
Supporting Mobile Device
Communications In The
Presence of Broadcast
Servers∗

Anup Mayank
Department of Computer Science and Engineering,
University of California Riverside, Riverside, California 92521, USA
E-mail: mayank@cs.ucr.edu

Chinya V. Ravishankar
Department of Computer Science and Engineering,
University of California Riverside, Riverside, California 92521, USA
E-mail:ravi@cs.ucr.edu

Abstract: Broadcast data dissemination is well-suited for mobile wireless environ-
ments, where bandwidth is scarce, and mutual interference must be minimized. How-
ever, broadcasting monopolizes the medium, precluding clients from performing any
other communication. We address this problem in two ways. First, we segment the
server broadcast, with intervening periods of silence, during which the wireless devices
may communicate. Second, we reduce the average access delay for clients using a novel
cooperative caching scheme. Our scheme is fully decentralized, and uses information
available locally at the client. Our results show that our model prevents the server
from monopolizing the medium, and that our caching strategy reduces client access
delays significantly.

Keywords: Mobile Ad-hoc networks, Broadcasting, Cooperative Caching

1 Introduction

Mobile users are increasingly interested in a range of
information, such as stock quotes, pricing information
at shopping malls, weather, news and traffic informa-
tion, schedules at bus stands, railway stations, and
airports. Push-based information dissemination can
be much more effective and scalable than the pull
model in such applications. Its advantages are well-
known [24, 23, 26, 2, 8, 21, 18, 9]. In contrast, the pull
model requires clients to send each request to the server,
and increases traffic and resource consumption at both
clients and the server [21].

Broadcasting is a good choice for disseminating infor-
mation in mobile wireless systems. However, when the
medium is shared, as in the 802.11 protocol suite, broad-
casting monopolizes the medium, preventing clients from
performing any other communication. Blindly interrupting
the broadcast to create slots for clients to communicate will

∗Supported by grants from Tata Consultancy Services, the DiMI
program of the University of California, and contract F30602-01-2-
0535 of DARPA’s FTN program.

increase client wait times proportionally, degrading an im-
portant performance metric. Wireless protocols do make
several communication channels available, but it is better
to treat the set of channels as a common bandwidth re-
source. We show how to share each channel between the
broadcast program and other communications.

Work to date has arbitrarily assumed that clients per-
form no other communication besides listening to the
broadcast. It has therefore focused merely on mecha-
nisms to reduce client access times. Some approaches, for
example, reduce latency by repeating popular items sev-
eral times in a broadcast cycle [18, 9]. Others use client
feedback [21] to reduce broadcast cycle length. Such ap-
proaches are inadequate since clients are still held captive
by the broadcast server.

1.1 Broadcast Scenarios and Caching

Consider a hypothetical scenario with a number of mobile
users with PDAs in a shopping mall. To help customers
and improve sales, the mall broadcasts a variety of infor-
mation such as mall maps, store names, prices, sales under
way, advertisements, and so on. Customers use their PDAs

1

Clients

Server

Figure 1: Broadcast preempts other communications.

to listen to the broadcast, and wait for information rele-
vant to their own shopping objectives (see Figure 1).

However, if the mall broadcasts constantly, it will effec-
tively be ‘’jamming” the medium, making any other com-
munication impossible for user PDAs. The mall will surely
lose customers and revenues. Interrupting the broadcast to
allow PDAs to communicate increases wait latencies, pro-
longs wait times, aggravate clients, and also lose revenues
for the mall.

Clients can also reduce latency by caching data. Local
caching methods such as prefetching [18] do reduce average
access latency, but are limited by the amount of storage at
each node. It would be better for caches to cooperate.

With cooperative caching, it suffices for each node to
cache only a subset of items. When a desired item is
absent from its local cache, a node tries to locate it in
one of the other caches, using a lookup mechanism. Work
already exists on cooperative caching in mobile wireless
systems [9, 5, 7, 4]. Unfortunately, such approaches re-
quire caches to exchange messages to maintain global state,
which is impossible when the broadcast server monopolizes
the medium. Besides, message exchanges introduce consid-
erable overhead. We do not see such models as appropriate
for the environments we consider.

