I N I T ) :  / *  FSM: s t a r t  -> w a i t  * /  

9 w a i t - t i m e  = 6 0 ;  / *  w a i t  
f o r  60  sec. * /  

1 0  C C - s e t - u d e f  - s e n d m s g  ( h a n d l e ,  
m s g )  ; 

11 C C - i o c t l  ( h a n d l e ,  RECVBLOCK, 
T R U E )  ; 

1 2  C C - s e n d - u d e f m s g  ( h a n d l e )  ; 
/ *  sendmsg * /  

8 { 

13 } 
1 4  e m i t  recvmsg; 
1 5  e m i t  w a i t ;  
1 6  e n d ;  
17 w h e n  ( recvmsg) :  / *  FSM: w a i t  

18 { err-code = C C - r e c v - u d e f m s g  

1 9  e m i t  r e t u r n :  (val=err-code)  ; 
20 e n d ;  

-> done * /  

( h a n d l e )  ;} 

when (r): .A end; 

when (x?i):.A end; 

executes action .A when .I’ occurs. 
same as the above, with variable / = 
14 
if 1 . 1 . 1  < N executes .A 1 else executes 
.A 2 

when (.r)*N: .A, end: .A2 

when (INIT): .4 end; .4 is the first executed action when 
enclosing bundle is invoked. 

TABLE I11 
DESCRIPTION OF FUNCTIONS USED IN BUNDLE CLIENTRPC() 

Function Description 

CC-send-udef-msg 
CC-recv-udefmsg 
CC-wait 

CC-ioc t I 

CC-set-udef-sendmsg 

sends out an RPC message. 
waits for an RPC reply message. 
pause for a period of time before 
continuing. 
set input/output control options 
(similar to UNlX i o d ( ) ) .  
associates an RPC message with the 
communication handle, so that i t  can 
be sent out later. 

21 
22 
23 
24 
25 

26 

27 
28 

w h e n  ( w a i t ) :  / *  FSM: w a i t  -> r e t r y  * /  
{ C C - w a i t  ( w a i t - t i m e )  ; } 
e m i t  r e t r y ;  

end;  
w h e n  ( r e t r y )  *MAX-RETRY: / *  FSM: 
-> r e t r y  w a i t / e r r  * /  

{ C C - s e n d - u d e f m s g  ( h a n d l e )  ; } 
/ *  sendmsg * /  
e m i t  w a i t ;  

end:  e m i t  r e t u r n : ( v a l = E - R P C F A I L ) ;  
/ *  rpc f a i l e d  * /  

291 

After sending out the message (line 12), two when con- 
structs (lines 17 and 21) run concurrently, waiting for a reply 
or a time-out, respectively. If a reply is received, the bundle 
retums. If a time-out occurs, the original message is sent again. 
Such retry continues until either a reply is received or the 
number of retries exceeds the limit MAX-RETRY. In the later 
case, the bundle retums with an error. All of the functions with 
prefix name “CC-” are provided by the Cicero communication 
library, and their functionality is briefly described in Table 
111. The Cicero communication library is derived from our 
universal RPC toolkit [20], which is a toolkit for prototyping 
a variety of RPC systems rapidly. 

We now complete the description of the synchronous mul- 
ticast RPC and specify the synchronous call semantics and 
multicast topology. The description is listed below. 

One multicast RPC is broken into a number of component 
RPC’s, one for each server binding (represented by handles). 
Each component RPC (client_rpc()) runs with its own thread 
and has the at-least-once semantics described previously (lines 
12-18). Each time a component RPC completes, a reply event 
instance is emitted (line 16). If enough reply instances have 
been collected, the multicast RPC completes (lines 19-24). If 
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TABLE IV 
CODING EFFORT SAVING FOR CLIENT AGENTS 

_____ ~~ 

Case (language) BASIC CONV CLNT NS AUTH SV OTHER Total 

Handcrafted client agent 342 179 I85 1 I9 35 0 0 860 

Synthesized client agent 
(C) 39 8% 20 8% 21 5% 13 8% 4 1% 0 0% 0 0% 100 0% 

(Cicero) 0 0 35 0 0 0 0 35 

2 

3 

4 

5 {  
6 
7 
8 
9 
10 
11 
12 
13 
14 

15 

16 
17 
18 
19 
2 0  

21 

22 

2 3  
24 
25 
26 1 

any error occurs, the multicast RPC returns with an error (line 
21). 
1 bundle syncmulticast-rpc ( 

int num; / *  num. of 
handles * /  
CC-handle-t handle-array [ ] ; 

