
Inferring Insertion Times and Optimizing Error Penalties in
Time-Decaying Bloom Filters

JONATHAN L. DAUTRICH JR., Google, USA
CHINYA V. RAVISHANKAR, University of California, Riverside, USA

Current Bloom Filters tend to ignore Bayesian priors as well as a great deal of useful information they hold,

compromising the accuracy of their responses. Incorrect responses cause users to incur penalties that are both

application- and item-specific, but current Bloom Filters are typically tuned only for static penalties. Such

shortcomings are problematic for all Bloom Filter variants, but especially so for Time-Decaying Bloom Filters,

in which the memory of older items decays over time, causing both false positives and false negatives.

We address these issues by introducing inferential filters, which integrate Bayesian priors and information

latent in filters to make penalty-optimal, query-specific decisions. We also show how to properly infer

insertion times in such filters. Our methods are general, but here we illustrate their application to inferential
time-decaying filters to support novel query types and sliding window queries with dynamic error penalties.

We present inferential versions of the Timing Bloom Filter and Generalized Bloom Filter. Our experiments on

real and synthetic datasets show that our methods reduce penalties for incorrect responses to sliding-window

queries in these filters by up to 70% when penalties are dynamic.

CCS Concepts: • Information systems→ Probabilistic retrieval models; Stream management;

ACM Reference Format:
Jonathan L. Dautrich Jr. and Chinya V. Ravishankar. 2019. Inferring Insertion Times and Optimizing Error

Penalties in Time-Decaying Bloom Filters. 1, 1 (January 2019), 32 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Bloom Filters are probabilistic data structures used for set membership queries [34]. Although this

data structure derives its name from [2], the method is equivalent to the Zatocoding technique

described in 1951 by Mooers [25] for encoding information onto punched cards. Bloom Filters have

been widely applied in areas where a concise but approximate representation of sets is required.

They have, for example, been used to estimate join sizes and to speed up joins [18, 22, 26, 27].

Oracle releases 10.2.0.x and later use Bloom Filters to reduce traffic between parallel query slaves

during join processing. Bloom Filters have natural applications in stream processing and duplicate

detection [24]. Other applications include maintaining differential files [12] and for spell checking

[10, 23]. For surveys of variant Bloom Filter designs and comparisons, see [3, 20].

A Bloom Filter F comprises an array ofm cells and k hash functions h1, . . . ,hk . An item x is

inserted into F by updating the contents of the cells at indices h1 (x), . . . ,hk (x). The contents of
F ’s cells define its state F̂ . The set of items inserted into F is denoted {F }.

Authors’ addresses: Jonathan L. Dautrich Jr., Google, 19510 Jamboree Road, Irvine, CA, 92612, USA, jjldjr@gmail.com; Chinya

V. Ravishankar, University of California, Riverside, 454 Winston Chung Hall, Riverside, CA, 92521, USA, ravi@cs.ucr.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

The Classical Bloom Filter [2] tests if an item x ∈ {F }, returning Pos if x ∈ {F } and Neg if

x < {F }. Inserted items are never deleted, so F may become saturated, leading to false positive
errors, returning Pos even when x < {F }.
A Time-Decaying Bloom Filter [8, 15, 16, 38, 39], in contrast, supports queries that ask how

recently x was inserted. New insertions obscure information from older ones, so the memory of

old items decays with time, limiting saturation even for continuous streams of item insertions.

Definition 1. The insertion age Ix of item x is a random variable denoting the number of items
inserted since x was last inserted. If x was never inserted, we define Ix =⊥. Different Ix values represent
mutually exclusive events.

Time-decaying filters answer retrospective queries, whose predicates reference insertion ages. A

typical retrospective query is the sliding window query, which asks whether x was one of the last

w items inserted (Ix < w). Insertion history is only approximated by F̂ , so we may commit false

positive errors, returning Pos when Ix ≥ w , or false negative errors, returning Neg when Ix < w .

Such errors incur penalties ultimately borne by the application using F .

Current time-decaying filters waste much of the useful information in F̂ . For example, in

[8, 33], cell counters are decremented at each insertion, and hence embed information about

insertion age. Yet, these filters check only whether these counters are zero, discarding the more

detailed information available. Even filters that do consider exact counts [15] do not provide a clear
framework for using counter values.

