
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997 291

Distributed Center-Location Algorithms
David G. Thaler and Chinya V. Ravishankar,Member, IEEE

Abstract—Recent multicast routing protocol proposals such
as protocol independent multicast (PIM) and core-based trees
(CBT) have been based on the notion of group-shared trees.
Since construction of a minimal-cost tree spanning all members
of a group is difficult, they rely on center-based trees and
distribute packets from all sources over a single shortest-path
tree rooted at some center. PIM and CBT provisionally use
administrative selection or simple heuristics for locating the
center of a group but do not preclude the use of other methods
that provide an ordered list of centers. Other previously proposed
heuristics typically require knowledge of the complete network
topology, a requirement which is not always practical for a
distributed problem such as Internet routing. In this paper we
investigate the problem of finding a good center in distributed
fashion, study various heuristics for automating center selection,
and examine their applicability to real-world networks. We also
propose several new algorithms which we feel to be more practical
than existing methods. We present simulation results on hierar-
chical and nonhierarchical networks showing that of the methods
potentially feasible in the Internet multicast backbone, ours offer
the best results in terms of cost and delay, and they incur low
overhead.

Index Terms—C. ommunication system routing, layout, multi-
cast channels, multicast communication, networks, trees (graphs).

I. INTRODUCTION

M ULTICAST technology allows point-to-multipoint
communication and enables the use of multimedia

applications such as voice and video transmission over the
Internet. Multicast methods typically use spanning trees and
minimize delay by distributing packets along the shortest path
between a receiver and a sender. The collection of shortest
paths from a data source to all receivers is known as a
source-specific tree.

The collection of routers in today’s Internet with multicast
capability form the multicast backbone (MBone) [1], in which
multicast groups consist of dynamic sets of receivers (also
called members) and senders to a group are not required to
be members of the group. A group may have a single data
source, as for a video broadcast, but in the general case there
can be many sources per group.

As the number of multicast groups and sources grows, the
amount of state required at each multicast router grows. One
method to reduce this state usesgroup-shared trees, in which
data from all sources in a multicast group is distributed along
a single shared tree, rather than a separate tree for each source.
This obviates the need to keep per-source information for the
multicast group at each intermediate router.

Manuscript received January 23, 1996; revised August 14, 1996. This work
was supported in part by the National Science Foundation under Grant NCR-
9417032.

The authors are with the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, MI 48109-2122 USA.

Publisher Item Identifier S 0733-8716(97)02261-0.

Ideally, a group-shared tree would use a minimal spanning
tree to minimize total bandwidth usage, at the expense of end-
to-end delay. Finding this tree for some subset of nodes in a
graph is known as the minimal Steiner tree problem and is
known to be NP-complete [2]. Previously proposed heuristics,
surveyed in [3], typically require knowledge of the complete
network topology, which is impractical for the Internet.

A simpler approach to constructing a group-shared tree,
proposed by Wall [4], is to use acenter-specific tree. In this
approach, a single node is chosen near the center of the group.
The group-shared tree then becomes the shortest-path tree
rooted at that node. Wall shows that a topologically centered
tree gives a delay bound of twice that of source-specific trees.
If the root is moved to a group member, the bound becomes
three times that of source-specific trees.

The advantages of a center-specific tree over a minimal
Steiner tree thus include bounded delay and simpler imple-
mentation. Wei and Estrin [3] show that in terms of total
bandwidth usage, center-specific trees lie somewhere between
the minimal Steiner tree and source-specific trees.

Recent multicast routing protocol efforts, such as protocol
independent multicast (PIM) [5] and and core-based trees
(CBT) [6], rely on the notion of center-specific trees. In
CBT, group-shared trees have centers called “cores.” In PIM,
a group-shared tree is rooted at a rendezvous point (RP).
Both terms are conceptually equivalent, and we will refer
to the root of a center-specific tree as simply acenter. In
both protocols, the mechanism for distributing the center’s
identity is orthogonal to the method for choosing a center.
An analysis of distribution mechanisms and their overheads
and convergence times is outside the scope of this paper.

While locating the best center is simple given complete
topological information, such information is not always avail-
able in distributed routing protocols. Current approaches typ-
ically use either administrative selection of centers or some
simple heuristic.

In this paper we investigate the problem of finding a
good center in a distributed fashion and examine various
heuristics for automating center selection. We also propose
new heuristics and center-location protocols.

The remainder of this paper is organized as follows.
Section II details several previous proposals. In Section III, we
present new center-location algorithms. Section IV describes
our simulation results, and Section V covers conclusions and
the future.

II. PREVIOUS WORK

A number of methods have already been proposed for center
location. In this section we present a brief overview of such
methods and their performance. As a reference for comparison,

0733–8716/97$10.00 1997 IEEE

292 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

we use an “optimal” center-based tree (OCBT) chosen by
calculating the actual cost of the tree rooted at each node in
the network and picking one which gives the lowest maximum
delay over all those with the lowest cost.

In the random source-specific tree (RSST) heuristic, the
center is chosen randomly among the sources and does not
move. Doar and Leslie [7] found the ratio of the costs of
this approach to the optimal minimal Steiner tree cost to be
typically between one and two in random graphs of average
node degree three to six. The RSST approach is also equivalent
to selecting the first source or the initiator of the multicast
group, as suggested by PIM [5] and CBT [6]. Note that this
approach only gives a single center, rather than a list of
possible centers which is required for fault tolerance.