1.2 Our Contributions

We address these issues for mobile ad-hoc networks using
802.11-style protocols, where a shared medium is used for
all communication. There are two interesting aspects to
our approach. First, it segments the server broadcasts, di-
viding the broadcast cycle into a fixed number of segments
interleaved with periods of silence, during which clients
can communicate among themselves. Second, we propose
a fully decentralized cooperative caching mechanism for
use by clients, which requires no message exchanges for
maintaining information on cache contents. Earlier work
on caching for push-based dissemination are either non-
cooperative [18] or are based on information exchanges be-
tween mobile nodes [9] for maintaining cache states. We
show that our mechanism greatly reduces average object
access delays, and is both fault tolerant and scalable.

2 Related Work

Each mobile node in the COCA [7] architecture, is either
in a High Activity (HA) or Low Activity (LA) state.
When its state changes from HA to LA, it retrieves and
caches a set of less frequently accessed objects. More
frequently accessed items would be already cached in the
local cache of HA nodes, which can access replicas of less
frequently accessed data items cached nearby. They do
not explicitly address the issue of the server blocking out
client communications.

Client tune-in time is the time a client remains in ac-
tive mode to retrieve desired objects from the broadcast.
Energy usage increases with tune-in time. Several broad-
cast schemes have been proposed to minimize client tune-
in times, such as the hashing scheme of [10], the B+ tree
based indexing scheme of [11], the Alphabetic Huffman tree
(AHT) of [17] and the Prediction based indexing scheme
of [12]. However, such methods do not address client-side
caching issues, and retain the strategy of continuous broad-
casts, preempting all other communications by clients.

A scheduling algorithm for correlated data is proposed
in [25], in which data is accessed in a group, and a caching
strategy is used at the client to improve the performance
of the scheduling mechanism. However, this caching ap-
proach involves no cooperation among clients. Besides,
their broadcast is continuous, and preempts all client com-
munications.

Data is cached at the routing layer in CachePath and
CacheData [5]. When one node routes a data item to an-
other, it caches either the path to the cached data item or
the data item itself, depending on the distance to server,
the caching node, and route stability.

In GCLP [19], the server periodically sends information
about its contents and physical location to a set of selected
nodes called content location servers. A client locates an
object by sending a query along suitable routes. When
the query reaches a content location server, it returns the
name of the nearest content server to the client. The client
can obtain the requested object from the server.

The scheme in [16] allocates data to the servers, based on
the movement pattern of users, so that a mobile user can
obtain most recent replica from a nearby server, instead of
sending requests to multiple hop away main server.

In [18], the local cache at the client end is used to
store data items prefetched from the broadcast cycle. This
scheme considers only the single cache at each client. It is
not suitable if the cache size is small and total number of
broadcasted data items is large.

The approach in [9] uses a cooperative caching approach
among mobile clients in broadcast based information sys-
tem. Mobile clients rely heavily on message exchanges
among themselves for caching of data items. Unfortu-
nately, [9] uses a continuous broadcasting model, so the
broadcast medium is monopolized.

2

C1 C2 C4 C5 C6 C3

P1 P2 P4 P5 P6 P3

OK

S

OK

Figure 2: Highest Random Weight cache selection

3 Hash-Based Cooperative Caching

Let C1, . . . , Cn be the names (or IDs) of a set of co-
operating caches. Cooperative caching will be most
effective if any given object Ok were never cached at
more than one of these caches, and if each client could
independently determine the identity of this cache. The
Higest Random Weight (HRW) approach [20] was the first
to show how to use hashing to allow clients to agree, with
no communication, about which cache should hold an
object Ok. A related idea appeared subsequently under
the name of consistent hashing [13].

Consider Figure 2, in which the set of clients
C1, C2, · · · , C6 retrieve objects from a remote server S. To
reduce latency and speed up access, we use a set of caches
(or proxies) P1, P2, · · · , C6 which retrieve objects from S
on demand, and cache them locally. Each client Ci chooses
a proxy Pj , from which it attempts to retrieve each desired
object Ok. The specific choice of proxy by each client can
have a very significant effect on the performance of this
setup.