More importantly, filters typically operate using “forward” probabilities, ignoring Bayesian priors.

Our work is motivated by the observation that ignoring priors is fundamentally incorrect, and

often leads to worse results than using no filter at all. A similar result was reported in [31].

1.1 Inferential Time-Decaying Filters
We present inferential time-decaying filters to address these issues. Inferential filters combine latent

information in F̂ with Bayesian priors to infer posterior probabilities.

Definition 2. P (Ix = i |F̂) is the posterior probability that item x has insertion age i , given the
filter state F̂ .

A standard time-decaying filter uses limited information from F̂ to respond Pos or Neg to sliding

window queries. An inferential time-decaying filter uses P (Ix = i |F̂) to achieve greater flexibility

and accuracy in answering queries.

False positives/negatives incur application-dependent error penalties. Standard filters may be

tuned to minimize static penalties that are fixed at filter design time. In reality, however, penalties

vary by queried item, time, and context. A wrong decision on a high-value item costs more than

one on a low-value item. Scenarios with query-specific penalties include duplicate detection for

items with different values [1], distributed caches with item-specific access times [32], and web

crawler caches when pages vary in importance [28].

Optimally, eachmembership decision should bemade dynamically, query-by-query, andminimize

expected penalty. Inferential time-decaying filters infer the sliding window posterior probability
P (Ix < w |F̂) =

∑w−1
i=0 P (Ix = i |F̂) for each sliding window query. They then use this posterior to

compute expected penalties of Pos and Neg responses and make minimum-penalty decisions for

each query.

Inferential filters also support novel retrospective queries, beyond enabling minimum-cost deci-

sions. For instance, P (Ix = i |F̂) can be used to find the most likely insertion age for x . Aggregating
over all i gives the expected insertion age. As far as we know, our work is the first to support such

queries using Bloom Filters.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :3

1.2 Contributions
As noted above, filters have typically operated using “forward” probabilities, ignoring Bayesian

priors. Ignoring priors, however, is fundamentally incorrect. We show how to turn existing standard
filters into inferential ones, using Bayesian priors and latent information in F̂ . Section 2 outlines

our inferential filter framework. We focus primarily on time-decaying filters, but our framework

also immediately yields a more accurate version of the Classical Bloom Filter (see Section 2.4).

We show details of how to develop an inferential version of Timing Bloom Filters (TBF) [38], and
use it for sliding window queries. We also develop standard and inferential versions of a space-

efficient TBF variant called the Block TBF (BTBF), conceptualized in [38]. We discuss standard and

inferential BTBFs in Sections 3 and 4, respectively.

We also develop an inferential version of the Generalized Bloom Filter (GBF) [16], in which each

cell is a single bit. As new items are inserted, memory of old items steadily decays. The standard

GBF has no built-in notion of a sliding window, so the GBF is less accurate than the BTBF when

the window widthw is fixed, but the inferential GBF can support windows of differentw for each

query. We discuss standard and inferential GBFs in Sections 5 and 5.3, respectively.

In Section 6, we compare the net penalty incurred by the standard and inferential BTBF and GBF

on real and synthetic data streams, randomly varying error penalties for sliding window queries.

We also compare them against two baselines, the first of which uses only on prior probabilities. The

second is a simple buffer that stores hashes of items in the window. The buffer upper bounds the

accuracy of sliding window techniques that require stored items, including those using Counting

Bloom Filters [13, 35, 36]. Our results show that the inferential filters improve substantially upon

the standard filters, reducing penalties when Bayesian priors are known. We discuss related work

in Section 7.

2 INFERENTIAL FILTER FRAMEWORK
Bloom Filter variants commonly consist of an array ofm cells and k independent hash functions

h1, . . . ,hk , where hash hi maps an item x to a cell hi (x) in the filter. Notation from Sections 1 and

2 is summarized in Table 1.

Definition 3. The set Rx of cells touched by item x is given by Rx = {h1 (x), . . . ,hk (x)}.

To insert an item x into filter F , we update each cell in Rx according to the rules of F . To query

for x , we inspect each cell in Rx , and return Pos or Neg as appropriate. Let n be the number of past

insertions.