CCmsg-t *msg / *  message 
to be sent * /  ) 

/ *  handles * /  

event rpc, reply; 
int ret; 

when (INIT) : 

end; 
when (rpc?i) : 

emit rpc; / *  the 1st rpc * /  

cond (i < num) : 
emit rpc; / *  invoke the 
another simple rpc * /  
ret = client-rpc 
(handle-array [i-11 ,msg) ; 
emit reply : (val=ret ) ; 

end; / *  i > num: do nothing * /  
end; 
when (reply? j) : 

cond (reply.va1 ! =  OK) : 
/ *  error * /  

emit return: (Val= 
reply.va1); 
(j = num) : / *  multicast 
rpc completes * /  
emit return: (val=OK) ; 

end; 
end; 

V. EVALUATION 
To validate our design, we evaluate our synthesis solution 

from two aspects: agent development costs and cross-RPC per- 
formance using synthesized agents. We have built a prototype 
for both Nestor and Cicero and have ported them to UNIX 
BSD 4.3 and Mach 2.5. 

A .  Agent Development Costs 
We use lines of source code to estimate the costs of 

developing agents. In the above example, it takes 35 lines" to 

"To facilitate comparisons with the results in Table I .  Section I1.C. the 
number of lines of source code was also computed by countins *':". 

describe a synchronous multicast RPC. From Table I in Section 
ILC, it  takes 860 lines of C code to handcraft a simple SUN 
RPC client agent, which has no multicast capability. These 
two cases are summarized in Table IV. 

Because the example given above implements more com- 
plex RPC semantics than does the client agent described 
in Section II.C, it takes even less Cicero code to describe 
the same RPC semantics implemented by the client agent. 
Therefore, we can estimate confidently that more than 95% 
of coding effort can be saved by using our agent synthesis 
scheme. 

Although the 95% saving may sound dramatic, i t  is not 
surprising, because our heterogeneity classification allows us 
to provide 80% of agent code through libraries and run-time 
services for semantics-independent mechanisms. The remain- 
ing 15% is generated by the Cicero compiler or provided 
by the Cicero run-time library. Similar savings can also 
be found for the corresponding server agent, because the 
implementations of the client and server agent are symmetrical 
and are comparable in their code sizes. (See CLNT and SV 
in Table I.) 

There are two other factors in our scheme that can further 
reduce agent development costs. First, a large portion of Cicero 
code can often be written to mirror some existing protocol 
specification, making it easier to construct correct protocol 
implementations. We have illustrated this process in the above 
example, translating an extended FSM protocol specification 
into Cicero code segment. Second, the effort of coding agents 
can be eliminated altogether if the agent constructions are 
available elsewhere on the network. Programmers can use 
Nestor's specification-transfer support to obtain these con- 
structions. 

B .  Cross-RPC Pei-jbfor.mat1c.e 

Cross-RPC performance depends on the performance of na- 
tive RPC's and the link protocol implemented by synthesized 
agents. Since we have no control over the performance of 
native RPC's, we focus on the performance of synthesized 
agents. Agent performance depends on two factors: the Cicero 
run-time overhead and the performance of the communication 
primitives provided by the Cicero communication library. The 
Cicero run-time overhead is about 0.3 ms on average, which 
mostly comes from the overheads of thread management and 
mutual exclusion support [ 161. 

The performance of the communication primitives is repre- 
sented by the performance of an RPC protocol constructed us- 
ing these primitives. These RPC protocols, ATM I-RPC/UDP 
and ATMI-RPCPCP, are constructed on top of UDP and 
TCP, respectively, with at-most-once semantics. The perfor- 
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TABLE VI 
CROSS-RPC PERFORMANCE WITH ONE-AGENT CONFIGURATION 

