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Abstract-This paper presents a mechanism that facilitates and 
enhances the use of independently administered remote network 
servers in the presence of server interface heterogeneity. The 
mechanism is designed under the client-service model, which 
extends the client-server model with an abstraction of service to 
decouple abstract server capabilities from concrete server inter- 
face specifics such as server interface binding protocols and the 
interface operation invocation protocols. The mechanism selects 
servers, accommodates server interface heterogeneity, and han- 
dles server access failures as per the abstract server capabilities 
desired by the client. It could return the identity of the server used 
for each service access invocation to facilitate billing, refining 
service specifications, and reporting server-specific errors. 

This paper also illustrates a C library interface to this mecha- 
nism, and describes a language veneer over the C programming 
language demonstrating how a typed procedural language could 
be extended by a few language constructs to support the mech- 
anism under the client-service model. In this language, server 
capabilities are referenced by abstract data type (ADT) objects, 
and are accessed by invoking the objects’ interface operations 
using a call-by-value-result paradigm. This language veneer also 
makes it easier to port the client software across to systems that 
use different service specification schemes. 

Our work suggests that this mechanism facilitates the develop- 
ment, use, and maintenance of client and server software in large 
heterogeneous distributed systems comprising many autonomous 
servers. It also shows that the overhead of invoking remote server 
operations via the mechanism can be quite low. 

Index Terms-Heterogeneous distributed systems, client-server 
model, client-service model, service acquisition mechanism, 
attribute-based naming, remote procedure call, server interface 
directory service, agent process, fault tolerance, object-oriented 
programming, language veneer. 

I. INTRODUCTION 

HIS paper presents the design and implementation of a T mechanism that facilitates and enhances the use of inde- 
pendently created and administered remote network servers in 
the presence of server interface heterogeneity. This mechanism 
[5]  is designed under an extended client-server model called 
the client-service model. In this model, an abstraction of 
service is introduced to decouple abstract server capabilities 
from concrete server interface specifics such as server interface 
binding protocols and the interface operation invocation pro- 
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tocols. The mechanism selects servers, accommodates server 
interface heterogeneity, and handles server access failures as 
per the abstract server capabilities desired by the client. It 
could return the identity of the server used for each ser- 
vice access invocation to facilitate billing, refining service 
specifications, and reporting server-specific errors. 

This paper also illustrates a C library interface to this mecha- 
nism, and describes a language veneer over the C programming 
language [4] demonstrating how a typed procedural language 
may be extended by a few language constructs to support the 
mechanism under the extended client-server model. In this 
language, server capabilities are referenced by Abstract Dura 
Type (ADT) objects, and are accessed by invoking the objects’ 
interface operations using a call-by-value-result paradigm, 
independent of the interfaces exported by the servers in use. 

This language veneer also facilitates the development of 
ADT-like libraries to model available network services. Such 
libraries would greatly simplify the task of specifying services 
abstractly. Parametrized objects from the libraries may simply 
be included in the client software, making it easier to port 
the client software across to systems that use different service 
specification schemes. 

Our work suggests that this mechanism facilitate the devel- 
opment, use, and maintenance of client and server software in 
large heterogeneous distributed systems comprising many au- 
tonomous servers. It also shows that the overhead of invoking 
remote server operations via the mechanism can be quite low. 

A. Client-Server Computing Issues 

Before distributed computing came into vogue, resource 
management functions were provided solely by monolithic 
operating system kernels [16]. When many of these func- 
tions migrated out of the kernels into user-level processes 
to improve system maintainability, extensibility, scalability, 
and cost-performance ratios, user-level resource managers 
became known as servers and the service notion arose as 
a convenient abstraction of server capability [25] ,  [26] .  As 
centralized computing models became obsolete, the service 
notion evolved into a major abstraction for managing and using 
networked resources. The client-server model, which many 
current distributed computing systems use [22] ,  represents the 
prevalent implementation of this approach. 

When the number of servers grows, however, the client- 
server model gives rise to an unsatisfactory paradigm for 
client applications to acquire server capabilities or compu- 
tational services. Since server capabilities cannot be cleanly 
decoupled from server interfaces in the client-server model, 
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they must be tied to implementation specifics like server 
interface binding protocols, interface operation signatures, and 
operation invocation protocols. Thus, client applications must 
choose server interfaces matching the desired capabilities and 
confront server-specific implementation details. They must 
also implement server-dependent fault-tolerant algorithms to 
enhance their reliability when a desired server capability can 
be provided by several servers. 

For example, in the distributed computing environment 
(DCE) 1201 promoted by the Open Software Foundation 
(OSF), the interface to a DCE Remote Procedure Call (RPC) 
server is a set of typed operations and may be defined via 
an interface definition language. A specialized distributed 
database registers and advertises the associations between 
servers and their RPC interfaces. A client could query the 
database to search for appropriate servers and to obtain 
necessary binding information. It must use the DCE RPC 
package to make client-server bindings and to invoke server 
interface operations. It also is in charge of handling incomplete 
invocations of the operations, should the client-server binding 
be broken unexpectedly because of network partition or server 
failure. In the client-server model, the RPC run-time is not 
obliged to automatically reconfigure the client-server bindings 
on behalf of the client. 

In order to overcome such deficiencies in using network 
servers, we must address the issues concerning 1) how to 
specify server capabilities (or services) so that the association 
between clients and servers can be changed dynamically 
without disturbing the clients, 2) how to accommodate server 
interface heterogeneity to support such a specification scheme 
and maximize the utilization of the servers, and 3) how 
to reconfigure the bindings between server capabilities and 
servers when appropriate, without interfering with the client. 

These issues are key to the development of robust client 
applications, to extending the life cycle of client software when 
changes to networking technology are inevitable, to better 
using server applications, and to encouraging the exploration 
of new server access protocols for improved or specialized 
high-performance servers [6]. 

B. Partial Solutions 

Although mechanisms have been developed to address some 
hard issues in distributed systems 1171, none of them provide 
an integrated solution to the issues we have outlined. For 
instance, as a partial solution to the specification issue, generic 
names are sometimes assigned to stateless server interfaces 
as service identities, so that service-server bindings can be 
changed between accesses to the servers. This happens in 
the run-time support for remote program execution services 
in Marionette 1231, which forwards client requests to a new 
server, should the current one be unreachable. Most solutions 
to accommodating server interface heterogeneity are limited in 
the networking protocols considered. For example, the HCS 
RPC run-time [ l ]  is able to emulate Sun RPC and Xerox 
Courier RPC. Servers speaking these RPC's may be accessed 
by HCS RPC clients with no modifications, though the clients 
must configure the emulation library operations correctly for 

e ClientjServer Model 

- Client requests client-server bindings. 
- Client accesses services via server-dependent protocols. 
- Client releases client-server bindings. 
- Server identity is determined when client-server binding is established. 
- Client handles broken client-server bindings. 

a ClientIService Model 

- Client requests client-service bindings. 
- Client could access services via server-independent protocols. 
- Client releases client-service bindings. 
- Server identity is determined when service-server binding is estabbhed. 
- Client handles broken client-service bindings and need not to deal with broken 

service-server bindings. 

- A service access invocation could return the identity of the server used to 
facilitate billing, refining service spdcations,  and reporting server-specific 
errors. 

Fig. 1. Client-server model versus client-service model. 

each client-server binding. Similarly, fault-tolerance support 
for accessing server capabilities is usually enhanced by im- 
proving client-server communication protocols. For example, 
in the ISIS 121 distributed system, an access request can be 
multicast to a group of servers so that access fails only when 
all servers are inaccessible. 

C. The Client-Service Model 

This paper presents a service acquisition mechanism that 
provides a framework for an integrated solution to the three 
issues mentioned above. This mechanism is designed under 
the client-service model 141, which extends the client-server 
model with the abstraction of service' to decouple abstract 
server capabilities from concrete server interfaces. A service 
abstraction in the model is a description of the processing 
capabilities that some server may provide. Fig. 1 provides a 
comparison of key features of these two models. In contrast 
to the client-server model, a client in the client-service model 
uses uniform mechanisms to establish or release client-service 
bindings and to obtain services from servers. The client 
need not deal with server interface heterogeneity or handle 
server access failure. In comparison with (generic) server 
interface names, the specification of such a service (or a server 
capability) represents 1) a set of server selection criteria, 2) a 
set of service access operations* that can be supported by a 
single server, and/or 3) a set of service-server reconfiguration 
constraints. To facilitate billing and reporting server-specific 
errors, a service access invocation could return the identity of 
the server used as a standard output argument. 