Wei and Estrin [3] show that the minimum shortest path
tree (MSPT) approach performs almost as well as OCBT and
suggest that it is adequate for use with center-based trees.
This approach requires calculating the actual costs for the trees
rooted at each group member and chooses the member with the
lowest cost. Wall [4] shows that such a tree has a delay bound
of three times that of a source-specific tree for each source
(whereas a topologically centered tree has a delay bound of
two times that of a source-specific tree for each source). We
observe that the MSPT approach reduces to OCBT when all
nodes are group members.

Wall presents the following three center-location algorithms
in [4], which operate on all nodes in the network.

The maximum-centered tree (MCT) algorithm picks the
node with the lowest maximum distance to any group member.
The average-centered tree (ACT) algorithm picks the node
with the lowest average distance to all group members. The
diameter-centered tree (DCT) algorithm finds the node which
is the midpoint of the lowest maximum diameter, defined as
the sum of the distances to the two furthest away nodes.

The tournament-based center-location protocol (TOUR-
NEY), proposed by Shuklaet al. [8], [9], runs a tournament
between nodes to determine a center. Sources are initially
paired with group members in decreasing order of distance,
and remaining nodes are paired randomly with byes inserted
appropriately. The winner of a pairing is determined by finding
the node intermediate on a path between the pair. This requires
either knowledge of the network topology or an exchange of
route tracing messages for each pair in order to discover the
necessary topological information. The tournament continues
for rounds until one winner remains, where is
the number of sources and members in the multicast group. It
thus potentially involves cooperation between nodes.

Finally, we introduce for comparison a globally centered
tree (GCT) algorithm, which picks the node with the lowest
average distance to all other nodes in the network regardless
of group membership. This is intended to modela priori
administrative selection of a center at some central network
location.

III. I SSUES AND ALTERNATIVES

In a distributed environment, topological information is
often distributed across all nodes, so that no single node has
complete topological information. Thus, an ideal algorithm to

locate the center of a multicast group should require only
a small amount of information at each node and minimal
interaction between neighboring nodes. We emphasize that
multicast groups have dynamic memberships, and thus the
optimal center will change over time.

This paper studies the problem of finding good centers
in distributed fashion. We will examine some previously
proposed heuristics and then propose several new ones. To
support reliability, we extend the problem to that of finding
the best nodes to use as centers. We can then construct
an ordered list of centers to use as backups, should the best
center fail.

We define thecostof a tree to be the sum of the costs of the
links in the tree. If the cost of every link is one, the tree cost
is the number of links in the tree. The cost for a group-shared
tree currently in use by a multicast group can be determined
with a simple algorithm. “Leaf” nodes would report a subtree
cost of one to their parent, while intermediate nodes would
add up the subtree costs reported by child nodes and report
the sum (plus one for itself) up to its own parent.

Such a method is less useful in finding the best root to
use for a center-specific tree in a network of nodes. In
practice, it is not feasible to construct all trees for a
given multicast group in a distributed environment. Also,
subtree costs can only be calculated in this manner for a
functioning multicast group. Other off-tree nodes may not have
the necessary information to do this calculation.

To calculate the actual cost of a tree for an arbitrary center,
we must know the complete network topology and the list
of group members. While link-state routing protocols such
as open shortest path first (OSPF) [10] maintain topological
information for a local domain, complete global network
knowledge is not available. Any algorithm which requires
complete knowledge is not useful across the MBone, as we
require. Algorithms which compute actual tree costs may thus
not be practical.

The list of multicast group members may also be unknown.
PIM, for example, assumes that a rendezvous point (i.e.,
center) has (at best) a list of sources only, rather than a list
of all group members. On the other hand, it may be possible
to modify the routing protocol to maintain membership lists
or perhaps to obtain the list of group members from some
external protocol or application. For example, existing MBone
applications such asvat, wb , andvic all maintain lists of
group members.

Finally, the question arises as to when or how often a center-
location algorithm should be executed. Overhead arises both
from the cost of protocol messages and, where required by
applications, retransmissions due to loss of data. Currently, it is
not well understood how much of an effect changing the center
of an active group in PIM or CBT will have on the loss of data,
but we believe that the effects could be made arbitrarily small
(at the expense of performance) by reducing the frequency at
which the algorithm is executed. When applications know the
sourcesa priori but not necessarily the receivers, techniques
which only require knowledge of sources would be useful. In
such cases, an algorithm could be run once at the outset and
never again.

THALER AND RAVISHANKAR: DISTRIBUTED CENTER-LOCATION ALGORITHMS 293

The optimal center is unlikely to move very much for groups
with a relatively large number of members at steady state, with
members leaving and joining randomly. On the other hand,
once the center has been determined for small groups with
dynamic membership, the tree will gradually degrade toward a
randomly-centered tree as nodes join and leave the group, until
the center-location algorithm is run again. Thus, there exists a
tradeoff between overhead and maintaining a good tree.

A. New Proposals

Although some approaches such as RSST or TOURNEY
are exceptions, many center-location algorithms operate by
picking a node with minimumweight, where the weight is
some function of measures such as cost or delay. Existing
algorithms of this type generally fall into one of the following
two classes.

Class A: All network nodes participate, using a list of
group members. This includes algorithms such as
OCBT, MCT, ACT, and DCT.

Class B: All group members participate, using a list of
group members. This includes algorithms such as
MSPT.