2.1 The Classical Bloom Filter
The Classical Bloom Filter [2] represents the set {F } of all items inserted into the filter (n = |{F } |).
Each cell is a single bit initialized to 0. To insert x , each cell in Rx is set to 1. Some cells may be

touched by multiple items. A query for x returns Pos if and only if all cells in Rx are 1.

Figure 1 shows inserts and possible query outcomes for a Classical Bloom filter. Cells are never

reset to 0, so all cells in Rx remain 1 if x ∈ {F }. There are no false negatives, but a false positive

occurs if x < {F } but every cell in Rx has been touched by some item, as for x3.
Let rx = |Rx |. The probability that a given cell is not touched by a given insertion is (1 − 1/m)k .

Thus, the probability that a given cell is touched by at least one of the n items in {F } is (1 − (1 −
1/m)kn). When x < {F }, the false positive probability that all rx cells in Rx are set to 1 (touched) by

at least one item in {F } is:

PFP ≈

(
1 −

(
1 −

1

m

)kn)rx
(1)

, Vol. 1, No. 1, Article . Publication date: January 2019.

:4 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

k = 3, m = 10

Insert x

Rx

Rx

00 000 00 00 0

11 001 00 00 0

11 011 10 00 0Insert x

Initialize

Rx
Query x
True Pos.

Rx
Query x
False Pos.

Rx
Query x
True Neg.

Fig. 1. Inserts and queries on a Classical Bloom filter holding {x1,x2}.

2.2 Analytical Approximations
PFP in Equation 1 is often approximated by replacing rx with k , as collisions are rare ifm ≫ k .
Equation 1 assumes that cell touches in Rx independent events, which is strictly incorrect [6]. Such

approximations usually have little impact on accuracy [6], but greatly simplify analysis. We make

similar assumptions in our paper when computing posteriors. Our experiments show that the

posteriors are generally accurate enough to substantially reduce error penalties.

2.3 Probability Functions
The posterior P (Ix = i |F̂) is conditioned on F̂ , the filter state, which includes all cells in F . However,
most information relevant to x is present in the cells Rx .

Definition 4. P (Ix = i |Rx), also denoted P (i |Rx), is the posterior probability that exactly i inser-
tions occurred since x was last inserted, given the current contents of cells Rx .

To turn a standard filter into an inferential one, we must compute P (i |Rx), based on the filter’s

contents and on the prior probability that Ix = i . From Bayes’ theorem,

P (i |Rx) =
P (i)P (Rx |i)

P (Rx)
, where (2)

P (Ix = i) or P (i) is the prior probability that exactly i insertions occurred since x was last inserted,

P (Rx) is the prior probability that cells Rx have their current contents, and P (Rx |Ix = i) or P (Rx |i)
is the conditional probability that cells Rx have their current contents, given that exactly i insertions
occurred since x was last inserted.

2.3.1 Computing Prior Probability P (i).

Definition 5. The sample probability mass function px is the probability that x is the next item
to be inserted.

LetU be the universe of all items that may be inserted or queried. For any two items x , y, px
and py may differ, but we assume that px itself is time-invariant, giving:

P (i) =



px (1 − px)
i

if i ,⊥ (0 ≤ i < n)

(1 − px)
n

if i =⊥
(3)

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :5

Table 1. General Notation

F A Bloom Filter

F̂ The state of Bloom Filter F

{F } Set of all items inserted into a filter

x Item to be inserted or queried

n = |{F } | Total number of items inserted

w Width of sliding window

U Universe of items inserted/queried

px Sample probability of x
m Number of cells in filter

k Number of hash functions used in filter

h,h1 (x) Hash function, cell touched by h1 on x
Ix , i Number of insertions since x last inserted

⊥ Ix =⊥ means x was never inserted

Rx Cells touched by k hashes applied to x
rx |Rx |
cx For standard filter, number of 1-bits in Rx
PFP False positive probability of standard filter

P (i) Prior prob.i insertions since x last inserted

P (Rx |i) Conditional probability of Rx given Ix = i
P (i |Rx) Posterior prob. of Ix = i insertions since x

last inserted, given contents of cells in Rx
P (Ix<w |Rx) Posterior prob. x one of lastw insertions

D (j) Expected num. distinct items in j inserts

P (⊥) is the probability that x was not inserted thus far, and P (i), i ,⊥ is the probability that x was

inserted, followed by i items other than x . We say the data stream is continuous when the number

of past insertions n goes to infinity, giving:

lim

n→∞
P (i) =




px (1 − px)
i

if i ,⊥

0 if i =⊥
(4)

Often, we need P (α ≤ Ix < β) for 0 ≤ α < β :

P (α ≤ Ix < β) =

β−1∑
i=α

P (i) = px

β−1∑
i=α

(1 − px)
i

= (1 − px)
α − (1 − px)

β
(5)

= (1 − px)
α (1 − (1 − px)

β−α).