D. The Cygnus Service Acquisition Mechanism 

A prototype implementation of the mechanism has been 
evaluated in a server-based heterogeneous distributed system 
at the University of Michigan at Ann Arbor. This system, 
named the Cygnus Distributed System, contains several au- 

' In the client-service model, the terms services and server capabilities are 
interchangeable. 

2These operations may have to be translated into the interface operations 
exported by a selected server if the two are different. Further details are given 
in Sections 111-A and 111-C. 
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Fig. 2. The extended client-server model in Cygnus. 

tonomous network servers that may be accessed through 
various intermachine interprocess communication (IPC) mech- 
anisms, such as Sun RPC, NCS RPC, and BSD UNIX sockets. 
The servers export their interfaces through various server 
interface directory servers such as Sun’s Network Information 
System and RPC port mappers, NCS location brokers, Oracle 
databases, and Profile name servers. 

This paper also illustrates a C library interface to the mecha- 
nism, and presents the design and implementation rationale of 
an experimental language, named CygnusC [4], to demonstrate 
how a C-like typed procedural language can be extended 
with a few language constructs to support the mechanism. 
In this language, server capabilities are referenced as abstract 
data type (ADT) objects that are instantiated at run-time 
via special templates. These templates permit the compiler 
to type check service acquisition operations, and enable the 
language run-time to invoke user code for validating service 
specifications and handling service access failures. A call-by- 
value-result paradigm is used to invoke the objects’ methods 
(or interface operations). Each operation performed on the 
objects is mapped transparently to one or more remote server 
invocations. 

E. Organization 

This paper is organized as follows. Section I1 elaborates 
on the computational model supported by the Cygnus service 
acquisition mechanism. Section I11 illustrates the design and 
implementation of the Cygnus service acquisition mechanism. 
Section IV explains how the Cygnus service acquisition op- 
erations can be used to access a network service. Section V 
demonstrates how the mechanism can be supported in typed 
procedural languages like C. Section VI analyzes the cost of 
using the Cygnus service acquisition mechanism to access 
local or remote servers in our prototype. Section VI1 describes 
several typical client-service applications that we have built. 
Section VI11 discusses some of the lessons we learned from 
the development of several applications. Section IX concludes 
the paper. 

11. THE CYGNUS COMPUTATIONAL MODEL 
Fig. 2 shows the extended client-server model supported 

by the Cygnus service acquisition mechanism. In the Cygnus 
distributed system, a client or a server is a computing en- 
tity (e.g., a UNIX process) that is developed, installed, and 
maintained as a unit. A Cygnus client sees the network as 
a collection of server-based service abstractions, and every 
service access operation returns the identity of the server 
used as a standard output argument. Each service abstraction 
is bound to exactly one server interface. (See Section I-C.) 
Coordinated access to shared servers must be handled either 
by the servers themselves or by a coordinator, which is itself 
a server. 

The set of service abstractions visible to each client is 
called its view of the network. A one-to-one relation exists 
between clients and views, because each client-generated 
abstract service specification must be interpreted in a client- 
specific context. 

Server interfaces are shown in Fig. 2 because they represent 
the sets of operations that the servers are willing to support. 
A many-to-one relation exists between server interfaces and 
servers, because a server may have several interfaces, but each 
interface belongs to only one server. As an example, a server 
running on the Internet may support a set of operations either 
through the connection-oriented transport protocol, TCP, or 
through the unreliable datagram protocol, UDP. 

The relation between views and server interfaces is many-to- 
many, because an abstract service may represent some abstract 
functionality common to several concrete server interfaces, and 
each server interface may be associated with several abstract 
services. For example, a service designated abstractly as a text 
message delivery service may be provided concretely through 
the interface of an electronic mail server, a fax server, or an 
alphanumeric paging server, whichever happens to be most 
appropriate. In addition, an electronic mail server interface 
may be used to realize multimedia document transfer services 
as well. 

A.  Cygnus Service Spec$cations 

In the Cygnus distributed system, the abstract services in 
client views are specified by sets of name-value pairs or 
attributes. As an example, a Cygnus client may use the follow- 
ing set of name-value pairs to acquire a personal messaging 
capability that delivers a text message from Bob to Allen over 
the particular communicators (e.g., telephones, fax machines, 
or portable computers) that Allen may be using at the moment 
of delivery: 

((CONTEXT, messager), (SENDER, Bob), 

(RECEIVER, Allen), (ACCESS-INTERFACE, send)). 

A principal advantage of dealing with this service as a high- 
level abstraction is to free Bob from the onus of knowing 
where Allen is or from the identities of the communicators 
that Allen may be using to receive information. Although 
the information must be sent by using the specified server- 
independent operational interface send, it may be transformed 
from one medium to another (e.g., from text to voice) by 
a server, depending on the chosen receiving communicator. 
The attribute CONTEXT indicates the context for interpret- 
ing the other name-value pairs, and is used to simplify the 
interpretation of Cygnus service specifications. (See Section 

A Cygnus service specification may contain attributes (e.g., 
MIPS for processor services, lines per second for compile 
service, and points per character for print services) that are 
orthogonal to the functional specification of the associated 
service access interface. We think that this feature is important 
because it encourages the clients (and the end users who 
run them) to exploit their knowledge about the computing 
environment. In other words, this feature allows the cost- 

111-D.) 
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Fig. 3. Cygnus distributed system architecture. 

performance ratio of a service operation to be reduced easily 
at run-time, with no need to change the client code. 

We could have chosen to specify Cygnus services with 
character strings (like UNIX file path names) or through 
formal languages, without compromising the generality of the 
Cygnus computational model. Considering the combinations 
of the possible criteria for classifying services, however, string 
names would quickly lead to unmanageably large name spaces, 
though they might require simpler name resolution algorithms. 
On the other hand, formal specification methods would im- 
pose too much overhead in encoding andlor decoding service 
specifications, though they might help eliminate ambiguous 
specifications. 

In contrast to the name-value pairs used in other attribute- 
based name/directory systems [18], [19], [21], the Cygnus 
service specifications are used to facilitate choosing servers 
providing services (or server capabilities) that the client de- 
sires, and for reconfiguring the bindings between (abstract) 
services and concrete server interfaces. Instead of getting back 
a set of object identities or object property lists, Cygnus clients 
obtain a reference to a client-service binding for each service 
specification that is honored by the service acquisition mech- 
anism. We illustrate the service specification interpretation 
scheme in Section 111-D and describe our experience with it 
in Section VIII. 

111. THE SERVICE ACQUISITION MECHANISM 
Fig. 3 sketches the software architecture of the Cygnus 

distributed system. The servers are autonomous computing 
entities, and export their interfaces through various server 
interface directory servers like the ANSMSA trader [ l l ] .  
The clients have no jurisdiction over the servers, because 
the mechanism is designed to use independently developed 
remote servers. (See Section I-A.) The Service Acquisition 
System hides the service realization details from the clients 
and is central to our realization of the Cygnus model. The 
Cygnus run-time library insulates the client code from the 
implementation details of the Service Acquisition System and 
promotes the portability of the client code. The clients trust 
the Service Acquisition System. (See Section VIII.) 

The Service Acquisition System resides on the client host 
for two reasons. First, we want its links to clients to remain 
intact, even upon network failure or partition. Second, we 
treat servers as autonomous entities that may not be willing to 
run additional software. The system is composed of a Service 
Acquisition Manager and three kinds of user-level3 processes: 
Service Specijication Interpreters, Service Access Monitors, 
and Server Access Agents. The Service Acquisition Manager 
responds to client requests by creating a Service Specification 
Interpreter and a Service Access Monitor per service acquisi- 
tion session. Service Specification Interpreters analyze service 
specifications, determine service-server bindings, and activate 
Server Access Agents locally. They also help the Service 
Access Monitors handle server access failures on behalf of 
the clients by using server-independent4 algorithms. Server 
Access Agents accommodate server interface heterogeneities 
and implement server-dependent fault-tolerance algorithms, 
so that existing servers need not be modified to make them 
accessible to Cygnus clients. 

The Cygnus run-time library includes a set of Cygnus- 
specific operations for use by the client code to communicate 
with the trusted Service Acquisition System running on the 
same machine using the RPC paradigm [3]. These operations 
are compiler-dependent, because the transformation between 
local service acquisition invocations into interprocess commu- 
nication (IPC) messages depends on the language run-time 
associated with the compiler. Parameters are passed to these 
operations by using a call-by-value-result paradigm. 