In addition to these classes, we propose for study the
following four new classes of algorithms in this paper.

Class C: All network nodes participate, using only a list of
sources.

Class D: All group members participate, using only a list
of sources.

Class E: A hill-climbing algorithm (detailed below in
Section III-A1) is used to find a local minimum,
using a list of group members.

Class F: A hill-climbing algorithm is used to find a local
minimum, using a list of sources.

Classes C, D, and F may be appropriate for routing protocols
such as PIM which avoid enumerating all group members but
do require centers to enumerate all sources. We should expect
that these classes will pick a node near the center of all the
sources, rather than the receivers.

1) Two New Minimization Protocols:Distributed algo-
rithms which require all nodes in the network to participate
(as Classes A and C do), typically work by having all nodes
exchange information with their neighbors, keeping the best
costs thus far. However, in a large network such as the MBone,
it is infeasible to require that every node in the network have
a list of all members for every multicast group. It is quickly
becoming impractical even to require every node to maintain
a list of sources for each multicast group, which was a strong
motivation for center-specific trees in the first place. Thus,
while Classes A and C are not practical for general use, we
include them for comparison.

For Classes B and D, we propose the following protocol to
find the best nodes which minimize a weight function using
a list of group members/sources.

Minimal Member Protocol (MIN-MEMB):

1) When the multicast group is created, it has only one
member, which becomes the center. As nodes join or

leave the multicast group, the center can migrate as
group members execute the following steps periodically.

2) The center starts a timer with a fixed duration
and waits until it expires. This timer determines how
frequently the center location algorithm runs, and thus
how much overhead the protocol will incur.

3) The center calculates its own weight according to some
predefined function such as the ones described below
in Sections III-A2 and III-A3. It then multicasts its
own weight plus the list of group members/sources if
necessary, to all group members and starts a second
timer with a fixed duration.

4) Any group member which is willing to become a center
then computes its own weight using the given list and
waits a random amount of time () during which it
listens for replies from other group members.

5) When a member’s timer expires, it multicasts its own
weight to all group members if its own weight is less
than the th lowest weight heard so far.

6) Once the initiator’s timer expires, the node reporting
the lowest weight is chosen as the next center. The
process then repeats from step 2). To avoid frequent cen-
ter migrations, the center’s timers can be set to some rea-
sonably high values, and the center can refuse to relin-
quish the position of center unless the weight improve-
ment is above some threshold. (Note that if the threshold
is infinite, this reduces to the simple RSST model.)

Each round thus requires an average of between
and messages (for and , respectively) to
determine the list of best nodes, where is the number of
members in the group. The associated overhead of constructing
a center list is therefore . We note that the time must
also be scaled proportional to, decreasing the timeliness of
the information when there are a large number of members.
We do not expect this to be a problem, however, since, as
we will later see, individual changes in the group membership
have a far less significant effect on center location accuracy
when the number of members is large.

The majority of the algorithms previously described which
are actually feasible limit the center to be one of the group
members or one of the sources. We now present a method to
relax this restriction.

For Classes E and F, we propose the following protocol to
construct a list of up to best nodes which minimize a weight
function using a list of group members/sources.

Hill-Climbing Protocol (HILLCLIMB): A path list holds
the list of nodes in the “path” formed by traversing toward
neighbors with better weights. This path list is used to ensure
that the algorithm terminates. It is also trivial to impose a
maximum path length so that the algorithm terminates after
a certain number of hops. The protocol works as follows,
starting with an empty path list and a weight function known
to all nodes.

1) When the multicast group is created, it initially has
only one member, which becomes the only center in the
list of possible centers. The following steps then occur
periodically.

294 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

2) The center starts a timer with a fixed duration and
waits until it expires. It then starts a probe.

3) The probing node queries its neighbors for their weights
by sending them the list of group members/sources. It
then restarts the timer so the algorithm will eventually
resume from this step if a message below is lost.

4) Each neighbor calculates its own weight according to the
weight function and responds.

5) The probing node then updates the list ofbest centers
to account for the new information.

6) If the probing node’s own weight is lower than the lowest
neighbor weight, we proceed from step 11).

7) If all best neighbors are already in the path list, we go
to step 11).

8) The probing node adds itself to the list of visited nodes.
9) The probing node picks an unvisited best neighbor to be

the next probing node.
10) The old probing node sends the path list and group

member/source list to the new probing node, which then
proceeds from step 3).

11) The final probing node sends a message back to the
center, which is the first node in the path list, informing
the center of its weight.

12) The final probing node then becomes the new center
and repeats the process from step 2). Again, to avoid
frequent center migrations, the center’s timer can be set
to some reasonably high value, and the center can refuse
to relinquish the position of center to another node unless
the weight improvement is above some threshold. Thus,
the long-term overhead can again be made arbitrarily
low.

The average number of messages exchanged in determining
the center list with this algorithm is equal to ,
where is the average node degree, and is the number
of hops in the path list. The overhead of constructing a center
list is therefore . As we will later see, is typically
very small, so that the overhead of HILLCLIMB is much
less than that of MIN-MEMB. However, the centers in the
resulting list generated by HILLCLIMB tend to be located in
the same general vicinity, whereas MIN-MEMB yields a more
geographically-distributed list. We would expect HILLCLIMB
to exhibit less data loss than MIN-MEMB when a center fails,
since the new tree may have many links in common with the
old tree. On the other hand, when a network partition occurs,
it is less likely that all centers chosen by MIN-MEMB will be
unreachable than those chosen by HILLCLIMB.