Let us say that the client C2 needs the object Ok at
some time, and that the client C5 subsequently needs the
same object Ok . If C2 selects P4 and C5 selects P2, we will
have misses at both P2 and P4, assuming that the caches
are cold. There will be two accesses to the remote server
S, and both C2 and C5 will see long delays. Besides, the
object Ok will be cached at both P2 and P4, wasting space.

Clearly, it would be best for client to agree on the proxy
cache that they will all access for each such object Ok .
We want to distribute object requests uniformly across all
proxy caches, and also minimize the number of objects
replicated across these caches, with no replication in the
ideal case. Finally, we want to be able to accommodate
proxy cache failures, so that all clients will default to the
same alternative cache if their common first-choice cache
is unavailable.

Objects

1 2 3 4 5 6 n−2 n−1 nsilence

Broadcast Cycle

Figure 3: Segmented broadcasting model

The HRW approach [20] presents an elegant and efficient
solution to this problem. It proceeds by using a hash func-
tion H as follows. Each client computes the n hash values
H(C1, Ok), · · · , H(Cn, Ok) independently, and selects πk,
the cache that that yields the highest hash value. This πk

is called the prime cache in the cluster for the object Ok.
Conversely, all objects Oi

k that have πk as their prime are
called prime objects for πk.

Since all clients apply HRW using the same H and to
the same cache cluster C1 . . . , Cn, each client will indepen-
dently select the same πk as the prime for any given Ok.
In the example in Figure 2, C2 and C5 will independently
compute the values H(P1, Ok), H(P2, Ok), · · · , H(P6, Ok),
and pick the highest of these values. In our example, the
highest value is obtained for H(P4, Ok), so C2 and C5 will
both request P4 for the object Ok .

The crucial idea in HRW is to always cache the ob-
ject Ok only at πk, the prime cache for Ok in the group
C1, · · · , Cn. This strategy ensures that there is no object
duplication across the cache cluster, and optimizes space
utilization. Since clients can agree without any communi-
cation on which cache to use, the scheme is very efficient.
The work in [20] discusses suitableH , and shows that HRW
is very efficient and effective, and that it randomizes very
well, so that every cache is likely to be the prime for the
same number of objects.

HRW is also very robust in the face of cache failures.
If the clients find that the prime πk for some object Ok

has become inaccessible, they simply pick the cache π′

n

that yields the next highest hash value. Now, any request
assigned to πk becomes automatically reassigned to π′

k at
each client. Since HRW is randomizing, each of the remain-
ing proxies receives an equal share of these reassignments,
ensuring that cache loads continue to be balanced.

When a cache Ci comes back up or is added to the clus-
ter, the objects reassigned to it are exactly those which
yield a higher hash value for Ci than any other cache in
the cluster. Thus, HRW ensures that the fewest possible
number of objects are reassigned in the case of cache fail-
ures or cache addition.

4 Segmented Broadcasting and Hash-Based Caching

Our approach divides the broadcast cycle into segments,

3

with intervening periods of silence. The server broadcasts
a subset of objects in each segment, but yields the medium
to clients during the inter-segmental silences. With longer
silences, the clients will have more use of the medium, but
must tolerate longer wait times for receiving objects from
the broadcast. The segment size and silence interval are
parameters to be adjusted according to the number of ob-
jects to be broadcasted, average object size, the client in-
terest patterns, and waiting times considered reasonable.
There will be frequent intervals when the medium is free,
even with large broadcast data sets. Clients can use these
intervals for communication, and for obtaining desired ob-
jects from peers.

4.1 Cooperative Caching Using Local In-

formation

We use cooperative caching to reduce access delays, and to
allow clients to obtain data items from other clients in their
neighborhood, rather than wait for the server to broadcast
it. To be effective, cooperative caching must minimize ob-
ject replication across caches, and incur low communica-
tion overhead. This can be tricky to accomplish in mobile
ad-hoc systems, since mobile ad-hoc environments are dy-
namic, with nodes joining and leaving the system as they
please.

A node may not know all other nodes in the system,
but it usually knows its 1-hop neighborhood. It is typical,
for instance [19], for 1-hop neighbors to exchange periodic
hello messages. Moreover, 1-hop neighborhoods are likely
to remain stable over short or medium durations, as in the
case of passengers waiting for a particular flight or train,
or customers near a particular exhibition stall.