A. Service Acquisition Phases 

We now briefly describe the working principles of the 
service acquisition mechanism. Further design and implemen- 
tation details will be given in the following sections. 

Service Request Phase: At the start of each service ac- 
quisition session, the client first contacts the local Service 
Acquisition Manager to get a service request port, which is 
a communication endpoint supported by the Cygnus intemal 
IPC facility. It then composes a service request message, ships 
out the request through the service request port, and waits for 
an acknowledgment. 

When the Service Acquisition Manager gets the client’s 
request for a service request port, it first creates a Service 
Access Monitor and a Service Specification Interpreter. It then 
passes one of the Service Access Monitor’s intemal IPC ports 
back to the client so that the client can establish a link to the 
monitor. It then prepares to serve the next request. 

The Service Access Monitor first makes connections to 
the associated Service Specification Interpreter and client. It 
then accepts the client’s service specification message, and 
forwards the message verbatim to the interpreter. It also saves 
the message internally to implement service-dependent, server- 

’The system was implemented by user-level processes because the inter- 
faces between them were considered more important than the implementation 
performance. See [4] for further design rationale of the Cygnus distributed 
system. 

4The algorithm is server-independent because the Service Access Monitor 
records service access requests and results in service-specific format. The 
algorithm is sketched in Section 111-A, explained in detail in Section 111-E, 
evaluated in Section VI-B, and reviewed in Section VIII. 
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independent service-server reconfiguration algorithms. After a 
Server Access Agent is activated by the Service Specification 
Interpreter for the requested service, the monitor establishes 
a link to it on behalf of the client. Finally, it creates a new 
service access port and returns it to the client. 

Service Access Phase: After the client-service binding re- 
quest is honored, the client invokes service operations through 
the service access port as necessary and awaits results. 

When the Service Access Monitor receives an invocation 
request, it forwards the request to the Server Access Agent, 
which translates the request into one or more invocations on 
the associated remote server. It also receives the execution re- 
sults from the Server Access Agent and returns them verbatim 
to the client. The monitor may save the access request and the 
execution results into a log buffer according to a logging-and- 
replay descriptor given by the Service Specification Interpreter 
in the service specification phase. This descriptor instructs the 
Service Access Monitor on how to correctly replay logged 
service operations, should the link between the monitor and 
the Server Access Agent be broken abnormally. 

Service Reconjiguration Phase: The Cygnus Service Ac- 
quisition System uses two kinds of failure recovery algorithms 
to make clients more resilient to network or server failure. The 
first of these depends on the server in use. For transaction- 
based servers, for example, the Server Access Agent may stop 
its execution until the server machine is up again, so that 
the server state can be restored correctly. The second uses 
a server-independent operation logging-and-replay algorithm 
so that in the event of server (or Server Access Agent) failure, 
the Service Access Monitor can send all of the logged service 
access requests to another server through a new Server Access 
Agent. Should the new server interface be different from the 
old one, the new Server Access Agent reconverts the logged 
service access requests to server access requests for the new 
server. Such reconversion is possible because Server Access 
Agents are designed to process server access requests arriving 
in server-independent format. 

Fig. 3 labels three links as (a), (b), and (c). Any one of 
these links may be broken during the service access phase. 
For example, link (a) may be broken because of server failure. 
The Server Access Agent may close link (b) when it does not 
get the execution results from the server in time. Link (c) 
may be cut by the Service Specification Interpreter because 
the number of requests for generating server access agents 
exceeds a predefined limit. 

To make the client’s service access link resilient to such 
faults, the Service Access Monitor always asks the Service 
Specification Interpreter for a new Server Access Agent when 
it finds the current one unavailable. If a new Server Access 
Agent can be created, the monitor replays the logged opera- 
tions. It also ensures the correctness of this replay procedure by 
comparing the new execution results with the old ones. The 
new Server Access Agent may be instructed by the Service 
Specification Interpreter to eliminate some side effects (e.g., 
removing temporary work files) caused by the old server(s) 
and Server Access Agent(s) when it starts. 

If link (c) in the figure had been broken when the current 
Server Access Agent died, the Service Access Monitor asks the 

Service Acquisition Manager for another Service Specification 
Interpreter. It then sends the saved service specification to 
the new interpreter, and reinvokes all of the logged service 
operations after link (b) is successfully restored. If the Service 
Acquisition Manager is unable to create the required inter- 
preter because, for example, the kernel has run out of process 
table entries, the monitor informs the client that the service 
was interrupted unexpectedly. 

Service Termination Phase: A service acquisition session is 
terminated when the client invokes the service termination 
operation in the Cygnus run-time library. After the Service 
Access Monitor receives the message from the client, it 1) 
forwards the message to the Server Access Agent, 2) releases 
its link to the Service Specification Interpreter if that link is 
still active, and 3) terminates itself after performing some other 
housekeeping routines like cleaning up log buffers. The Server 
Access Agent terminates after notifying the remote server(s) 
in use. The Service Specification Interpreter terminates after 
the monitor and Server Access Agent exit. 

B. The Cygnus Run-Time Library 

The Cygnus run-time library includes a set of compiler- 
dependent service acquisition primitives and hides the im- 
plementation details of the Service Acquisition System. The 
required set of OS-dependent IPC routines, which realize the 
IPC links, are also included in the library. In this section, 
we describe the Application Programming Inte@ace (API) 
provided by the library. The use of the API is exemplified 
in Sections IV and V. 

Cygnus IPC Operations: To facilitate the service-server 
reconfiguration support (see Section 111-A), Cygnus IPC 
links are designed as reliable two-way communication 
channels and support atomic send and receive operations. 
They are implemented as follows. Each Cygnus IPC link 
is associated with a shared memory segment and two 
(System V) named pipes or FIFO’s. To send a message, 
the sender places the message in the shared memory segment 
and writes a one-byte control token through the sender-to- 
receiver FIFO. The receiver determines whether a message 
is available through a read operation on the same FIFO. 
Because the file descriptors allocated to FIFO’s are closed 
automatically when their owners terminate, the write operation 
returns an error code if the receiver dies unexpectedly. 
No special exception-handling or time-out mechanism is 
required. 

The message-passing control mechanism could have been 
implemented instead by using semaphores, UNIX-domain 
stream sockets, or Internet-domain stream sockets. FIFO’s 
were chosen because they appeared to perform better under 
normal loading conditions on our client host [4]. 

We have exploited the shared memory mechanism to fur- 
ther reduce message-processing overhead. Cygnus clients are 
required to initialize (or format) the shared memory segments 
that they acquire for accessing Cygnus services. This format is 
carefully designed to allow the processes involved to compose 
and decompose messages efficiently through data structures 
resident in the shared memory. 
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A set of name-based data types is defined to facilitate 
the communication among Cygnus clients and the service 
acquisition agents. The representation scheme for these data 
types depends on the IPC facility in use so that these pro- 
cesses can encode and decode messages efficiently. This data 
representation approach is different from structure-based ones, 
such as Sun's XDR. 

These internal data types are useful to the implementation 
of the Cygnus service acquisition mechanism, because the 
mechanism must accommodate three kinds of heterogeneity. 
First, since the Service Specification Interpreters may need 
to access several different database servers to analyze ser- 
vice specifications, they must accommodate database query 
protocol heterogeneity. For example, most relational database 
servers support SQL queries, whereas most name servers like 
DEC's distributed name service [14] have their own query 
protocols to meet functional requirements such as access 
and/or update performance. 

Second, different servers may use different data representa- 
tion protocols. Therefore, the Server Access Agents must ac- 
commodate such protocol heterogeneity in converting service 
operations to server access requests. For example, Sun RPC 
servers use Sun's XDR representation scheme, whereas DEC 
HDS [8] servers understand Network Command Language 
(NCL) data types only. 

Third, since different client language run-times may support 
different sets of data types, using a single internal data type 
representation scheme facilitates the development of library 
routines for each language run-time. 

Service Acquisition Primitives: Request Service, Ac- 
cessservice, and Terminateservice are the three 
service acquisition primitives provided by a Cygnus library. 
These operations hide the implementation details of the service 
acquisition mechanism by using keyword arguments and a 
call-by-value-result paradigm, and by forcing the client code 
to refer to client-service bindings through specialized opaque 
pointer structures called service handles. 

A service handle must be initialized to hold service request 
messages, and must be bound to a service before it can 
carry service access requests. The Cygnus library includes 
ShNew to create and initialize unbound service handles and 
Requestservice to make bound service handles. To sup- 
port the call-by-value-result parameter-passing paradigm, the 
argument buffer of a bound service handle must be initialized 
by ShClean for each service access request. 