2) Weight Functions Studied:Functions proposed by oth-
ers for minimizing include the actual tree cost [3], the average
delay, the maximum delay, and the maximum diameter [4].
Although previous work has only dealt with functions for a
single algorithm class, we will generalize the functions to
apply to any of the six classes described in Section III-A.

Let be the node list used by nodes participating in the
algorithm. Thus, is the set of multicast group members for
Classes A, B, and E. For the remaining classes,is the set
of sources. We then define the following weight functions for

a given set and root

Actual Cost number of links in tree rooted at

and extending to all of (1)

Max Dist (2)

Avg Dist (3)

Max Diam

(4)

where is the distance from to .
To reiterate,Actual Costdoes not lend itself well to dis-

tributed computation for a large number of groups. However,
the other weight functions all rely on local distance infor-
mation and are thus applicable to routing domains where the
distance to other nodes is known (as is true in today’s MBone).
In Section IV-E, we evaluate how these weight functions
perform with various algorithms.

3) The Estimated Cost Function:Our work suggests that it
is useful to define another function describing anestimated
tree cost, calculated by taking the average of the maximum and
minimum bounds on tree cost. To estimate costs, we will again
use the distance for each possible destination, information
which is already available to routers.

To get a lower bound on the cost of a tree rooted at some
node, we observe that the best-case tree is linear. In this
case, all group members lie on the path from the root to
the farthest member, so that the cost of the tree is simply
the maximum distance from the root to any group member.
When the distances are given as hop counts, we can get a
slightly tighter bound. Specifically, if two group members are
at an equal distance, the distribution tree cannot be completely
linear, but must have at least one additional link. Thus

Est Cost number of

duplicate distance nodes in

To get an upper bound on the cost of the tree rooted at
some node, we note that in the worst case, no links are shared
among the paths to each member. Thus, the maximum tree cost
is the sum of the member distances. If the number of group
members (other than the root, if it is a member) is greater than
the node degree, we may tighten the bound by subtracting the
difference to account for the knowledge of sharing those links.
If distances are given in hop counts, we get

Est Cost

if

otherwise.

We now define

Est Cost
Est Cost Est Cost

(5)

THALER AND RAVISHANKAR: DISTRIBUTED CENTER-LOCATION ALGORITHMS 295

Although routers also keep the identity of the next hop
neighbor used to reach each destination, in general, one cannot
use this information to draw conclusions about distant nodes
on the actual multicast tree. This is because the actual tree may
be using reverse paths (shortest path from each group member
to the root) rather than forward paths (from the root to each
group member), so that a member may be on a subtree rooted
at a different neighbor than the listed next hop. This typically
occurs when multiple equal paths exist.

B. Using the Estimated Cost Function

We now present several new algorithms, corresponding to
several of the classes from Section III-A, that use the estimated
cost heuristic of Section III-A3.

Class B: The minimum estimated member-member tree
(MEMMT) heuristic uses the MIN-MEMB pro-
tocol with the list of all multicast group members
to find the member with the lowest estimated tree
cost. This is equivalent to MSPT except that tree
costs are estimates only. This approach may be
feasible since, as has already been mentioned,
group members may alreadyhave a list of all
other members.

Class D: The minimum estimated member-source tree
(MEMST) heuristic is motivated by the fact that
in the existing PIM specification, a rendezvous
point (center) knows only the list of sources,
rather than the list of all group members. MEMST
uses the member whose tree to all sources (only)
contains the least number of estimated links,
thus choosing a node closest to the center of
all sources. Note that this reduces to RSST for a
single source which is a member and to MEMMT
when all members are sources.

MEMST again uses the MIN-MEMB protocol,
except that the list of sources is used in place
of the list of group members. This approach is
feasible in light of the fact that the current center
may already maintain a list of sources, as in PIM.

Class E: The member-based hill-climbing algorithm (HC-
M) uses the HILLCLIMB protocol with estimated
cost as its weight function. It requires a list of
all members in the multicast group to be passed
along the path.

Class F: The sender-based hill-climbing algorithm (HC-S)
functions like HC-M except it uses only a list of
sources.

Table I summarizes the requirements of the various algo-
rithms which have been described above.

IV. PERFORMANCE STUDIES

In our simulations, all links were symmetric with unit cost,
so that tree cost is simply the total number of links in the
tree. For the purpose of constructing trees, we also assume all
sources are also group members. Each simulation point reflects
an average over 500 runs, using an average node degree of
four unless otherwise specified.

TABLE I
REQUIREMENTS OFCENTER-LOCATION ALGORITHMS

1Although knowledge of the underlying topology is not ex-
plicitly assumed by OCBT and MSPT, some knowledge is
necessary for computing the actual tree costs.

A. Generating Random Graphs

To avoid limiting ourselves to any specific network, we gen-
erate random network topologies which exhibit connectivity
characteristics approximating real-world networks.

We use the random graph model presented by Waxman
[11], where nodes are randomly distributed over a Cartesian
coordinate system. The probability that an edge exists between
any two nodes and is given by the probability function

where is the distance between the two nodes,is
the maximum possible distance, andand are parameters
in the range . Larger values of increases the
proportion of longer edges to shorter edges, while larger values
of increase the average node degree.