Apollo DN 5500 

RPC1-RPC2 Remote ATMl Local RPC Cross-RPC S,, I ,,, 1 

Sun 3/60 Sun Sparc 1 ATMl - Mach 4.48f0.01 ms 1.38f0.04 ms 5.78f0.02 ms 1.29 Mach RPC, Sun RPC, 
ATMl - SUN 2.58f0.04 ms 3.70f0.03ms 6.34k0.03ms 2.45 
ATMl - NCS 12.0f0.5 ms 5.14ZO.Ims IY.Yf0.5ms 1.65 Proteon 

Token Ring 
Ethernet 

TABLE VI1 
Sun RPC. 
A T M I  RPC CROSS-RPC PERFORMANCE WITH TWO-AGENT CONFIGURATION 

Fig. 8 .  The network environment for the performance measurement. RPCl - (ATM1) - RPC2 TCP Socket Cross-~pC ,s,,,, 

SUN - (ATMI) - Mach 3.6f0.  lms 9.7f0. Ims 2.69 
NLLL RPC PERFORMANCE SUN - (ATM1) - NCS l l . l f 0 . 5 m s  21.4fI.Oms 1.94 

Mach - (ATMI) - NCS I2.6f0.8ms 20.Sf 1 .Oms 1.62 

TABLE V 

Transport SUN RPC ATMl-RPC S,,, ,) 

UDP 2.58f0.01ms 2.29f0.04ms 0.88 
TCP 3.33f0.02ms 2.58h0.04ms 0.77 

mance data measured were the round-trip elapsed time for null 
RPC under lightly loaded network and workstations, including 
language run-time overheads. The null-WC performance of 
SUN RPC/UDP and SUN RPC/TCP are provided for compar- 
ison. (See Table V.) 

As Table V indicates, our RPC performance is competitive, 
even with the Cicero overheads included. The range of RPC 
performance is about 2.5 ms and up. Adding this performance 
with the average language overhead ( ~ 0 . 3  ms), the perfor- 
mance is still competitive with SUN RPC. With normal daily 
workloads on the network and workstations, the round-trip 
elapsed time will be even longer ( 5  ms - 10 ms), making the 
language overhead even smaller in relative terms. 

Two sets of measurements were carried out for cross-RPC: 
one set each for a one-agent configuration and for a two- 
agent configuration. Each set of measurements consisted of 
three cross-RPC cases involving SUN RPC, Mach RPC, and 
HP/Apollo NCS/NCA RPC, respectively. These RPC’s all 
passed a one-character string to their servers and get back an 
integer. Both sets of measurements used the ATM 1 -RPC/TCP 
as the link protocol. 

The machines and the RPC’s used in these measurements 
are illustrated in Fig. 8 as shaded boxes. Specifically, the Sun 
Sparc 1 workstation used SUN RPC; the Sun 3/60 used Mach 
RPC; and the HP/Apollo DNSSOO used NCS RPC. These 
machines were connected through our campuswide network 
(Fig. 8). In measuring the one-agent configuration cases (Table 
VI), a Sun Sparc 1 workstation was used as the client machine 
running ATM I-RPCRCP in all three cases. This machine was 
also used as the client machine running SUN RPC in the 
two-agent configuration cases (Table VII). 

Table VI lists the cross-RPC performance for three one- 
agent configuration cases with an RPC agent running at 
the server machine. The first two are cross-RPC cases 
(ATMI/SUN and ATMl/Mach) on our local Ethemet, and the 
last case (ATM I/NCS) is cross-RPC through several gateways. 
For each case, a breakdown of remote ATMl RPC and the 
local RPC overheads is provided for analysis. Depending on 

the relative performance between the remote ATMl RPC and 
the local RPC, the cross-RPC slowdown over ATMl RPC 
(Sat,,) ranges from 1.29 to 2.45. 

Table VI1 lists the cross-RPC performance for three two- 
agent configuration cases. The first case is two-agent cross- 
RPC on our local Ethernet, and the rest are cross-RPC’s 
across several gateways. For comparison, we also provide the 
round-trip time measurements for TCP sending a one-byte 
message directly between the client and the server. These 
measurements are used to approximate homogeneous RPC 
performance, and, because no RPC layer overhead is included 
here, the measurements give us a conservative estimate of a 
homogeneous RPC performance on top of TCP. 