The Cygnus library also contains a routine called ser- 
vice-errno, which the client may call to get an informative 
error code when a service acquisition operation could not 
be executed successfully. The routine service-errno-set 
permits the client code to save user-defined error codes into 
the service handles. To facilitate the implementation of the 
library by using OS- andor language-supported lightweight 
processes, the error codes are not provided as global variables 
and cannot be accessed directly from within the client code. 

The library contains two routines to reset and shut down 
the service acquisition run-time support: Service Run- 
timestart and Service Runtime-stop. These two 
operations are provided mainly to permit the client code to 

#include "my-header-f ilea" 
maincargc, argv) int argc; char *argvCl; 
c 

initialize-program-variables(argc, argv) ; 
establish-link-to-service,requester(); 
establish-link-to-server(); 

/* process service access requests */ 
for ( ; ; I <  

wait-for-access-request 0 ; 
if (terminate()) break; 
extract-access-arguments 0 ; 
invoke-server-operations 0 ; 
compose-return-message 0 ; 
send-execution-result,ta_service-requestero ; 

> 
housekeeping-routines 0 ; 

1 
Fig. 4. Skeleton of a Server Access Agent coded in C. 

reclaim resources (like file descriptors) held by the Cygnus 
run-time. 

C. The Server Access Agenl 

Pursuant to the working principles of the Cygnus service 
acquisition mechanism described in Section 111-A, Server 
Access Agents 1) convert service operations into server access 
requests, 2) accommodate server protocol heterogeneity, and 
3) implement server-dependent error recovery algorithms. This 
section elaborates on how they work and how they can 
be implemented easily based on the programming structure 
sketched in Fig. 4. Performance overhead imposed by the 
Server Access Agents is analyzed in Section VI-A. 

Service Request Phase: During the service request phase, 
a Server Access Agent normally first initializes itself in 
accordance with a set of configuration parameters (e.g., the 
network and transport address of a server interface) set by the 
service specification interpreter that activates it. 

The Server Access Agent then establishes a link to the 
service requester. The requester is normally the Service Access 
Monitor, but may be a Cygnus client when the fault-tolerance 
support provided by the monitor either is not desired by the 
client or is not applicable to the desired service. From the 
viewpoint of the requester, the Server Access Agent is a local 
serves that speaks the Cygnus internal IPC protocol. 

The Server Access Agent may also try to establish a link to 
the associated server during the service request phase. If the 
link cannot be set up successfully, the Server Access Agent 
shuts down its link to the requester and terminates itself. If the 
requester is not a Cygnus client, the Service Access Monitor 
either contacts the Service Specification Interpreter for a new 
Server Access Agent or returns an error message to the client. 

Service Access Phase: A Server Access Agent falls into 
a loop during the service access phase. The code segment 
that invokes server operations is usually a multiway branch 
statement on the names of the supported service operation. 

5According to the Cygnus model (see Section 11). a Server Access Agent 
that integrates the functions of several servers or need not be bound to a server 
to support the desired service operations should be identified as a server and 
should not be considered as a component of the service acquisition mechanism 
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Fig. 5.  Service Specification Interpreter structure. 

For each operation, the agent first extracts the input-only 
tagged arguments from the service access request message, and 
transforms those arguments into a form that the server expects. 
The service operation is then implemented by invoking one or 
more server interface operations. Finally, the execution results 
are converted into a Cygnus IPC message and sent back to 
the requester. 

Fault-Tolerance Support: The Server Access Agent may 
also support various server-dependent fault-tolerance mech- 
anisms. This resilience support complements the server- 
independent fault-tolerance support provided by the Service 
Access Monitor, especially when the associated server can be 
shared by other processes to manipulate common data objects. 
For example, an optimistic message-logging and process- 
checkpointing mechanism can be used by the Server Access 
Agents and Servers to make the services in use resilient to 
machine crashes [13]. 

D. The Service Specijcation Interpreter 

The Service Specification Interpreters assume the tasks of 
1) analyzing service specifications in client-specific contexts, 
2) selecting appropriate servers for use by the clients based 
on the results of the analysis, and 3) activating Server Access 
Agents for the servers that do not support the specified service 
access operations directly using the Cygnus IPC mechanism. 

Since different interpretation contexts may require different 
interpreters and access to different information management 
software (such as personal profile managers, user-location 
servers [271, and server interface directory servers), a Service 
Specification Interpreter must be coded as a collection of 
extensible, cooperative computing entities to ensure its quality. 
Thus, instead of presenting the implementation details of the 
Service Specification Interpreters, this section focuses on how 
the Interpreters are structured to perform the tasks well and to 
meet the extensibility requirement. 

Fig. 5 shows that the Service Specification Interpreter 
is composed of a Cygnus IPC module, a Service Request 
Manipulation Module, a Server Access Agent Activation Mod- 
ule, several Service Specification Interpretation Modules, and 
various front-end modules to the databases or directory servers 
in the system. 

The Service Request Manipulation Module interacts with 
the service requester through the Cygnus IPC Module, for- 
wards service specifications to Service Specification Interpre- 

tation Modules, and controls the activation of Server Access 
Agents. The interpretation module for a service specification 
is now chosen based on the value of the standard attribute 
CONTEXT (see Section 11-A). The module keeps its link to 
the service requester active during the service access phase 
if the requested service can be supported by several server 
interfaces.6 

Each Service Specification Interpretation Module analyzes 
the given service specification in a certain context. There 
are no restrictions on what resources (e.g., databases) can 
be used by a Service Specification Interpretation Module, nor 
are there any restrictions on how the resources can be used. 
As an example, to analyze the personal messaging service 
specification given in Section 11-A, the module may access 
a user-location server and a cross-domain directory system to 
find out what communicators Allen may use at his current 
location [7]. The location server and the directory system may 
not be required by other interpretation modules. 

After a Service Specification Interpretation Module analyzes 
a service specification, it returns to the Service Request 
Manipulation Module the file path name of a Server Access 
Agent program, which will interact with a server providing 
the server capability desired by the client. It also returns a 
list of arguments that could be passed to the Server Access 
Agent as command line arguments and be used to initialize 
the agent. Finally, it returns a logging-and-replay descriptor 
that could be used by the Service Access Monitor to correctly 
reconfigure service-server bindings should the Server Access 
Agent become inaccessible unexpectedly. (See Section Ill-E.) 

Server Access Agent programs could either be maintained 
in a database or be generated on demand via a program 
synthesizer [ 121. When the Service Specification Interpretation 
Module does not establish a link to the server on behalf of 
the Server Access Agent, i't provides the agent with sufficient 
information on the server interface, depending on the Server 
Interface Directory Servers that the agent may use. (See 
Section 111-C.) 

The Server Access Agent Activation Module creates new 
Server Access Agents upon request by using the fork and 
exec1 system calls. It also reclaims the resources held by 
the agents when they terminate by the signal and wait3 
system calls. 

E. The Service Access Monitor 

The Service Access Monitor uses a logging and replay 
mechanism to make its link to the client resilient to server 
access failure. (See Section 111-A.) This fault-tolerance mech- 
anism is server-independent, because the monitor records 
service access requests and results in service-specific format. It 
records neither server interface operations nor server execution 
states. The applicability of this mechanism depends on the 
service in use, because not all server access failures can be 
recovered by simply replaying the access requests made by 
the client. (See Section 111-A.) 

To guide the monitor in performing these logging and re- 
play operations correctly and efficiently, Service Specification 

61n accordance with the Cygnus model, each server interface belongs to 
only one server. (See Section 11.) 
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01 Xinclude <stdio.h> 
02 Xinclude <cygnus/cygnur.h> 
03 #define S-to-cS(x) (x)  
04 main0 
05 c 
06 
07 
08 
00 
10 
11 
12 
13 
14 
15 
16 
17 

ServiceHmdle sh; 
if (ServiceRuntine-sta() < 0) exit(1); 
if (ShledLsh) < 0) exit(1); 
ArgIn-cString(sh, "COITEXT" , S-to-cS("display") ) ; 
RequeatService(sh) ; 
if (rervice-ermo(rh) != 0 )  exit(1); 
ShClean(8h) ; 
ArgIn-cString(sh, "USG", S-to-cS("hello")) ; 
ArgIn-Op(sh, "dirplay") ; 
if (AccesrService(rh) < 0) exit(1); 
Terminat eSarvic* (&eh) ; 
ServiceRunthe-atop(); 

18 > /* main0 */ 
Fig. 6. A simple Cygnus client 

Interpreters always provide a logging-and-replay descriptor for 
each service request message. A logging-and-replay descriptor 
presently contains a log code and an optional set of replay 
records. The log code indicates what logging and replay 
scheme is required. Each replay record includes a service 
operation name and a replay code that indicates how to replay 
the service operation. When the log code is NoLog, the 
monitor lets the client communicate with the Server Access 
Agent directly. 