Graphs are then generated until one is found which has a
single connected component.

B. Generating Hierarchical Random Graphs

To address scalability issues in the MBone, Thyagarajan
and Deering [12] have recently proposed using a hierarchy.
We therefore examine the performance of center-location
algorithms in hierarchical networks, where nodes are divided
into regions connected by a backbone.

To generate random hierarchical graphs, we used eight
regions of 50 nodes each. A random graph with average node
degree four was generated for each region, and a random
graph with average node degree 2.5 was generated for the
backbone. Two nodes in each region were randomly selected
as interregion gateways. Since each backbone node represented
an entire region, each backbone link for a region was randomly
assigned to one of the two interregion gateways.

296 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

C. Parameters of Interest

We will analyze the performance of various center-location
algorithms according to two criteria: actual tree cost and maxi-
mum source-to-destination delay. Actual tree cost is measured
using theActual Costmetric defined in Section III-A2. For
delay, we measure the maximum distance between any source
and any other multicast group member over a tree rooted at a
given center. We use the following definition, given a root, a
set of sources , and a set of group members :

Max Delay TreeDist (6)

where TreeDist is the length of the shortest path
between and along links in the tree rooted at .

We must bear in mind that this concept is fundamen-
tally different from the Max Dist weight function defined in
Section III-A2, which only measures the maximum distance
from theroot to any group member, rather than from a source.

In practice, a lower tree cost reduces overall bandwidth
requirements and effectively raises the number of multicast
groups that can be supported by the network. This is especially
important since it is expected that the number of multicast
groups will become very large in the future. A lower maximum
delay, on the other hand, means that packets from sources will
tend to arrive at their destinations sooner. A tradeoff exists
between these two goals, as we will see in the following
sections. We note, however, that delay is much less critical
than tree cost when the option exists, as in PIM, to use
shortest-path trees for delay-sensitive applications.

We now examine the performance of the various classes of
algorithms and weight functions according to these criteria.
Two other parameters that we expect to significantly affect
the performance are the fraction of network nodes which are
group members and the number of sources per group. These
are important because in practice, we require center-location
algorithms to scale well for groups with many members and
sources.

D. Analysis of Group Dynamics

To determine how often a center-location algorithm should
be run, we must determine how quickly a tree degrades as the
group membership changes. We start with an optimal tree as
determined by OCBT and let the membership change through
events corresponding to nodes joining or leaving. For the
probability that a given event corresponds to a node joining
the group, we will use the function

where is the number of nodes in the network, is the
current number of group members, andis a parameter in
the range representing the fraction of nodes which
are members at equilibrium [7], [13]. Thus, when

, when , and when
.

Fig. 1 gives the results of this simulation, using 400-node
graphs with ten members and five senders. The lineRandom
Centerindicates the ratio of the expected cost of a tree rooted

(a)

(b)

Fig. 1. Cost degradation of dynamic group.

at a randomly-selected center to that of an optimal tree. The
line Original Center indicates the cost ratio between the new
tree rooted at the original center and an optimal tree. The
parameter indicates the amount by which the group has
changed, as given by

where is the original group membership and is the
current group membership. From these graphs, we see that the
cost of keeping the original center as the membership changes
approaches that of using a randomly-centered tree. We also
observe that a strong correlation exists betweenand the tree
cost, suggesting that a threshold for recomputing the center
could be based on , which is much easier to compute locally
than tree cost. For this simulation, we see that after about 40
events, 90% of the membership had changed, and tree cost had
likewise degraded about 90% of the way toward a randomly
centered tree.

Almeroth and Ammar [14] describe one study of observed
group dynamics on the MBone. For example, a Space Shuttle
broadcast over an 11-day period saw 5055 member connec-
tions of average duration 300 min, giving an average group

THALER AND RAVISHANKAR: DISTRIBUTED CENTER-LOCATION ALGORITHMS 297

Fig. 2. Events until 90% membership change.

size of 96 and an average event rate of 0.64 events/min. From
our simulations, we estimate that this type of group would
take over 12.75 hours to reach a 90% membership change
(assuming 2500 subnets in the MBone and at most one member
per subnet).

Fig. 2 shows the average number of events () needed
to reach a 90% change in group membership for networks
(hierarchical or not) of 2500 nodes. An average over 100 000
trials was calculated for group sizes of 5, 10, 20, 50, 100,
150, and 200 members, giving values for ranging from
approximately 22 to 1275 events. The average time until
90% membership change (denoted) can be determined
as /(mean event rate). Assuming that group membership
does not grow without bound, we have (mean join rate)
(mean leave rate) (mean event rate)/2. Little’s theorem tells
us that (average group size) (mean join rate) (average
connection duration). Putting these together, we obtain the
following formula:

average connection duration
average group size

Thus, the 90% membership change time typically lies between
two and three times the average connection duration in our
simulations. Since global membership changes may not be
observable at individual nodes, the criteria above can be
used to determine an appropriate period for running a center
selection algorithm based on expected characteristics.

E. Analysis of Weight Functions

First, we will compare the effects of using weight functions
(1)–(5) from Sections III-A2 and III-A3. We start by running
Class A algorithms which will choose the network node which
minimizes each of Actual Cost, Est Cost, Avg Dist, Max Dist,
and Max Diam. Fig. 3 shows the results of 100 trials using five
senders in a 50-node network as the number of members in the
group varies. Each weight function was used on the same set
of 100 graphs. The -axis plots the ratio between the average
Actual Cost at a center located using each weight function
and the optimal center location as determined by minimizing
Actual Cost. Several facts are apparent from these two plots.