2.3.2 Computing Posterior P (i |Rx). P (Rx) in Equation 2 can be written as a marginal sum over

P (i)P (Rx |i), giving:

P (i |Rx) =
P (i)P (Rx |i)

P (⊥)P (Rx |⊥) +
∑n−1

i′=0 P (i
′)P (Rx |i ′)

. (6)

We still need P (Rx |i) and
∑n−1

i′=0 P (i
′)P (Rx |i

′). Both challenges are filter-specific, so we address them

for the BTBF and GBF in Sections 4 and 5.3, respectively.

, Vol. 1, No. 1, Article . Publication date: January 2019.

:6 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

2.3.3 Retrospective Queries. Inferential time-decaying filters use P (i |Rx) in responding to retro-

spective queries. maxi P (i |Rx) gives the highest probability choice i for Ix , which is when x was

most likely last inserted.

For a continuous stream (n → ∞), we get

lim

n→∞
P (i |Rx) =

P (i)P (Rx |i)∑∞
i′=0 P (i

′)P (Rx |i ′)
. (7)

The expected number of insertions after x ’s last insertion is

E[Ix |Rx] = lim

n→∞

n∑
i=0

i · P (i |Rx). (8)

We can also derive the sliding window posterior

lim

n→∞
P (Ix < w |Rx) =

w−1∑
i=0

lim

n→∞
P (i |Rx)

=

w−1∑
i=0

P (i)P (Rx |i)∑∞
i′=0 P (i

′)P (Rx |i ′)
=

∑w−1
i=0 P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

(9)

= 1 −

∑∞
i=w P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

. (10)

2.4 Example: Classical Bloom Filters
As warm-up, we develop an inferential version of Classical Bloom filters (Section 2.1), by computing

the posterior P (x ∈ {F } |Rx). Since this filter is not time-decaying, we do not need the full power

of our approach, but we show our results to be consistent with the simpler derivation in [31].

We also show how to obtain optimal responses from the inferential Classical Bloom Filter, given

item-specific prior probabilities px and query-specific error penalties. Since n = |{F } |,

P (x ∈ {F } |Rx) = P (Ix < n |Rx) =
∑n−1

i=0 P (i |Rx)

=

∑n−1
i=0 P (i)P (Rx |i)

P (⊥)P (Rx |⊥) +
∑n−1

i=0 P (i)P (Rx |i)
. (11)

Let rx = |Rx |. Let cx cells (bits) in Rx be set to 1.

P (Rx |i) =




1 if cx = rx and 0 ≤ i < n

0 if cx , rx and 0 ≤ i < n(
1 −

(
1 − 1

m

)kn)cx ((
1 − 1

m

)kn)rx−cx
if i =⊥

(12)

If x was inserted (0 ≤ i < n), then all cells in Rx must be 1 (cx = rx). If x was not inserted (i =⊥),
then every one of the cx 1-cells in Rx must have been touched (set) by some combination of the n
insertions, while the remaining rx − cx 0-cells in Rx must not have been touched by any insertion.

Theorem 1. The posterior probability that x was inserted into the Classical Bloom Filter is given by:

P (Ix < n |Rx) =




0 if cx , rx
1

1 +
(1 − px)

nPFP

1 − (1 − px)n

if cx = rx (13)

where PFP is as in Equation 1.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :7

Proof: P (Ix < n |Rx) is given by Equation 11, P (i) by Equation 3, and P (Rx |i) by Equation 12.

Case cx , rx :

P (Ix < n |Rx) =

∑n−1
i=0 P (i) · 0

P (⊥)P (Rx |⊥) +
∑n−1

i=0 P (i) · 0
= 0.