The Service Access Monitor interprets the value in the 
replay record only when it is instructed to do selective logging 
and replay. A service access request is not logged when 
the replay code is NoReplay. If the replay code equals 
Replaysend, execution results of an access request are not 
logged. Both the request and result messages are logged when 
the replay code is ReplayAll. 

During the service reconfiguration phase, the monitor re- 
plays the logged service access requests. To ensure transparent 
recovery, it also compares the values returned by the new 
Server Access Agent with those in the log. A match indi- 
cates functional equivalency between the old and new servers 
over the period that the client has accessed the service. The 
monitor, however, validates the new execution results only 
for the operations whose replay codes are ReplayAll. The 
server identities returned by the Server Access Agents are not 
compared at all. 

The monitor always asks for a new Server Access 
Agent when it finds the current one unavailable during 
the service access or reconfiguration phase. It also does 
so when logged service access requests cannot be replayed 
correctly during the service reconfiguration phase. The 
number of attempts to recover from a server access failure 
is currently bounded by a configuration parameter set by 
the Service Acquisition Manager. 

The performance overhead imposed by the Service Access 
Monitor is analyzed in Section VI. Our experience with the 
server-independent service-server reconfiguration mechanism 
is given in Section VIII. 

IV. AN EXAMPLE 

Fig. 6 shows a simple C program that sends the string 
"hello" to a display server. The server returns an acknowledg- 
ment message after displaying the string on its output device. 

The numbers along the left margin are provided for ease of 
reference and are not part of the code. 

The program starts its execution at line 7, which initializes 
the Cygnus service acquisition run-time. At line 8, the client 
code initializes an unbound service handle. It then saves 
attribute CONTEXT with value 'I display" into that service 
handle at line 9 and proceeds to request the service at line 10. If 
the service requested can be honored, the Request Service 
routine stores necessary information about the allocated Ser- 
vice Access Monitor or Server Access Agent into the unbound 
service handle; otherwise, it sets an error code in the service 
handle. 

Lines 12-15 show how to invoke a Cygnus service op- 
eration. At line 12, the client first cleans up the bound 
service handle. It then stores the input-only keyword argu- 
ment MSG with value "hello" and the service operation 
name display into the service handle at lines 13 and 14. 
The service access primitive Accessservice at line 15 
returns a nonnegative number if the request can be processed 
successfully. 

Lines 16-17 cancel the requested service and terminate the 
Cygnus run-time, respectively. These two statements are not 
mandatory, though they are recommended. 

V. PROGRAMMING LANGUAGE SUPPORT 
FOR THE MECHANISM 

There are two issues that arise when using Cygnus in this 
fashion. First, a user may not know exactly which keywords to 
use in specifying a desired service. Such keywords may even 
be system- or domain-dependent. Also, since we expect new 
services to be created regularly, it is inappropriate to require 
that users be sufficiently aware of their details to be able to 
infer specification keywords. 

Second, the simple example given in Fig. 6 shows that 
it can be error-prone in invoking Cygnus run-time library 
routines directly. First, service specification attributes and 
service operation arguments are expressed in two types of 
systems: data types supported by C and the Cygnus IPC 
facility. (see Section 111-B.) Second, the type signatures of 
service operations can be obscured. Finally, the programmer 
must understand the Cygnus model well and be familiar with 
the Cygnus run-time library, because each invocation of a 
service operation usually takes several statements. 

We have therefore developed a language veneer over the 
C programming language that supports the Cygnus com- 
putational model. The extended language, called CygnusC, 
allows programmers to view the client-service bindings as 
references to ADT objects that are instantiated at run-time 
via special templates. These templates permit the compiler 
to type-check service acquisition operations and enable the 
language run-time to invoke user code for validating service 
specifications and handling service access failures. The ADT 
object instantiating and disposal operations in the language 
establish and release client-service bindings. Each operation 
performed on the objects is mapped transparently to one or 
more remote server invocations. 
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The CygnusC compiler ensures that the service operations 
are invoked as they are declared, but does not insert code 
for run-time type-checking. It relies on the service acquisition 
system to detect run-time type errors, because the clients 
can compose service specifications at run-time and because 
different services may be associated with different sets of 
operations. 

CygnusC is carefully designed so that compilers for it can 
be implemented easily via native C compilers. For example, on 
our client machine, the compiler is implemented by pipelining 
the native C preprocessor cpp , a CygnusC precompiler, 
and the native C compiler compile. The precompiler [4] 
transforms CygnusC constructs into C statements with no 
macros. A big advantage of this approach is that it permits the 
programmers to develop CygnusC software by using existing 
C libraries and programming tools. 

We note that one of the CygnusC design goals is to 
experiment with a few language constructs that facilitate the 
development of client applications in server-based hetero- 
geneous distributed systems. These constructs may also be 
established on top of languages other than C, in the manner of 
Linda [9] or Concert [29]. Thus, CygnusC must not be viewed 
as a full distributed programming language, but as an instance 
of our language veneer resulting in extensions to C. As such, 
CygnusC lacks many of the features and trappings of a full 
distributed programming language. 

In the remainder of this section, we first present a simple 
CygnusC program to outline the extensions that we have made 
to the C programming language. We then give the rationale 
for these extensions. The C code generated by the CygnusC 
precompiler for each of the service acquisition constructs 
is shown to 1) explain the semantics of the new language 
constructs, 2) exhibit the C features used by the precompiler, 
and 3) illustrate a good way of structuring Cygnus library 
routines. 

A. A Message Dispatcher Coded in CygnusC 

Fig. 7 shows a simple CygnusC program that calls the 
attention of the Department Computing Organization (DCO) to 
problems with the computing environment. Only one response 
from the DCO staff is required for each execution of the 
program. The staff member who acknowledges a message 
may be contacted by a server through a pager, by electronic 
mail, or by another device. Before terminating its execution 
successfully, this program prints an acknowledgment code and 
an identification string for the notification server used on a 
default output device. The client need not know beforehand 
how the dispatched message will be sent to the DCO staff or 
how the message will be acknowledged. 

This sample program is organized as follows. Lines 1-3 im- 
port the interfaces from the required run-time libraries. Lines 
4-19 declare a service specijication template with name spec 
to define a family of bound service handles (see Section 111-B) 
for accessing Cygnus services. The Attribute component 
(lines 6-8) of this template specifies the set of attributes 
associated with those service handles. The Constraint 
component (lines 9-13) contains user code for validating the 
service specifications composed at run-time. The Operat ion 

01 Xmclude (stdio h> 
02 Xmclude <cygnus/cypus h> 
03 Xinclude "userlib h" 
04 Sarvicenmdle Spec /* S e r V l C O  speClflCatlOn templatm t/ 
05 I 
06 Attribute /* specify attribute n a e s  m d  their types */ 
07 COITEXT(cString)String="notif).". 
08 LIST(cString)Stri~="d=o',, 
09 
10 
11 printf ("Invalid attribute COITEIT Y.s\n*' .CONTEXT), 
12 return(i), 
13 > 
14 Operation /I .pacify servxw operations I/ 
16 dlspatch~USG~cStrml(~Strmn~->CAQt~cInt~int.SERVER~cStri~)Stringl, 
16 OnError /* arror hmdler for service access operations */ 
17 printf("accmss ermo = Xd\n",service_ermo(ap.c)), 

10 1 /* spec r/  
20 mam(ugc. ugv) int ugc. char r u g v 0 ,  
21 C 
22 c h u  *id. lnt ack. Servicenmdle spsc ah, 
23 if ( S m r r i c e n u n t u m _ o t i r t O < o )  axit(i), 
24 if (ugc'3) sh=Smrvican.ndl* specU. 
26 else sh=Sarvicm8undle spec CCONTEXT~ugvC211, 
26 if (smrvicm-ermo(sh)'=O) exit(1). 
27 Cack=ACI(.id=SERVB11l=sh dispatchCHSG=ugvCllI, 
28 prlntf("(Server ID, Acknoslodge code) ( X s ,  %d)\n".id,ack), 
29 Ta~inatmServica(ksh). 
30 ServiceRuntimo-stop(), 

Constraint /* user coda for validating spacification */ 
if ( ( 0 '  -ntrcmp(CO~EXT,"son") ) W O  I =strcmp(CO~T."notify")) )C 

18 .Xlt(l), 

31 > /* U l U O  */ 

Fig 7 A message dispatcher coded In CygnusC 

component (lines 14-15) declares the type signatures of the 
required service access operations so that the compiler can 
ensure that they are invoked as declared. The OnError 
component (lines 16-19) includes code for handling service 
access errors at run-time. These components are dealt with in 
detail in Section V-B. 