The two-agent configuration is the worst-case scenario for 
cross-RPC, when client and server programs may not be 
modified. In this worst-case scenario, the cross-RPC slowdown 
ranges from 1.6 to 2.7 over our estimated homogeneous 
RPC performance. Because the client and the server may 
not be modified in this case, however, handcrafted cross- 
RPC implementations do just as poorly. To compare with 
handcrafted implementations of one-agent configurations, one- 
agent cross-RPC’s (Table VI) are used to approximate their 
performance. The two-agent cross-RPC is only slightly slower 
(3% to 7%) slower) than the one-agent RPC in the cross- 
gateway cases. In the worst case, it is about 50%) slower than 
the one-agent implementation. This happens when a remote 
RPC takes about the same amount of time as a local RPC, a 
somewhat unlikely scenario. 

VI. RELATED WORK 

Most related work can be categorized into four classes: pro- 
tocol libraries/architecture, remote evaluation schemes, remote 
interface synthesis, and specification compilers. Our solution 
is a hybrid of these four classes of solutions. 

In general, solutions based on protocol libraries or ar- 
chitecture provide programmers with a library interface and 
an architecture for constructing protocols. The interface and 
the architecture are engineered by factoring out common 
protocol functionalities and abstractions. HCS/HRPC [ I ] ,  x- 
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kernel (211, [22],13 and TACT [2]14 are examples of this type 
of solution. However, library architectures are restricted by 
the number of implementations provided in their libraries. 
Therefore, introducing a new RPC protocol often requires 
updates to every library on the network, a requirement that is 
not desirable in large heterogeneous distributed environments. 
Our solution resolves this difficulty by importing the remote 
protocol construction to synthesize a local agent that subsumes 
the heterogeneities and facilitates communication with the 
remote protocol. Our solution can easily incorporate exist- 
ing libraries/architecture solutions as a special synthesis case 
that only requires packaging RPC agents using the available 
libraries. 

Remote evaluation schemes require a client to pass a piece 
of code to the remote machine, where it is evaluated to provide 
service to the client. Although all remote-evaluation systems 
have similar code distribution mechanisms, the context and the 
language used in these systems are very different. For example, 
HDS/NCL [SI uses the special-purpose programming language 
NCL (based on LISP) to implement a heterogeneous network 
file system. Another example is REV [4], which is embedded 
in the programming language CLU for supporting general pur- 
pose remote evaluation. Because our goal is to accommodate 
RPC protocol heterogeneities, which is very different from the 
focus of such earlier work, our system provides programmers a 
special protocol construction language (Cicero) for describing 
RPC protocols. The protocol descriptions are then used to 
synthesize RPC agents. 

Remote interface synthesis schemes generate communi- 
cation code according to some interface definition, so that 
procedures/modules written in different languages can com- 
municate with each other in a heterogeneous environment. 
Examples of this type of scheme are the POLYLITH software 
bus [23] and the Horus stub generator [24]. All of these 
solutions are focused on resolving heterogeneities in data types 
and data representations. They all provide mappings from local 
data types and data representation to predefined data types and 
representations. Although our system also uses this approach to 
resolve heterogeneities in data types and representations, it also 
allows programmers to synthesize RPC agents to interconnect 
programs by using different RPC protocols. This feature is 
absent in remote interface synthesis solutions. 

The work on specification compilers [25],  [26], [27], [28] 
has been focused on generating correct implementations from 
the formal protocol specifications, as in the LOTOS and Estelle 
languages. The portions of a protocol implementation that can 
be generated, however, depend on the environment and the 
specification language used, and the efficiency of generated 
code is also a concem [29]. Code quality is an important 
consideration, especially in the RPC context. Based on a 
protocol construction language, our prototype implementa- 
tion can produce synthesized RPC agents with performance 
competitive with handcrafted RPC implementations. In some 
customized RPC cases, we believe that the synthesized code 

I3The .r-kernel is included here because of its protocol synthesis capabili- 
ties. 

l4 TACT is used for accommodating heterogeneities for Transport layer 
protocols, not for RPC. i t  is included here, however. for its library approach. 

may even perform better than handcrafted solution. This ap- 
parent paradox arises because synthesis can always tailor code 
for each case to improve performance, whereas handcrafted 
solutions usually incur overhead, targeting the general case. A 
good example of this principle is seen in the Synthesis kemel 
[30], which provides significant speedup for UNIX kemel 
calls by generating specialized kemel routines for specific 
situations. In our context, for example, agents may bypass 
data conversion routines if both the client and the server use 
the same data representation. 