Case cx = rx :

P (Ix < n |Rx) = ∑n−1
i=0 P (i) · 1

P (⊥)
(
1 −

(
1 − 1

m

)kn)rx
+

∑n−1
i=0 P (i) · 1

=
(1 − P (⊥))

P (⊥) · PFP + (1 − P (⊥))

=
1

1 +
P (⊥) · PFP

1 − P (⊥)

=
1

1 +
(1 − px)

n · PFP

1 − (1 − px)n

. □

For the Classical Bloom Filter it is common to assume that rx = k , k ≈ (m/n) ln 2 and that

PFP ≈ (1 − e−kn/m)k , as in [16, 31, 33, 38]. Doing so gives PFP ≈ (1/2) (m/n) ln 2
, so when cx = rx ,

rearranging Theorem 1 and substituting P (Ix < n) = 1 − (1 − px)
n
gives

P (Ix < n |Rx) ≈
P (Ix < n)

P (⊥)
(
1

2

) (m/n) ln 2
+ P (Ix < n)

, (14)

which is consistent with the probability expressions in [31].

2.5 Expected Number of Distinct Items
The accuracy of our posteriors can be improved if we know the expected number of distinct items

inserted during j insertions, which we label D (j). D (j) depends on the distribution of px for x ∈ U .

Applying linearity of expectation, we can find D (j) by summing, over all x ∈ U , the probability

that x is inserted at least once, given by

D (j) =
∑
x ∈U

(
1 − (1 − px)

j
)
. (15)

When items are sampled from the uniform distribution, we have px = 1/|U | for all x ∈ U , and

Equation 15 becomes

D (j) = |U | *
,
1 −

(
1 −

1

|U |

) j
+
-
. (16)

If the item probabilities follow a Zipf-like discrete power law px = 1/(H |U | · x), then it is shown in

[37] that

D (j) ≈
j

H |U |

(
1 − γ + ln

|U | · H |U |

j

)
, (17)

where H |U | =
∑ |U |

i=1 1/i is the |U |
th
harmonic number and γ = 0.57721566... is Euler’s constant.

When real-world distributions are hard to model analytically, we can experimentally determine

D (j) for some j values, and interpolate intermediate values. Our experience suggests that piecewise

, Vol. 1, No. 1, Article . Publication date: January 2019.

:8 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

logarithmic interpolation generally yields acceptable results. If we know D (j1) and D (j3), we can
interpolate D (j2) for j1 < j2 < j3 as follows:

lnD (j2) = lnD (j1) +

(
ln

D (j3)

D (j1)

) (
ln

j2
j1

)
(
ln

j3
j1

) . (18)

2.6 Minimum-Penalty Decisions
As noted in Section 1, penalties for incorrect responses may be query-specific, but a standard filter

can only be tuned to fixed false positive/negative rates. Inferential filters use posteriors to make

better-informed, query-specific decisions.

For sliding window queries, inferential filters return the sliding window posterior P (Ix < w |Rx).
Let $FP and $FN be the penalties for false positive/negative errors, respectively. Correct responses

incur no penalty. The expected penalty of Pos is EPos = $FP · (1 − P (Ix < w |Rx)), and of Neg is

ENeg = $FN · P (Ix < w |Rx). We compute both and return Pos if EPos ≤ ENeg, and Neg otherwise.

3 STANDARD TIMING BLOOM FILTERS
The Timing Bloom Filter (TBF) [38] is designed to answer sliding window queries. Here we describe

the standard TBF and its extension, the standard Block Timing Bloom Filter (BTBF). We will present

the inferential BTBF in Section 4. Table 2 summarizes the relevant notation.

3.1 Timing Bloom Filters
The TBF consists of k hash functions and an array ofm cells, each of which is a timer with bpt bits.
Each timer θ holds a timestamp θ .T ∈ {0, . . . ,TΩ} ∪ {Tε }, where Tε denotes an expired timestamp,

defined below. The filter maintains a single current timestamp T+, where T+ cycles through the

range [0,TΩ] as items are inserted.

3.1.1 TBF: Insert. We insert item x into a TBF as follows:

(1) For each timer θ ∈ Rx , set θ .T ← T+.
(2) Increment T+: T+ ← (T+ + 1) mod (TΩ + 1).

Definition 6. The age λ(θ .T) of timestamp θ .T is defined as the number of times that T+ was
incremented since the last time that we set θ .T to T+.