(a)

(b)

Fig. 3. Cost versus delay of functions.

We see that the weight functions which give the best actual
cost typically give the worst average delay, showing that a cost
versus delay tradeoff exists. The Max Diam weight function
gave the best maximum delay, while our Est Cost function
gave the best tree cost.

Interestingly enough, the Max Dist measure provided worse
maximum delay than did Max Diam. This is due to the
fundamental difference between the Max Delay measured,
which is from asourceto a group member, and the Max Dist
function, which minimizes the maximum delay between the
root and the group members. Max Diam, on the other hand,
is not as biased toward a single distant member.

The Avg Dist function did not perform as well since it
tries to provide a loweraveragedelay and may yield higher
maximum delays. While the actual values in all cases depend
on parameters such as the number of nodes and senders, the
relative positions of points remained relatively constant under
different conditions in our simulations.

Finally, when all nodes are members of the multicast group,
the tree will include every network node. In this case, every
tree will have exactly links. The location of the center
has no effect on Actual Cost, and all algorithms converge as
shown.

298 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

(a)

(b)

Fig. 4. Performance of classes using a list of members.

F. Analysis of Algorithm Classes

Next, we wish to see where the various algorithm classes
lie in terms of cost versus delay. For this analysis, we pick
Est Cost as the weight function and run the algorithm for each
class using this function. Figs. 4 and 5 show the results of
500 trials using 20 members in a 50-node network, as the
number of sources in the group varied. The-axis again plots
the average ratio between the Actual Cost at a center located
using each class of algorithm and the optimal center location
as determined by minimizing Actual Cost. The hill-climbing
algorithm for Classes E and F used a random sender as the
initial location.2 Each class of algorithm was run on the same
set of 500 graphs.

For the relationships between Classes A–D, these results
only confirm what was already intuitive: A and C give better
tree costs than B and D since they find the best node in the
network, while B and D are limited to the best node which
is a group member. Similarly, A and B give better tree costs
than C and D since they use more complete information to
compute weights.

However, what is interesting from Figs. 4 and 5 is the
performance of the hill-climbing Classes E and F. These results

2Simulation showed that hill-climbing was relatively insensitive to the
location of the initial node.

(a)

(b)

Fig. 5. Performance of classes using a list of sources.

indicate that they provide better performance than Classes
B and D which locate the center at a group member. As
a reminder, Classes A and C are infeasible in real world
networks but are shown simply for comparison.

G. Analysis of Proposed Algorithms

Having analyzed the performance of the various algorithm
classes and weight functions, we now compare the actual
center-location methods which have been proposed, since
several of them do not fall into the category of algorithms
analyzed above.

Fig. 6 shows the effects of varying the group size on the
proposed algorithms. For simplicity, we have limited these
plots to the algorithms which may be feasible. For reference,
we include MSPT, which is feasible only in a limited domain.
This simulation was run on 50-node graphs with five senders.
The results for other values of these parameters were similar.

RSST performed the worst in terms of both cost and delay,
which is hardly surprising. Although none of the algorithms
performed as well as MSPT in terms of cost, they each provide
better performance than RSST, with HC-M being the best
overall, followed closely by MEMMT.

When there are few members in the group, the percent
difference in delay is higher simply because the tree cost is

THALER AND RAVISHANKAR: DISTRIBUTED CENTER-LOCATION ALGORITHMS 299

(a)

(b)

Fig. 6. Effects of group size on proposed algorithms.

much lower. Therefore, the difference in maximum delay is a
higher proportion of the actual value.

It is interesting to note that near 100% membership, the
algorithms give worse delay. This is because when all nodes
are members, every tree has exactly links regardless of
the center location. Thus, the algorithms essentially become
more random since they do not attempt to optimize for source-
to-destination delay.

Fig. 7 shows similar effects in our hierarchical network
model. While Fig. 6 showed various group sizes within a
single 50-node region, Fig. 7 uses the same group sizes
spread out over eight 50-node regions. This corresponds to a
membership range of 1.25–12.5%, with the number of senders
remaining constant at five.

From these graphs, we can see that the relative performance
of the various algorithms remained relatively stable, although
they were closer to each other in terms of tree costs. For five-
member groups in this simulation, the hill-climbing algorithms
gave trees with a cost of 92% of those used by GCT, rather
than only 85% of the cost as seen in Fig. 6. The hierarchical
topology allows fewer degrees of freedom in constructing
trees, since gateway nodes and backbone links tend to be in the

(a)

(b)

Fig. 7. Effects of group size on proposed algorithms in hierarchical graphs.

tree for most groups and centers. Thus, trees in a hierarchical
network tend to be more similar than in a nonhierarchical
network.

To investigate the effects of varying the number of sources,
we simulated the performance of each algorithm on 50-node
graphs with ten members and one to ten sources. Again, the
results were similar for other parameters. Fig. 8 gives the
results from this simulation.

MSPT’s requirement to compute actual tree costs is not
feasible, but its performance is again shown for comparison.
We see that HC-M, followed by MEMMT, give the best tree
costs since they use a list of all group members. HC-S and
MEMST reduce to the simple RSST for only one sender, and
to HC-M and MEMMT, respectively, when all members are
sources. This is because they use a list of sources, and hence
locate the center near the center of all sources, rather than the
center of all group members.