Each node has a cache of limited size for holding a sub-
set of the objects broadcasted by the server, so that repli-
cation within a neighboring set of mobile nodes must be
minimized. It has been typical, as in [9], for caches to con-
trol replication by communicating their contents to each
other and agreeing on a global caching policy. However,
this method requires a great deal of communication, and is
unrealistic for power- and bandwidth-limited wireless sys-
tems.

4.1.1 HRW Search of 1-Hop Neighborhoods

When node ni needs an object O, it first checks its own
cache. If O is not found, ni determines the next broadcast
time forO from the broadcast schedule. (It is typical [18, 9]
for the server to periodically disseminate its schedule for
broadcasting objects. This schedule can be cached and
shared with other clients.) If this delay is too high, ni

tries to locate O in its peer caches as follows.

Let the set Ni = {ni1, . . . , nik} be the set of 1-hop neigh-
bors of ni. Node ni applies HRW, and selects the node nj

yielding the highest hash value. From ni’s perspective, nj

is the prime for O in the set Ni, so that O would be at nj

if it were in the set Ni. Therefore, ni sends nj a request

k

n 1n 1

N i

n i n j

N j

n 2

n 5

n 4
n 6

n 3

n

Figure 4: HRW probes of 1-hop neighborhoods.

for the object O. If nj has O, it returns O to ni. Other-
wise, nj continues the search, using HRW on its own 1-hop
neighborhood Nj .

As the search continues, nj may itself turn out to be
the prime cache for O within its own neighborhood Nj , in
which case the search bottoms out. Such a search can be
continued until a node is prime for its own neighborhood,
(as is nk in Figure 4), or for a fixed number of hops from
ni.

We choose to continue the search through nj rather than
some randomly chosen nk ∈ Ni for a specific reason. Since
nj is the prime for O in the neighboorhood Ni, subsequent
requests for O in Ni will also be sent to nj . Continuing the
search through nj allows nj to cache O, increasing future
hit rates.

4.2 Caching of Objects and Cache Re-

placement

Each object Oi obtained by nj is cached at nj . If nj ’s cache
is full, a victim object is selected, as explained below, and
evicted to make space for Oi. If a node receives a request
for object O, it is likely to soon receive another request for
O, due to locality effects. Hence, nodes cache all arriving
objects, even if they are not prime objects.

4.2.1 Cache Replacement Mechanism

Since wireless devices have limited storage capacity, the
cache replacement policy can have a major influence on
performance. Our cache replacement policy favors popu-
lar and prime objects, increasing hit rates and reducing
average access latency.

Our replacement policy tries to preserve prime objects,
since they are likely to be requested by peers. When a
cache must make space, it will first evict non-prime objects,
starting with those having the lowest access probability. If
no non-prime objects are present, some prime object must
be evicted. Prime objects are also evicted starting with
those having the lowest access probability.

The access probability function of an object Oi is calcu-
lated as

ψ(Oi) = min{1, Tavg

Tr − Tc

},

4

where Tavg is the cumulative average request arrival inter-
val of the object, Tr is its last reference time, and Tc is the
current time. Tavg is recomputed as

Tnew
avg = β ∗ T old

avg + (1 − β)(Tr − Tc),

where β is a positive constant less than 1. In our ex-
periments we have used β = 0.5. Our access probability
function is similar to those used in [22, 6].

4.3 Analysis of Search Method

As in Figure 4, let ni and nj have 1-hop neighborhoods Ni

and Nj respectively. Let a request for object O originate
at ni, and let the application of HRW yield nj 6= ni as
prime in Ni, and nk as prime in Nj . Since HRW orders
nodes linearly, nj and nk can not both be in Ni, unless
nj = nk. The probability that nj = nk is high when the
neighborhoods Ni and Nj share most of their nodes, that
is, when Ni ∩Nj has higher cardinality than Ni \Nj and
Nj \Ni.