When λ(θ .T) ≥ w + 1, we say that θ .T has expired, and we set θ .T to the expired timestamp value
Tε . Thus, as soon as a timestamp θ .T is set to T+, it has age λ(θ .T) = 0, but since increments occur

immediately after insertions, λ(θ .T) ≥ 1 before queries arrive. We define λ(Tε) = ∞.

3.1.2 TBF: Query. When we query the TBF for item x , it should return Pos whenever Ix < w ,

and Neg otherwise. To query, we examine each timer θ in Rx and compute the age of its timestamp

λ(θ .T). The TBF returns Neg if any θ ∈ Rx has an expired timestamp, and returns Pos otherwise,

yielding false positives but no false negatives.

False Negatives: Since all θ ∈ Rx are set toT+ when x is inserted, we know that Ix ≥ λ(θ .T) − 1,
for all θ ∈ Rx . Therefore, if for any θ ∈ Rx , θ .T has expired, we know that Ix ≥ λ(θ .T) − 1 ≥ w .

Since we only return Neg when one of the θ .T has expired, the TBF has no false negatives.

False Positives: A false positive error occurs when no timestamp in Rx has expired, but Ix ≥ w .

The standard TBF only has false positives if all timers in Rx were touched during the last w
insertions, none of which inserted x .

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :9

Table 2. TBF/BTBF Notation

bpt Number of bits per timer

θ ,θ .T Timer, timestamp stored by timer

T+ Current timestamp

TΩ Maximum timestamp value

Tε Expired timestamp value

Tx Oldest timestamp in Rx
λ(T) Age of timestamp T
λx Age of oldest timestamp: λx = λ(Tx)
P Padding size

B Insertion block size

b Insertions since last T+ increment

Cx Timers in Rx with oldest timestamp Tx
cx |Cx |

F (cx , rx , j) Prob. specific cx of rx timers untouched

during j inserts, other rx − cx touched

F (·) Short for F (rx , cx , (λx − 1)B + b)
G (rx , cx , λx) Prob. cx timers touched by B inserts, same

cx timers not touched by any of subsequent

(λx − 1)B +b inserts, other rx −cx touched

G (·) Short for G (rx , cx , λx)

3.1.3 TBF: Marking Expired Timestamps. If any timestamp θ .T expires, we must mark it expired

(θ .T ← Tε) before T+ = θ .T again. If we do not, λ(θ .T) will cycle back to 0 and we will not know

that θ .T ought to be expired.
1
IfTΩ = w , there arew + 1 values forT+, so it can only be incremented

w times without returning it to its current value. Thus, w is the maximum timestamp age, and

timestamps never get a chance to expire. Hence, to correctly support a window of width w , we

must have TΩ ≥ w + 1. An example of a TBF with TΩ = w + 1 is given in Figure 2.

If we have the minimumTΩ = w +1, then once any timestamp θ .T expires, we must set θ .T ← Tε
before the next insertion, which would set T+ ← θ .T . Thus, to find all newly expired timestamps,

we must check allm timers after every insertion, which is too expensive. The solution in [38] is to

increase TΩ by an amount we call padding.

Definition 7. The padding P is the difference between the chosen and minimum values for TΩ .

For a standard TBF, P = TΩ−w . If P = 1,TΩ = w+2, and we can recognize an expired timestamp

up to one insertion after it first expires. Thus, we can split up the search for expired timestamps,

such that we need only check half of the timers after each insertion. In general, with padding P

we need only checkm/(P + 1) timers after each insertion. The use of padding is demonstrated in

Figure 3.

A good rule of thumb is to set P ≈m/k , so we need only check O (k) timers per insertion. Since

we already perform O (k) hashes for each insertion, checking O (k) timers is acceptable. As long as

m ≈ w , as is often the case, this choice of P increases TΩ by less thanw , so we need at most one

extra bit per timer to accommodate the larger TΩ .

1
If we assume that timers should never have age 0, we can actually let T+ cycle back to θ .T , but not beyond, and treat its

apparent age 0 as age TΩ + 1. We can thus reduce the minimum TΩ value by 1, but we do not do so, since this assumption

does not hold for Block Timing Bloom Filters.

, Vol. 1, No. 1, Article . Publication date: January 2019.