VII. CONCLUSION 

Our work illustrates that an agent synthesis scheme is an 
effective method for dealing with the many instances of RPC 
heterogeneity in heterogeneous distributed environments. Our 
agent synthesis scheme provides a solution with low soft- 
ware development and maintenance costs while maintaining 
reasonable cross-RPC performance. 

The two-agent configuration is key to the handling of 
large numbers of heterogeneity instances. This configuration 
allows us to concentrate on synthesizing agents to handle 
only RPC semantics-dependent heterogeneities, and to encap- 
sulate the semantics-independent heterogeneities within a local 
agent through run-time support and libraries, resulting in an 
80% saving of agent development costs (see Section V-A). 
This encapsulation also greatly reduces the complexity of the 
synthesis scheme. For example, it allows us to bypass the 
heterogeneity problems in name service, which would other- 
wise add another dimension of complexity to the synthesis 
scheme. The two-agent configuration also allows clients to 
import protocol constructions from outside, which can further 
reduce agent development costs and support evolution of RPC 

The ability of our system to import protocol constructions 
from the outside provides immediate software availability after 
a protocol construction is created or updated. Clients would 
import the new specifications and synthesize local agents. 
It minimizes disturbance when updating existing RPC’s and 
introducing new RPC’s. Hence, RPC protocol evolution is 
well supported. It also offers the opportunity to synthesize 
specialized code to improve performance. Finally, it makes 
the synthesis solution scalable and makes each site fully 
autonomous. 

It can be difficult to get performance on cross-RPC’s 
equivalent to that of homogeneous RPC. This is because a 
slow native RPC can easily become a performance bottleneck, 
especially when the programs involved may not be modified. 
However, it is still much better to get work done with cross- 
RPC than to get no work done at all. More importantly, by 
using our synthesis scheme, cross-RPC can be accomplished 
with little software development and maintenance costs, and 
can achieve performance acceptable by most applications, even 
in the worst-case scenario. 

We end with a comment on general cross-RPC’s. Automatic 
synthesis works best for cross-RPC within the same class 
of RPC semantics, for example, cross-RPC among at-most- 
once RPC’s or among at-least-one RPC’s. Although cross- 

protocols. 
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RPC between dissimilar RPC classes is possible in general 
and is allowed in our scheme, it is clearly impossible to 

the two RPC classes. The semantics of the local RPC’s are 
often deeply embedded in the user code. Any solution that 

to resolve all semantics mismatches probably requires 
modifications to client, server, or even native RPC run-time. 
Because it is impossible for us to determine the user-level 

[ I  91 -, ~nfiirmation Proc.essiq . sys temsapen system [nterconnec.- 
t in i tEs te l le  (Formal Desi,r.iption Technique Based on an E-rtended 
State Transition Model), IS09074 1988, 1987. 

CSE-TR-17G93, Dept. of Elec. Eng. and Comput. Sci., University of 
Michigan, Ann Arbor, Michigan, 1993. 

1211 L. Peterson, N. Hutchinson, S. O’Malley, and H. Rao, “The .c.-kemel: 
A platform for accessing Internet resources,” IEEE Coniput., vol. 23, 
pp. 23-33, May 1990. 

1221 S. W. O’Malley and L. L. Peterson, “A dynamic network architecture.” 
ACM Trans. Compur. Sysr., vol. 10, pp. 110-143, May 1992. 

Sci. and Inst. for Advanced Comput. Studies, Univ. of Maryland, 1990. 
1241 P. B. Gibbons, “A stub generator for multilanguage RPC in heteroge- 

neous environments,” IEEE Trans. Srgmwe En,?., vol. 13. pp. 77-87, 
Jan. 1987. 

more than preserving the semantics ‘‘”On to [20] y. Huang and C, V ,  Ravishankar, “A universal RPC toolkit,” Tech. Rep. 

semantics intended, it is the user’S to ‘lake sure 123) J ,  M. purtilo, ‘.The polylirh software bus,” Tech, Rep. TR.2469, Comput. 
that the client and the server programs can be meaningfully 
interconnected and to provide the appropriate agent synthesis 
specifications to interconnect them. 
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