Let x be the distance between ni and nj , and let R be the
transmission range of a node. Then the area of intersection
A(x) of 1-hop neighborhoods is

A(x) = 2R2 cos−1

(x

2R

)

− x
√

4R2 − x2

2

If A = πR2 is the area of a single 1-hop neighborhood,
the fraction of overlap area at any separation x is A(x)/A.
Since x can vary in the range (0, R), we can obtain the
expected fraction of overlap area over the range (0, R) as

1

R

∫ R

0

A(x)

πR2
dx =

∣

∣

∣

∣

∣

∣

(

4R2 − x2
)

3

2

6πR3
− 4

π

√

1 − x2

4R2

+
2x

πR
cos−1

(x

2R

)

∣

∣

∣

∣

R

0

≈ 0.6884

If nodes are uniformly distributed, the number of nodes in
a region is roughly proportional to its area. Consequently,
as the search progresses, the expected overlap between two
successive 1-hop neighborhoods is more than 68%. For a
given object O, nj will be picked randomly in Ni, since
HRW is randomizing. Thus, the probability Pr[nk = nj] of
the HRW search stopping at any given step exceeds 0.68. If
we model the search as a series of Bernoulli trials, each with
a probability p = 0.6884 of success, the expected number
of trials to success is given by the mean of the Geometric
distribution G(k) = (1−p)kp, which is simply 1

p
= 1

0.6884
≈

1.45. Thus, the search will bottom out quickly when the
node distribution is uniform and sufficiently dense.

5 Experiments and Results

Our goal is to minimize the average access delay for
clients, that is, the time to retrieve a document, either
from the peer nodes or from broadcast by the server. Our

Parameter Range Default

Objects (D) 500–5000 1000
Mobile nodes (N) 25–200 100
Node velocity (V) 0.0–2.0 m/s 1.0 m/s
Zipf parameter 0.0–1.0 0.7

Inter segment delay 10–120 sec 60 sec
Cache size

(% of total object size) 5%–40% 20%
Segment size
(# objects) 100–500 100

Table 1: Simulation parameters

α h=0 h=1 h=2 h=3 h≥4

1.0 19.6 60.7 68.8 69.8 70.0
0.8 13.5 46.0 52.4 53.5 53.7
0.6 9.1 32.1 36.8 37.6 37.7
0.4 5.6 21.1 24.5 25.1 25.2

Table 2: Hit rates

experiments show that our mechanism greatly reduces
access delays.

We used ns-2, version 2.26 [1] in our experiments. N
mobile nodes with 802.11 MAC layer, were randomly dis-
persed in a 2000m×2000m square, each moving according
to the random waypoint model [3]. A stationary server
with a range covering this entire region broadcasted a set
of D objects at a bandwidth of 11 Mbps. Each object is
of size of 1KB. At each step, a node moved to a random
destination at a randomly chosen velocity between (0, 2.0)
m/s, and remained there for a pause time of 1 minute.

The bandwidth between mobile nodes was 2Mbps, and
the communication range was 250 m. Requests were gener-
ated by randomly selecting a node ni, and having it gener-
ate a request for an object Oj according to the Zipf popu-
larity model [27]. Oj will ultimately be retrieved from peer
nodes or from the broadcast. Requests were distributed ex-
ponentially with an average rate of 10 requests per second.
For each set of experiments, 10,000 requests were generated
and average delay between request generation and object
retrieval was computed.

5.1 Hop Count and Hit Rates

We first evaluated how the hit rate increased with the num-
ber of hops. This is an important metric, since going to
nodes farther away also increases access delays and traffic.
We varied the Zipf parameter α, but kept all other param-
eters at their default values (Table 1). Table 2 shows the
cumulative object hit rate as we go h hops away from the
source. We see that hit rates are quite high for small h, es-
pecially when α is high. It also suffices to go 3 hops, since
the increase in hit rates for more hops is marginal. Our
search mechanism is extremely efficient. We can achieve
even better performance by increasing the cache size and
number of nodes.

5

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Cache size (% of total objects size)

with caching
without caching

(a) Cache Size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Zipf’s parameter

with caching
without caching

(b) Zipf parameter

Figure 5: Effects of cache size and Zipf parameter

5.2 Effect of Cache Size

Larger caches allow mobile nodes to store more objects,
thus more objects are served from the local and peer cache.
This leads to a reduction in average access delay observed
by nodes, and this effect is quite obvious in Figure 5(a).