From the plot on the right, we notice that RSST, MEMST,
and HC-S provide lower maximum delays than the others
when there are few sources. For a single source, this is because
the center will always be located at the source. Thus, all

300 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

(a)

(b)

Fig. 8. Effects of number of sources on proposed algorithms.

packets will follow the shortest path tree, providing the least
delay. As the number of sources increases, the center of the
sources becomes closer to the center of all group members,
and the distance from each source to the center increases. This
latter fact explains the increase in maximum delay.

Fig. 9 shows similar effects in our eight-region hierarchical
network model. As before, the relative performance of the
algorithms remains relatively constant, and the smaller dif-
ferences between them are due to the topological constraints
imposed by the hierarchical model.

For further analysis of the overhead incurred by the hill-
climbing algorithms, we ran another simulation to determine
the average path length traversed in determining the list of
centers. Fig. 10 shows the effects of varying the network
size and size of the member/sender list used. For Fig. 10(a),
400-node graphs were used, while varying the list size. For
Fig. 10(b), 20-node and five-node lists were used as the
network size varied. In each case, hill-climbing began from
a random sender. From these plots we see that the path length
is relatively insensitive to group size and grows slowly with
the size of the network. For these reasons, the hill-climbing
algorithms exhibit good scaling properties.

(a)

(b)

Fig. 9. Effects of number of sources on proposed algorithms in hierarchical
graphs.

Fig. 11 shows the average path length in our hierarchical
network model for various list sizes between 5 and 350. Again,
the results are similar.

Now that we have seen the effects of varying the network
parameters on the performance of the algorithms, it is inter-
esting to see where each lies on the cost versus delay axes.
Fig. 12 elaborates on the results in Fig. 6 corresponding to 50
nodes, five senders, and ten members in the multicast group
(20% membership). We also include the performance of GCT
and Wall’s ACT and MCT algorithms for comparison. We
recall that OCBT, MSPT, ACT, and MCT are all infeasible for
general usage in the MBone today because they require either
the ability to compute actual tree costs or that every node in
the network have a list of group members. From this plot, we
see that of the potentially feasible algorithms, our algorithms
HC-M, MEMMT, HC-S, and MEMST provide better overall
performance than the others.

As pointed out in Section III, once the center location has
been determined for small groups with dynamic membership,
the cost and delay will degrade toward random center place-
ment until the center-location algorithm is run again. This
effect may be less significant for groups at steady state with
a large number of members.

THALER AND RAVISHANKAR: DISTRIBUTED CENTER-LOCATION ALGORITHMS 301

(a)

(b)

Fig. 10. Overhead of HILLCLIMB algorithms.

Fig. 11. HILLCLIMB overhead in hierarchical graphs.

H. Analysis Using Hierarchical Routing

Hierarchical routing can be used to reduce the size of
routing tables needed in a hierarchical network. We assume
a two-level hierarchical network composed of a collection of
interconnected nonhierarchical regions, as in the HDVMRP

Fig. 12. Relative performance of proposed algorithms.

proposal [12] for the MBone. Nodes inside regions maintain
complete routing tables for the region, but know nothing about
the structure of other regions. Each interregion gateway is
preconfigured with a metric for a default route it advertises
within a region. This route is then used by internal nodes to
determine routes to nodes in other regions.

Figs. 13 and 14 show the effects of varying the group size
and the number of senders on the proposed algorithms under
hierarchical routing. We used the same hierarchical model
described in Section IV-B, but with modified routing tables.
To set a default route metric at each gateway, we found the
average distance to all nodes in other regions and used the
closest integer value.

From these two figures, we see that the differences between
the proposed algorithms become almost negligible for groups
with more than a few members. This is because algorithms
which rely on distance information are not able to estimate
distances as well in the presence of default routes. This
problem could be solved by determining distance information
from methods other than the use of routing tables. For exam-
ple, traceroute-like messages could determine actual distances
between each potential center and the group members/senders,
but only by incurring a much higher overhead.

Another method of improving performance would be to use
a hierarchy of trees. Each region with members would select its
own internal center for a tree extending to all internal members
as well as to its interregion gateways. Another tree would be
similarly constructed for the backbone which would extend
to all regions having group members. If nodes inside regions
keep complete routing tables for the region, this model would
then give performance similar to the original nonhierarchical
model within each region.

V. CONCLUSIONS

Recent multicast routing protocol proposals such as PIM and
CBT have been based on the notion of center-specific trees and
distribute packets from all sources over a single shortest-path
tree rooted at some center. For locating the center of a group,
they provisionally use administrative selection of centers or

302 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

(a)

(b)

Fig. 13. Effects of group size with hierarchical routing.

trivial heuristics but do not preclude the use of other methods
as long as they provide an ordered list of centers.

In this paper we have investigated the problem of finding
a good center in a distributed fashion and examined various
heuristics for automating center selection. We have also pro-
posed several new algorithms, including MEMMT, MEMST,
HC-M, and HC-S, which we feel to be more applicable to
real-world networks than existing heuristics which require
knowledge of the complete network topology.