:10 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

T:

λ(T):

T:

λ(T):

000

T+

0

1

2

111

Tε

∞

T:

λ(T):
010
212

1
1

1
1

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

3
Tε

∞

T:

λ(T):
012
321

1
2

1
2

Tε

∞

2
1

2
1

k = 3, w = 2, TΩ = 3

×
×

Tε

∞

Insert x

Insert x

Insert x

Expired

Rx

Query x
True Neg.

m = 10

Rx

Query x
True Pos.

Query x
False Pos.

Query x
True Neg.

Tε

∞

Tε

∞

Rx

Rx

Rx

Rx

Time

Rx

Fig. 2. Timing Bloom Filter inserts and queries. Timestamps touched by each insertion highlighted. Ages are
relative to the updated T+.

3.2 Block Timing Bloom Filters
TBF has the problem that the TΩ + 2 possible timestamps require it to use O (logw) bits per timer

(bpt). For example, the sample TBF in [38] has a window size ofw = 2
20
, requiring 21 bpt, including

1 bit for padding. It hasm = 15, 112, 980 timers, for a total of 21m bits, and 21m/w ≈ 303 bits/item

in the window of interest, which is excessive. Given 303 bits/item, we could just hash all items in

the window into a table using unique hashes. This setup matches TBF performance, and is simpler

and more accurate.

We can reduce bpt by incrementing T+ only after every block of B > 1 insertions, where B is

the insertion block size. Using a larger B reduces bpt, but uses fewer blocks to cover the window,
resulting in a coarser approximation and more false positives (see Section 3.2.2). We call this scheme

a Block Timing Bloom Filter (BTBF), due to its similarities to the Block Decaying Bloom Filter in [33].

The BTBF was alluded to, but not developed, in [38].

3.2.1 BTBF: Insert. Insertions into the BTBF proceed as for the TBF, except that we only incre-

mentT+ once for each block of B insertions. A counter b records the number of insertions since the

last time T+ was incremented. If B = 1, as in the standard TBF, then we always have b = 0. After

each insertion, if b = B − 1, we increment T+ and set b = 0. If b < B − 1, we increment b and leave

T+ unchanged.
Definition 6 for λ(θ .T) still holds, but our definition of an expired timestamp becomes more

general:

Definition 8. In a BTBF, timestamp θ .T has expired once its age λ(θ .T) ≥
⌈
w−b
B

⌉
+ 1.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :11

Time

T:

λ(T):

1T:

λ(T):
Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞5
2
4

2
4

2
4

1T:

λ(T):
Tε

∞

Tε

∞

Tε

∞

Tε

∞

Tε

∞4
2
3

2
3

2
3 4

1

T+

3

4

5

0

1T:

λ(T):

Tε

∞

Tε

∞

Tε

∞3
2
2

2
2

2
2 3

11
3

0 Expired

2 Expired

1 Expired

4 Expired

1 Tε

∞

Tε

∞

Tε

∞2
2
1

2
1

2
1 2

11
2

4
0

3
0

P = 2, w = 2, TΩ = 5

Fig. 3. Padding P in a Timing Bloom Filter, new insertions omitted for clarity. Newly expired timestamps
(highlighted) can remain expired for P+1 insertions beforeT+ cycles, so we need only check 4 timers/insertion.

3.2.2 BTBF: Query. Like the TBF, the BTBF returns Neg if and only if some timestamp in Rx
has expired. Thus, it has false positives but no false negatives.

False Negatives: If λ(x) = 1, we know Ix ≥ b. If λ(x) = 2, we know that Ix ≥ B + b. In general,

we have

Ix ≥



(λ(θ .T) − 1)B + b if λ(θ .T) > 0

0 if λ(θ .T) = 0

Therefore, if for any θ ∈ Rx , θ .T has expired, we know that

Ix ≥ (λ(θ .T) − 1)B + b =

(⌈
w − b

B

⌉
+ 1 − 1

)
B + b

≥

(
w − b

B

)
B + b = w .

That is, if any timestamp in Rx has expired, x is not in the window. Neg is returned only if at least

one timestamp in Rx has expired, so the BTBF has no false negatives.

False Positives: In a BTBF, false positives can occur in two ways. As for standard TBFs, they

can occur if all timers in Rx are touched by other recent inserts. False positives also occur if x is

one of the first items in a block, but only the latter items in the block are in the window. Such false

positives are described below and illustrated in Figure 4.