5.3 Effect of Zipf Parameter

The Zipf parameter α is a measure of skew in object popu-
larity. Higher α indicates that some objects are requested
more frequently than others. Caching popular objects min-
imizes average access delays.

Our caching mechanism favors caching prime and pop-
ular objects, reducing average access delays. This effect
is clearly shown in 5(b). Average access delay decreases
from 108.15 seconds to 72.58 seconds, as the value of α is
changed from 0.0 to 1.0, whereas without caching average
access delay is around 303 seconds.

5.4 Effect of Segment Size

Segment size measures the number of objects in each seg-
ment. The total number of segments in a broadcast cycle
decreases as segment size increases, so that the number of
inter-segment silence periods decreases. Our inter-segment
silences are greater than the broadcast time of a segment,
so that the broadcast cycle length decreases with an in-
crease in segment size.

Increasing segment size has both positive and negative
effects. Larger segments result in lower average access de-
lay (see Figure 6(a)), but the wireless channel is occupied
for a longer period of time by the broadcast server, which
may result in longer wait times for inter-client communi-
cations. Segment size is a tunable parameter, and can be
set for optimum performance.

5.5 Effects of Node Mobility

The neighborhood set of a mobile node is always changing,
so that the prime for any object will also change. Thus, the
probability of finding an object in the neighborhood of a

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Segment size (# of objects)

with caching
without caching

(a) Segment size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.5 1 1.5 2 2.5

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Node velocity (m/s)

with caching
without caching

(b) Node mobility

Figure 6: Effects of segment size and node mobility

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Number of objects

with caching
without caching

(a) Broadcast length

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Nodes

with caching
without caching

(b) Node density

Figure 7: Effects of broadcast length and node density

mobile node decreases with mobility, increasing average ac-
cess delay. Discussions in [15, 14] have shown that users of
a wireless LAN can be safely assumed to be stationary. As
Figure 6(b) shows, the performance of our method remains
surprisingly stable over a large range of node velocities.

5.6 Effect of Number of Objects

Increasing the total number of broadcasted objects in-
creases the number of segments, and hence the total broad-
cast cycle length. This effect is shown in Figure 7(a). How-
ever, the average access latency can be reduced by increas-
ing the segment size, as Figure 6(a) shows.

5.7 Effect of Node Density

The number of nodes in each 1-hop neighborhood increases
with node density. Consequently, each node is prime for
fewer objects, and must cache fewer prime objects. It can
use rest of the cache space to cache other popular non-
prime objects. This leads to an improvement in perfor-
mance as is evident from 7(b).

5.8 Effect of Inter-Segment Delay

The broadcast cycle length increases as inter segment delay
increases, so that average access latency increases. How-

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 30 60 90 120 150

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Inter segment delay (seconds)

with caching
without caching

(a) Intersegment delay

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Zipf’s parameter

caching and replication
no caching and with replication

caching and no replication
no caching and no replication

(b) Zipf parameter

Figure 8: Effects of intersegment delay and object replication.

ever, longer the inter segment delays allow mobile de-
vices greater flexibility to communicate during the silences.
Since clients can obtain objects from peers, performance
degrades only moderately with our mechanism (see Fig-
ure 8(a)) as inter-segment delay increases.

5.9 Broadcast With Object Replication

Servers can reduce access latencies by broadcasting an ob-
ject several times in each cycle, in proportion to its popu-
larity [21]. We assume that the server knows object popu-
larities, and creates the broadcast schedule as in [21]. We
have compared the replicated broadcast scheme without
caching and our caching scheme without replication. Fig-
ure 8(b) shows that our caching scheme outperforms object
replication in broadcasts. We can achieve even better re-
sults by combining caching with replication.

5.10 Energy Usage of Mobile Nodes

Our hash-based caching approach distributes caching load
uniformly among all nodes. This claim is confirmed by
experiments. Figure 9(a) shows the energy used by each
mobile node at the end of simulation, as determined by the
EnergyModel function of ns-2 [1] in this set of experiments.
Transmission and receive power for each 512-byte packet
has been set to 0.6W and 0.3W respectively. For the idle
and sleep modes, power usage of mobile nodes has been
set to 0.05W and 0.01W, respectively. Our experiments
demonstrate that loads, and hence object requests were
uniformly distributed among peer mobile nodes and thus
leading to similar power usage at all mobile nodes.