Simulation results for all the algorithms show that of the
ones which may be technically feasible in the MBone, HC-M
offers the best results in terms of tree cost. Of those using
a list of sources, HC-S provides the best results. These
two algorithms also exhibit favorable scaling properties. In
hierarchical networks, the relative performance of the algo-
rithms remain relatively constant, but the differences between
them are smaller due to the more constrained nature of the
network. This suggests that center-location algorithms (as
opposed to random or administrative selection of centers) are
more useful for groups with an intradomain scope than for
those with an interdomain scope, although some improvement
in performance would always occur. On the other hand, if

(a)

(b)

Fig. 14. Effects of number of sources with hierarchical routing.

each domain had its own center for its portion of the tree,
the simulation results using flat networks would again apply,
yielding favorable results.

In the presence of hierarchical routing with default routes,
the differences in trees given by each algorithm become
negligible for groups with more than a few members. A better
scheme in this case would be to construct separate trees for
each region, connected by another tree at the backbone level.

A more difficult problem results when only a subset of nodes
are willing to become centers. This may occur, for example,
if only a subset of the routers have been upgraded to use
a new center-location algorithm. In this situation, MEMMT
and MEMST will both work without modification. Since only
members willing to become centers will respond to a multicast
request, the best site will be chosen from among the candidates
for center. HC-M and HC-S, on the other hand, must be
modified so that each node keeps the closest candidate center
for each interface. The HILLCLIMB protocol would then
use the list of closest candidate centers in place of the list
of neighbors. When all nodes are candidates, this becomes
equivalent to the existing HILLCLIMB protocol specification.
If this problem proves to be of practical significance, it will
require further investigation.

THALER AND RAVISHANKAR: DISTRIBUTED CENTER-LOCATION ALGORITHMS 303

In conclusion, the choice of whether to use a dynamic
center-location algorithm depends on the importance of min-
imizing tree cost versus the time and complexity required.
When minimizing tree cost is critical, a hill-climbing strategy
works best. When the magnitude of improvement (e.g., tens
of percents) is not significant, globally-centered trees are most
appropriate.

REFERENCES

[1] M. R. Macedonia and D. P. Brutzman, “MBone provides audio and
video across the internet,”IEEE Comput.,pp. 30–36, Apr. 1994.

[2] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, June 1988.

[3] L. Wei and D. Estrin, “A comparison of multicast trees and algorithms,”
Comput. Sci. Dept., Univ. Southern California, Tech. Rep. USC-CS-93-
560, Sept. 1993.

[4] D. W. Wall, “Mechanisms for broadcast and selective broadcast,” Ph.D.
dissertation, Stanford University, June 1980.

[5] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L.
Wei, “An architecture for wide-area multicast routing,” inProc. ACM
SIGCOMM,Aug. 1994, pp. 126–135.

[6] T. Ballardie, P. Francis, and J. Crowcroft, “An architecture for scalable
inter-domain multicast routing,” inProc. ACM SIGCOMM,Sept. 1993,
pp. 85–95.

[7] M. Doar and I. Leslie, “How bad is naive multicast routing,” inProc.
IEEE Infocom’93,pp. 82–89.

[8] S. B. Shukla, E. B. Boyer, and J. E. Klinker, “Multicast tree construction
in network topologies with asymmetric link loads,” Naval Postgraduate
School, Tech. Rep. NPS-EC-94-012, Sept. 1994.

[9] R. Voigt, R. Barton, and S. B. Shukla, “A tool for configuring multicast
data distribution over global networks,” inProc. INET, 1995, pp.
455–463.

[10] J. Moy, OSPF, Version 2,Oct. 1991, RFC-1247.
[11] B. M. Waxman, “Routing of multipoint connections,”IEEE J. Select.

Areas Commun.,vol. SAC-6, pp. 1617–1622, Dec. 1988.
[12] A. S. Thyagarajan and S. E. Deering, “Hierarchical distance-vector

multicast routing for the MBone,” inProc. ACM SIGCOMM,1995,
pp. 60–66.

[13] B. M. Waxman, “Performance evaluation of multipoint routing algo-
rithms,” in Proc. IEEE Infocom’93,pp. 980–986.

[14] K. C. Almeroth and M. H. Ammar, “Characterization of Mbone session
dynamics: Developing and applying a measurement tool,” Georgia
Inst. Technol., Tech. Rep. GIT-CC-95-22, June 1995, Available as
ftp://ftp.cc.gatech.edu/pub/coc/techreports/1995/GIT-CC-95-22.ps.Z.

David G. Thaler received the M.S. degree from the
University of Michigan, Ann Arbor, in 1994 and the
B.S. degree from Michigan State University, East
Lansing, in 1992. He is currently pursuing the Ph.D.
degree at the University of Michigan.

His research interests include network manage-
ment and multicast routing. He is also an active
participant in the Internet Engineering Task Force
(IETF).

Chinya V. Ravishankar (S’82–M’84) received the
B.Tech. degree in chemical engineering from the
Indian Institute of Technology, Bombay, and the
M.S. and Ph.D. degrees in computer science from
the University of Wisconsin, Madison, in 1986 and
1987, respectively.

He has been on the faculty of the Electrical
Engineering and Computer Science Department at
the University of Michigan, Ann Arbor, since 1986.
His teaching and research at the University of
Michigan have been in the areas of databases,

distributed systems, networking, and programming languages. He founded the
Software Systems Research Laboratory at the University of Michigan, where
he is also a member of the Real-Time Computing Laboratory.

Dr. Ravishankar is a member of the IEEE Computer Society and of the
Association for Computing Machinery.