This program starts its execution from the statement at line 
23, which initializes the Cygnus library routines. The service 
request statement at line 24 is executed with the default service 
attribute values defined in the At tribute part of spec when 
the value of attribute CONTEXT is unavailable as an input 
argument. The service handle returned by this invocation is 
saved in the service handle variable sh declared at line 22. 
Arguments for the request statement at line 25 are DCO for 
attribute LIST, and the second command line input argument 
for CONTEXT. 

The service operation dispatch is invoked at line 27 
if the service handle returned was successfully bound to 
the requested service. In accordance with our call-by-value- 
result service invocation paradigm, the input-only keyword 
argument MSG is first set to the message to be shipped out. 
The Accessservice routine in the Cygnus library is then 
invoked with service handle sh, operation name dispatch, 
and an input argument with tag MSG. When the invocation 
completes, the value of output-only keyword argument ACK is 
assigned to the integer variable ack, and the value of SERVER 
to pointer variable id. 

The Terminateservice operation at line 29 is invoked 
to reclaim the resources allocated to service handle sh. 
Necessary housekeeping tasks would also be performed on 
the associated server host. Finally, the client shuts down the 
Cygnus service run-time gracefully at line 30. These last two 
statements are not mandatory, but recommended. 

B. The Service SpeciJcation Template 

From the viewpoint of the client code, a service specification 
template defines a set of ADT objects for accessing remote 



CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 163 

services. Executing a service request statement instantiates an 
ADT object for a specific service at run-time. Invocations 
of the associated service operations are similar to those on 
an ADT object: The caller knows only the type signature of 
the invoked operation, and is ignorant of the implementation 
details. In the remainder of this section, we present the design 
rationale of this template. 

Attribute: The CygnusC data type' and Cygnus IPC data 
type for every attribute must be declared in the Attribute 
component to enable the compiler to type-check the operations 
on attribute values and determine necessary type conversion 
routines between those two types. 

The Cygnus run-time library contains type conversion rou- 
tines between primitive CygnusC (or C) and Cygnus IPC 
data types. For example, two routines int-to-cInt and 
cInt-to-int are incorporated in the library to convert C 
int values to Cygnus cInt values, and vice versa. When the 
language data type of a service attribute is a composite or user- 
defined data type, the programmer must provide the required 
conversion routines for that data type. As Sun XDR library 
routines are to the user-provided XDR routines, so are the 
Cygnus library routines to the user-provided type conversion 
routines. 
Constraint: The Constraint component is used for 

screening service specifications. The syntax of its body is 
the same as that of a C function without enclosing braces. 
The formal parameters of this function-like component are the 
attributes declared in the Attribute component. It must 
be written to return a nonzero integer value as a user-defined 
service request error code when the service specification given 
fails to pass the test. 

We expect the Constraint component to be very useful 
in large heterogeneous systems, where the number of servers 
tends to be large. In such an environment, the cost of invoking 
a service request operation increases with the cost of locating 
a server interface. 

Fig. 8 shows how our CygnusC precompiler translates the 
Constraint component of dco.ccc into C code. The 
declaration of the specification checking function shown in 
Fig. 8(b) is emitted at the point where the service specification 
template is declared in the source code. This function is named 
by appending "_-constraint" to the name of the associated 
service specification template, i.e., "spec." Two underline 
characters are used to reduce the chance of redefining an 
existing function. Statements in Fig. 8(c) constitute the func- 
tion's definition, and are emitted by the precompiler only if 
the program starting routine main ( ) is defined in the source 
file. 
Operat ion: The programmer must define the type signa- 

tures of service access operations in the Operat ion compo- 
nent to allow compile-time type checks on service operation 
invocations. For example, line 15 in Fig. 7 declares that 
operation dispatch needs the input argument MSG and 
two output arguments: ACK and SERVER. The Cygnus IPC 
data type of MSG is cString, and the language data type 
is String. Similarly, the Cygnus IPC data type of ACK 

'The CygnusC and C programming languages share a common type system. 

OB Constraint /* uaar code for ralidatlng apeciflcation I/ 
10 
11 
12 return(1); 
13 1 

li ( (0 ! =atrcmp(COITEXT,"ao.") ) W O  I=atrc.p(COITEXT,"notify")) ) I  
printf ("Invalid attribute COITEXT: %a\n",COITEXT); 

(a) 

01 int apac--constraintO ; 

(b) 

01 int spec--constraint(COfEXT, LIST) String COITEXT; String LIST; 

03 
04 
06 roturn(1); 
OB > 
07 > 

01 c 
if ( ( O !  ='trcmp(COITEXT,"aoa") ) W O  1 =strcmp(COXTEXT."notify")) ){ 
printf ("Invalid attribute COITEXT: %r\n",COITEXT); 

(c) 

Fig. 8. Precompiler output for the Constraint component. 

16 OnBrror 
17 
18 exit(1); 

printf ("access errno = %d\n",servicr_ermo(rprc)) ; 

(a) 

01 void rpec--onarror(); 

(b) 

01 void rpec--onerror(spec) ServiceEmdle spec; 
02 I 
03 
04 exi t (1 ) ;  
06 > 

printf ("access errno = %d\n".rervicr_ermo(rpec)) ; 

(c) 

Fig. 9. Precompiler output for the OnError component. 

is cInt and language data type int. When the compiler 
encounters the service access statement at line 27, it validates 
the number of arguments and the related assignments. For 
example, if variable ack is declared as a pointer to an 
integer, the compiler would issue a type error message at this 
line. 

The input and output arguments of each service access 
operation are explicitly identified, because their positions are 
not linked to the properties of the desired server capabilities. 
The service acquisition run-time is in charge of marshaling the 
keyword arguments for the servers in use. 
OnError: The syntax of the OnError component is the 

same as that of the Constraint component. The OnError 
component, however, is used to include user code for handling 
service access errors. When a service operation invocation 
fails, the service acquisition run-time sets an error code in 
the service handle and passes control to this component via 
the language's procedure call mechanism. This component 
can then remedy the error based on the error code or abort 
the program's execution as it does in dco . ccc. When this 
component retums, control is passed back to the statement 
following the service access statement being executed. 

Fig. 9 shows the precompiler output for this component in 
dco. ccc. The declaration of function spec--onerror is 
emitted immediately after the service specification template 
spec is completely parsed. The precompiler does not emit 
this function's definition unless the starting routine main ( ) 
is defined in the source file. 
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01 Ssrvicetlandle spac--init(); 

(C) 

01 SarvicaEmdla spac--init(COITEXT,LIST) String COITEXT; String LIST; 
02 < 
03 int ret; ServiceRmdle ah; 
04 if (Shlee(tsh)<O) axit(1); 
06 if ((rmt = spac__constralnt(C01IT,LIST))==O)I 
08 ArgIn_cString(sh,"COITBXT".String-to-cString(COl~XT)~; 
07 ArgIn_cString(sh."LIST",Stringto_cStr~g~LIST~~; 
08 RequastSarvica(6h); 
OB 1 also sarvica_armo_set(sh,rat); 
10 retum(sh); 
11 1 

(d) 

Fig. 10. Precompiler output for service request statements. 

C. Service Request Statement 

A service request statement is executed as follows. The 
service attributes are first initialized to the defaults declared 
in the associated service specification template. These defaults 
may be ovemdden by new pairs of attribute name and value 
in the argument list of the service request statement. This 
specification is then validated by the constraint code defined in 
the associated Constraint component. Finally, the service 
acquisition run-time returns a bound service handle after 
establishing a client-service link. An unbound service handle 
is returned with an error code if the link could not be set 
up successfully. This error code could be set by the service 
acquisition run-time or by the user-defined constraint code. 
The service handle returned always appears to the client code 
as a pointer to an opaque data structure. In Fig. 7, service 
handle variable sh is declared at line 22, and is initialized at 
line 24 or 25. 