5.11 Effects of Heterogeneity

In practice, mobile nodes are likely to be heterogeneous
in power and range. Devices like PDAs are likley to rank
at the low end of this spectrum, while laptop computers
are likely to be at the high end. To understand the effec-
tiveness of our caching scheme in a heterogeneous network,
we conducted two set of experiments. In the first set, the
transmission and reception radius for a mobile node was

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

E
n

e
rg

y
 u

s
e
d

 (
J
o

u
le

s
)

Node id

(a) Energy Usage

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

S
e
c
o

n
d

s
)

Zipf’s parameter

heterogeneous nodes
homogeneous nodes

without caching

(b) Heterogeneous Net-
work

Figure 9: Energy usage and effect of node heterogeneity.

randomly assigned a value in the range 100–600 m. In
the second set, the transmission and reception radius of
nodes was 250 m. We kept the nodes stationary to iso-
late the effects of node heterogeneity from the effects of
mobility. We find moderate increases in average access
delay in case of heterogeneous network (see Figure 9(b)).
We can attibute this to two reasons. First, lower-capacity
nodes have fewer nodes in their 1-hop neighborhood, in-
creasing their dependence on the broadcast server and on
peer nodes, which are farther away. Second, higher-end
nodes have larger transmission radius, leading to higher
interference with the communications for nodes in their
1-hop neighborhood.

6 Conclusion and Future Work

We have argued that the standard approach of continuous
broadcasts is unsuitable for typical wireless environments.
The server monopolizes the medium, preventing commu-
nication among clients. We have addressed this issue by
advocating the use of segmented broadcasts. Wireless
devices can communicate among themselves in the silence
period between two consecutive broadcast segments.

We counteract increases in access times due to these si-
lences using a novel cooperative caching scheme that al-
lows clients to obtain objects from peers, rather than from
server broadcasts alone. Our approach uses limited cache
space at clients effectively, and uses a hash-based mapping
function, making it completely decentralized. Earlier ap-
proaches have required inter-cache cooperation, which is an
unreasonable requirement in wireless broadcast schemes.
Our experimental results clearly demonstrate the efficiency
of our approach.

A standard approach in broadcasting is to replicate
each object in proportion to its popularity. Although this
scheme reduces the average object access delay, we have
been able to achieve similar performance by our caching
approach, even without the use of replication. In our cur-
rent model, objects are assumed to be accessed indepen-
dently of each other. The study of the effects of correlated

7

data will be part of future work.

REFERENCES

[1] Ns. http://www.isi.edu/nsnam/ns/.

[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
Broadcast disks: data management for asymmet-
ric communication environments. SIGMOD Rec.,
24(2):199–210, 1995.

[3] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In Mobile
Computing and Networking, pages 85–97, 1998.

[4] J. Cai, K.-L. Tan, and B. C. Ooi. On incremental
cache coherency schemes in mobile computing envi-
ronments. In Proceedings of the Thirteenth Interna-
tional Conference on Data Engineering, pages 114–
123. IEEE Computer Society, 1997.

[5] G. Cao, L. Yin, and C. R. Das. Cooperative cache-
based data access in ad hoc networks. IEEE Com-
puter, 37:32–39, 2004.

[6] S. Chen, B. Shen, S. Wee, and X. Zhang. Adap-
tive and Lazy Segmentation Based Proxy Caching
for Streaming Media Delivery. In Proceedings of the
13th international workshop on Networks and operat-
ing systems support for digital audio and video, num-
ber 1-58113-694-3, pages 22–31, June 2003.

[7] C.-Y. Chow, H. V. Leong, and A. Chan. Peer-to-peer
cooperative caching in mobile environments. In Pro-
ceedings of the 24th International Conference on Dis-
tributed Computing Systems Workshops. IEEE Com-
puter Society, 2004.

[8] S. Hameed and N. H. Vaidya. Efficient algorithms for
scheduling data broadcast. Wirel. Netw., 5(3):183–
193, 1999.

[9] T. Hara. Cooperative caching by mobile clients in
push-based information systems. In Proceedings of the
eleventh international conference on Information and
knowledge management, pages 186–193. ACM Press,
2002.

[10] T. Imielinski, S. Viswanathan, and B. Badrinath.
Power efficient filtering of data on air. In Interna-
tional Conference on Extending Database Technology,
pages 245–248, 1994.

[11] T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Energy efficient indexing on air. In Proceedings of the
ACM SIGMOD Conference, pages 25–36, 1994.

[12] K.-F. Jea and M.-H. Chen. A data broadcast scheme
based on prediction for the wireless environment. In
Proceedings of the Ninth International Conference on
Parallel and Distributed Systems (ICPADS), 2002.

[13] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web Caching with Consistent Hash-
ing. In Proceedings of 8th International World Wide
Web Conference, May 1999.

[14] D. Kotz and K. Essien. Analysis of a campus-
wide wireless network. In Proceedings of Interna-
tional Conference on Mobile Computing and Network-
ing(MOBICOM), pages 107–118, 2002.

[15] P. Nuggehalli, V. Srinivasan, and C.-F. Chiasserini.
Energy-efficient caching strategies in ad hoc wireless
networks. In Proceedings of the 4th ACM interna-
tional symposium on Mobile ad hoc networking &
computing, pages 25–34, 2003.

[16] W.-C. Peng and M.-S. Chen. Allocation of Shared
Data based on Mobile User Movement. In Proceedings
of the Third International Conference on Mobile Data
Management (MDM’02), 2002.

[17] N. Shivakumar and S. Venkatasubramanian. Efficient
indexing for broadcast based wireless systems. In Mo-
bile Network and Applications, pages 433–446, 1996.

[18] C.-J. Su and L. Tassiulas. Joint Broadcast Schedul-
ing and User’s Cache Management for Efficient
Information Delivery. In Proceedings of Interna-
tional Conference on Mobile Computing and Network-
ing(MOBICOM), 1998.

[19] J. B. Tchakarov and N. H. Vaidya. Efficient content
locations in wireless ad hoc networks. In Proceed-
ings of the IEEE International Conference on Mobile
Data Management (MDM’04). IEEE Computer Soci-
ety, 2004.

[20] D. G. Thahler and C. V. Ravishankar. Using Name-
Based Mapping to Increase Hit Rates. IEEE/ACM
Transactions on Networking, 6:1–13, February 1998.

[21] W. Wang and C. V. Ravishankar. Adaptive data
broadcasting in asymmetric communication environ-
ments. In Proceedings of 8th International Database
Engineering and Applications Symposium (IDEAS),
pages 27–36. IEEE Computer Society, 2004.

[22] K. L. Wu, P. S. Yu, and J. L. Wolf. Segment-Based
Procy Caching of Multimedia Streams. In Proceedings
of the tenth internation conference on World Wide
Web, number 1-58113-348-0, pages 36–44, May 2001.

[23] B. Xu, O. Wolfson, and S. Chamberlain. Cost based
data dissemination in broadcast networks with dis-
connection. In J. V. den Bussche and V. Vianu, edi-
tors, Database Theory - ICDT 2001, 8th International

8

Conference, London, UK, January 4-6, 2001, Pro-
ceedings, volume 1973 of Lecture Notes in Computer
Science, pages 114–128. Springer, 2001.

[24] B. Xu, O. Wolfson, S. Chamberlain, and N. Rishe.
Cost based data dissemination in satellite networks.
Mob. Netw. Appl., 7(1):49–66, 2002.

[25] E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio.
Scheduling and Caching Strategies for Correlated
Data in Push-based Information Systems. volume 9,
pages 22–28. ACM Press, 2001.

[26] W. G. Yee, S. B. Navathe, E. Omiecinski, and C. Jer-
maine. Efficient Data Allocation over Multiple Chan-
nels at Broadcast Servers. In IEEE Transactions on
Computers, October 2002.

[27] G. K. Zipf. Human Behavior and the Principles of
Least Effort. Addison-Wesley, Cambridge, MA, 1949.

9