Fig. 10 shows how the precompiler translates such service 
request statements into C statements. Fig. 10(a) lists the 
if statement that contains two service request statements in 
our sample CygnusC program. The C code shown in Fig. 
10(b) is emitted when the precompiler encounters the if 
statement. The associated specification validation function is 
named by appending ''Anit'' to the name of the associated 
service specification template. A declaration for this function 
is emitted when the specification template has been completely 
parsed. To prevent duplicate definitions, this function will not 
be defined in the precompiler output file if the routine main ( ) 
is undefined. 

Fig. 10(d) shows that the service specification screening 
routine generated by the precompiler always initializes an 
unbound service handle first by invoking routine ShNew 
provided by the Cygnus run-time library. (See Section 
111-B.) If the set of attributes provided fails to satisfy 
the constraints given in the Constraint component, a 
user-defined error code is stored into the unbound service 
handle via the service-errno-set routine in the Cygnus 
library. 

27 Cack=ACK, id=SERVERI =ah: dirpatchCMSG=up Cl11 ; 

(a) 
01 CSorvicrBmdlr tmp--sh; 
02 tnp--sh=sh; 
03 ShClrm(tmp--sh) ; 
M 
OS ArgIn-Koy(tmp--sh, "ACK") ; 
OS ArgIn-Koy(tmp--oh, "SBRVER") ; 
07 ArgIn_Op(tmp--rh. "dispatch") ; 
08 if (AccossSorvicr(trp__sh)<O){ 
08 spoc--onorror(t.p--sh) ; 
10 > 01.0 c 
11 ack = cInt-to-Int(~gOut_cInt(t.p__rh."ACK")) ; 
12 id = cString-to_string(rrg~t-cStr~(trp--sh,"S~V~")) ; 
13 > 
14 > 

ArgIn-cString (tap--sh, "IISG" , String_to-cStr~(u~lrCil)) ; 

(b) 

Fig. 11. Precompiler output for service access statements. 

After the validated attributes are copied into the unbound 
service handle, routine Requestservice is invoked to bind 
the service handle with the requested service. If the binding 
process fails, the service handle remains unbound and holds 
an error code set by the service acquisition run-time. 

D. Service Access Statement 

From the viewpoint of the client code, a service access 
statement is a function invocation with a bound service handle, 
a service operation name, and a set of input-only keyword 
arguments as parameters. The service handle argument can 
be specified by a simple variable, such as sh, in the sample 
program, or by a more complicated postfix expression such 
as ShArray [ i++ 1 . The output values are assigned to a set 
of tagged address references under our call-by-value-result 
parameter-passing paradigm. 

Fig. 11 shows how a CygnusC service access statement is 
translated into C code by our precompiler. The service handle 
expression in the statement, i.e., sh, is first evaluated and 
assigned to a temporary service handle variable (see Fig. 1 l(b)) 
to ensure that the expression will be executed only once in the 
generated C code. After the service handle is initialized, input 
arguments to the service access primitive Accessservice 
are copied into the handle through various Cygnus library 
routines. If Accessservice fails, the service acquisition 
subsystem sets an error code and passes control to the associ- 
ated OnError component as a C procedure call. If the access 
invocation succeeds, the output values are extracted and copied 
into the corresponding memory locations. In order to reduce 
the overhead in extracting the invocation results, the output 
argument labels are made available to the service acquisition 
run-time via ArgIn-Key. The overhead is presently a linear 
function of the number of the tagged values returned because a 
linear search algorithm is used in the Cygnus library to locate 
the value associated with a specific tag. 

VI. PERFORMANCE 
We developed a Sun RPC client-server pair to estimate the 

performance overhead that Cygnus clients may incur in using 
the service acquisition mechanism to access local or remote 
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Fig. 12. Performance of Cygnus service access mechanism. 

servers. The client stub, server stub, the main program of the 
server, and the required C header files were generated by Sun’s 
r p c g e n .  The RPC Language (RPCL) code specifies only one 
void function with one input argument of type s t r i n g .  The 
server implements that function with a dummy routine. 

We measured the cost of a Sun RPC call as the expected 
elapsed time in executing the c l n t - c a l l  statement in the 
rpcgen-emitted client stub. With reference to Fig. 6, it is 
the expected elapsed time in executing the statements at lines 
12-15. Thus, the overhead is the difference between these 
two times. The computing environment was under very light 
load conditions when the performance data were collected. 
For intermachine calls, the server ran on another Sun 4/60 
workstation sitting on the same ethemet and with the same 
configuration as the client host. We view the performance 
of intramachine Sun RPC as a baseline data for the cost of 
invoking server operations. 

A.  The Service Access Mechanism 

Fig. 12 shows that the overhead is small in absolute terms 
and acceptable in relative terms. When the message length is 
less than 512 bytes, the Cygnus IPC cost is less than 2 ms 
when the Service Access Monitor runs between the client and 
Server Access Agent, and less than 1.2 ms when the monitor 
does not exist. These numbers are independent of the network 
load, but depend on the processor load on the client machine. 
The overhead is small because under normal load conditions, 
it usually takes tens to hundreds of milliseconds to send a 
1024-byte string remotely via Sun RPC. 

We are satisfied with the performance of the current Cygnus 
service access mechanism, because the mechanism is currently 
implemented by heavyweight processes. We have observed 
that process scheduling delay is the bottleneck in our present 
implementation of the Cygnus service access mechanism. We 
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Fig. 13. Cygnus reconfiguration support overhead. 

estimate that scheduling delay contributes more than 97% 
of the Cygnus IPC cost for a one-byte message, and more 
than 30% for a 3840-byte message. Moreover, the percentages 
increase with the system’s load. 

B. The Reconjigurution Support 

Fig. 13 depicts the reconfiguration support overhead in 
comparison with the local and remote Sun RPC costs. The 
reconfiguration support cost is the Cygnus IPC cost when the 
Service Access Monitor exists, minus the IPC cost when the 
logger does not exist. (See Fig. 12.) For both cases, the ratios 
never exceed 25%, and tend to decline when the message size 
increases. 

The logging and replay mechanism could be implemented 
very efficiently for three reasons. First, the logs were not 
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Fig. 14. Performance of Cygnus run-time library. 

stored on stable storage, because crash recovery support for 
the client was not available. Second, the service-server recon- 
figuration mechanism requires that no more than one server be 
available at any one time. Unlike other replication-based fault- 
tolerance mechanisms, like that in ISIS [2], this reconfiguration 
mechanism does not incur the overhead of synchronizing 
the executions of a group of functionally identical servers 
running on different hosts. Finally, since the logging and 
replay algorithm is applied on the basis of nonshared client- 
service bindings, it is far less complicated than those used 
in transaction-based systems such as Quicksilver [lo]. The 
corresponding mechanisms in those systems are designed to 
optimize the throughput of updating shared persistent ob- 
jects, and must be coupled with checkpointing and rollback 
mechanisms. 

C. The Cygnus Run-Time Library 

We have also compared the performance of the Cygnus run- 
time library with the Sun RPC library. The performance of 
the Sun RPC library was measured as the expected CPU time 
spent in executing the c ln t -ca l l  statement with no BSD 
socket invocations. The FIFO system calls were commented 
out when we measured the performance of the Cygnus run- 
time library. It turns out that the Cygnus run-time library even 
consumes less CPU cycles when the size of the string argument 
is less than 1024 bytes as depicted in Fig. 14. Fig. 14 shows 
that the slope of the curve for the Cygnus run-time library is 
about 0.28 ms per byte, and that the Sun RPC library 0.24 
ms per byte. Since these two libraries use the same routines 
to move string arguments into message buffers, we think the 
difference is caused by the system overhead for shared memory 
support. In any event, it shows that the cost of processing IPC 
messages is much less than the cost of making interprocess 
invocations. 

4.3, and IBM PS/2 running 0 9 2  1.2. Besides the examples 
given in the previous sections (i.e., the personal messaging 
service in Section 11-A, the text display service in Section IV, 
and the message dispatcher in Section V-A), three other very 
different distributed applications have also been developed 
to investigate the usefulness of the mechanism: a dictionary 
service, a snake game service, and a computational vision 
service. 

The dictionary service enables the clients to look up words 
in Webster's dictionary (7th ed.) with no need to handle 
server access failures. The servers accessed may run on other 
Internet nodes over which we have no control. The source code 
for a client program named webster . c is available in the 
public domain. The Cygnus client contains mainly the user- 
interface code in webster . c, and the Server Access Agent 
incorporates the code for accessing the server. 

The computer game snake is a display-based chase game, 
and was written as monolithic software to help people famil- 
iarize themselves with text editor v i .  To develop a distributed 
version of this game, we first split the original source code 
into two parts: one contains mainly user-interface routines, 
and the other implements the rules of the game. The service 
operations are defined in light of the interactions between 
these two modules. The snake client contains the user-interface 
routines and invokes the service operations through CygnusC 
service acquisition facilities. Two snake servers with different 
interfaces were developed: one of them exports its interface 
through Sun RPCKDR protocol, and the other uses the NCS 
RPC/NDR protocol. Two corresponding Server Access Agent 
programs also exist. The only differences between those two 
agent programs are that they use different binding protocols to 
establish links to the servers and convert service operations to 
different remote calls. Their interfaces to Cygnus clients are 
the same. The logging-and-replay descriptor for this service 
instructs the logger not to replay the operations for refreshing 
the screen. 

The computational vision service is designed to analyze 
two-dimensional or three-dimensional images by using the 
generate-and-test (or hypothesize-and-test) approach. The ser- 
vice operations are presented to the client code as a set 
of re-entrant library routines. The computations, however, 
are performed by remote servers that may run on Sun 4 
workstations, Apollo DN4000 workstations, or Alliant FX- 
8 compute servers. To avoid running a specialized daemon 
process on each of the server machines for this service, the 
servers are created by the Server Access Agents dynamically 
via BSD UNIX rexec system call. Only one Server Access 
Agent program was written for this application. The Service 
Access Monitor replays only the last incomplete service access 
request when a server access fails. The service access requests 
and associated execution results are not logged, because each 
service operation represents an atomic computation. There 
is no state information needed to be restored for a broken 
service-server link. 

'I1. OTHER ?kPICAL APPLICAT1oNs OF THE To the best of our knowledge, none of the existing dis- 
TO date, the service acquisition mechanism has been imple- 

mented on Sun 3 workstations running Mach or SunOS 4.x, 
Sun 4 workstations running SunOS 4.x, IBM RT running BSD 

tributed systems provides a comparably uniform approach 
to supporting these services for the client applications. For 
example, most of the contemporary distributed systems have 
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problems in supporting fault tolerance and in accommodating 
server protocol heterogeneity. Specialized service acquisition 
systems like Marionette [23] and RM [24] cannot enhance the 
resilience of service access links as our service acquisition 
mechanism does. Language-based distributed systems like 
Argus [15], Emerald, and DEC HDS requires an instance of 
the language run-time to run on each of the participating hosts, 
whereas the Cygnus service acquisition system needs to be 
installed only on the client hosts. Command-interpreter-based 
approaches like the Profile shell [21] and Wills shell [28] have 
difficulty in providing application routines with services like 
our computational vision service. 

VIII. EXPERIENCE AND LESSONS LEARNED 

Below we outline some of our experiences in implementing 
and using the service acquisition mechanism, the CygnusC 
programming language, and the applications. 

0 Generality is useful, but domain structure must be 
used to regulate generality. This work was motivated by the 
issues arising from the increasing prevalence of independently 
developed network servers, and the resulting possibilities of 
making a wide variety of services available to clients. The 
client-server model offers a clean and simple framework for 
addressing these issues. The Cygnus service request primitive 
is general enough to enable the client to specify whatever 
server capabilities and service access interfaces it desires. The 
Cygnus service access primitive can be used to access many 
network services under an RPC paradigm. 

However, we found unmitigated generality to be a hindrance 
to disturbed computing. In their raw form, the Cygnus prim- 
itives can be very general and powerful, but they are not 
always useful to application creators. Programmers often just 
need to know what service specifications a client is allowed to 
compose, and what service access operations a certain service 
specification defines in some programming language. This 
experience lead us to the work on programming language 
support for the Cygnus service acquisition mechanism (see 
Section V). 

Similarly, at one point, we thought that we needed a 
Smalltalk-like object-oriented model to address the issues 
raised in Section I-A, but soon realized that such a model 
was far too general to provide a useful perspective on the 
issues. It became apparent that the use of a computational 
model should be justified only in the context of a well-defined 
problem domain. Generality does not automatically help at all 
levels. 

0 Descriptive naming is a good approach to realizing the 
client-service model when used properly. Our experience 
with the applications that we have built verifies that expressing 
server capabilities via name-value pairs is a good approach 
to realizing the client-service model (see Section 11-A) when 
the flexibility can be controlled well. Completely unstruc- 
tured descriptive names can be messy, and it is important 
to introduce rules or conventions to restrict the mechanism’s 
power. For example, a Cygnus service specification is now 
analyzed by first extracting the CONTEXT field from the 
specification to determine which routine to invoke to analyze 

the remaining name-value pairs. This scheme can be used 
recursively; successive routines may analyze remaining name- 
value pairs partially and pass the rest to other routines to finish 
the analysis. This service specification analysis scheme permits 
us to provide new services for the client by introducing new 
service attributes and new Service Specification Interpretation 
Modules (see Section 111-D), without worrying about the 
possibility that a partial change in semantics would have 
global effects. It also facilitates easy modification of current 
service specifications and the maintenance of interpretation 
modules. 

0 The server-independent service-server reconfiguration 
mechanism is useful, but may complicate the task of 
interpreting service specifications. Although the implemen- 
tation of the logging-and-replay mechanism used by the Ser- 
vice Access Monitor is not fancy, it performs well when 
the state of the client-service link can be restored by re- 
playing the logged service access operations on the new 
Server Access Agent. When the Server Access Agents for 
a service support a common set of service state check- 
pointing and reset operations, the Service Access Monitor 
can reduce the reconfiguration cost further by intelligently 
recording the state from time to time transparently to the 
client. Thus, like table-driven syntax analyzers, the Service 
Access Monitor becomes a generic descriptor-driven fault- 
tolerance mechanism that can be used or shared by many 
applications. 

We recognize that server-dependent fault-tolerance mech- 
anisms are still necessary because the logging-and-replay 
mechanism is not applicable to all kinds of services (see 
Section 111-A), especially when the server state is part of 
the client-service state and cannot be recorded by the Ser- 
vice Access Monitor. These mechanisms may also be pre- 
ferred over the server-independent ones when they incur 
less performance overhead. Since the logging-and-replay de- 
scriptor and Server Access Agents for a service acquisi- 
tion session are determined by a Service Specification Inter- 
pretation Module, the task of interpreting service specifica- 
tions can be complicated when the choice between server- 
dependent and server-independent mechanisms is not straight- 
forward. 

0 Security issues in Cygnus must be addressed by mecha- 
nisms native to the client host. We thought it was unnecessary 
to incorporate a security mechanism directly into our prototype 
implementation of the Service Acquisition System (see Fig. 3) 
because the security mechanisms local to the client should take 
precedence over any that the Service Acquisition System might 
use. The Cygnus Service Acquisition System must be modified 
when its execution could break some security rule enforced 
on the local host. Thus, it is important to realize that more 
efficient implementations of the Service Acquisition System 
must be done in conformance with the local trust model and 
security mechanisms. 

As an example, implementing the Cygnus Service Acquisi- 
tion System components by a dynamic linking facility might 
improve the performance of accessing remote servers in high 
trust systems, but might violate several local security rules in 
widely used multitasking computing environments. 
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On our client hosts, the Cygnus IPC mechanism is supposed 
to be secure. The Service Acquisition System is assumed 
to be trusted enough to access data and acquire server ca- 
pabilities on behalf of the client. In order to support this 
trust model on our multiuser Unix workstations, the Service 
Acquisition System components belong to the super user 
root. They use the setuid ( ) system call to change their 
real and effective ID when it needs to access personal files 
or to execute a program (which may be a shell script) on 
behalf of the client. From the viewpoint of the server, the 
Service Acquisition System is part of the client software. 
As an RPC, run-time is to the RPC client module, so is 
the Service Acquisition System to the client. Although this 
scheme is vulnerable to many kinds of threats, it seems to 
work pretty well in academic or industrial research computing 
environments. 

IX. CONCLUSION 
The increasing prevalence of networked servers has resulted 

in a great demand to increase the use of the servers 
and to reduce the development and maintenance cost of 
robust client applications. The Cygnus service acquisition 
mechanism provides the client a clean, simple view of 
server capabilities and a uniform, reliable service access 
interface that is independent of the interface exported by 
the ultimate service provider. The mechanism could be 
easily supported by C-like typed procedural languages. 
Several typical and useful applications have been devel- 
oped to ensure the quality of the mechanism. Our work 
suggests that the mechanism facilitates the development, 
use, and maintenance of client and server software in 
large heterogeneous distributed systems comprising many 
autonomous servers. It also shows that the overhead of 
invoking remote server operations via the mechanism can 
be insignificant. 
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