Let B > 1, and let x1 and xB be the first and last items inserted during a given insertion block. If

IxB = w − 1, then Ix1 = w + B − 2. Since the filter has no false negatives, a query for xB returns Pos.

However, since x1 and xB are part of the same insertion block, they use the same timestamp and are

indistinguishable to the filter, so a query for x1 must also return Pos. Since Ix1 ≥ w , the response is

a false positive. At any point, queries for an average of B/2 items yield such false positives, so a

larger B gives a coarser sliding window approximation with more false positives.

, Vol. 1, No. 1, Article . Publication date: January 2019.

:12 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

x

x x x x

w = 7

x x x x x xxB = 1

B = 3

B = 8

x x x x x x x x xx

x x x x x x x x x xx

False

Positives
Query Time

Fig. 4. For the BTBF to treat x5 as in the window, it must treat all items in x5’s block as in the window. Larger
blocks yield more false positives.

3.2.3 BTBF: Marking Expired Timestamps. Marking expired timestamps and the use of padding

are the same for the BTBF as for the TBF. However, the minimum TΩ value is lower for BTBFs,

allowing us to reduce bpt. To support a window of widthw , we now need TΩ ≥ ⌈
w
B ⌉ + 1. We also

now need only checkm/(B (P + 1)) timers after each insertion, so we can choose P ≈m/(kB). An
example of a BTBF with P = 0,B = 3,w = 6 is given in Figure 5.

4 INFERENTIAL BTBF
Wenowdevelop the inferential BTBF, which returns the slidingwindowposterior limn→∞ P (Ix < w |Rx),
instead of just a binary Pos or Neg, in response to queries. We derive limn→∞ P (Ix < w |Rx) directly
using Equations 9 and 10. For the sake of brevity, we omit the limit notation in the rest of the paper.

Definition 9. Tx , the oldest timestamp in Rx has age

λx = Max{λ(θ .T) | θ ∈ Rx }. (19)

If any timestamp in Rx has expired, λx = ∞.

If x had been inserted since the last timeT+ = Tx , all timers in Rx would have been set to a more

recent timestamp. Thus, if any of the timers in Rx still have the timestamp they were given the last

time x was inserted, it is only those timers with timestamp Tx and age λx .

Definition 10. Let Cx be the subset of timers in Rx that have timestamps with age λx . That is,

Cx = {θ | θ ∈ Rx ∧ λ(θ .T) = λx }. (20)

Let rx = |Rx | and cx = |Cx |. The timers in Rx \Cx must have timestamps set by items other than

x , so only the timers in Cx could have been last touched by x , so that only timers in Cx provide

worthwhile information about when x was last inserted (Ix). Since all cx timers in Cx have the

same timestamp, with age λx , we can accurately compute posteriors given only rx , cx , and λx . That
is, when we refer to P (Rx |i), we are interested in the probability that rx , cx , and λx have the values

we observe, given that Ix = i .
The prior P (i) is given by Equation 4. To get posteriors, we must sum over the conditional

probability P (Rx |i), which varies depending on the relationship between i and λx , so we must

handle different ranges of λx separately. Figure 6 shows the different expressions for P (Rx |i) derived
below for each λx case. We need the following function.

Definition 11. Let F (rx , cx , j) be the probability that a specific subset of cx out of rx timers are not
touched during j insertions, and that the remaining rx − cx timers are touched during the j insertions.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :13

T:

λ(T):

T:

λ(T):

T+

0

0

1
Tε

∞

T:

λ(T):
30
21

0
1

0
1

Tε

∞

Tε

∞

1
Tε

∞

T:

λ(T):
1
0

0
1

0
1

Tε

∞

1
0

k = 2, B = 2, w = 4, TΩ = 3, m = 10Time

323
121

2
2

2
2

Tε

∞

3
1

3
1

Tε

∞

b

0

1

0

1

3
1
0
0

3
1

0
0

3
2

3
2

2
2

0
1

0
1

Tε

∞

1
1

0
2

1
1

3
3

0
2

T:

λ(T):
2 0

1
1

Insert x

Insert x

Insert x

Insert x

Insert x
1
3

1
3

2
2

2
2

3
1

2
3

3
2

Tε

∞

3
2

Tε

∞

0
1

3
3

Check when b = 1Check when b = 0

Tε

∞

1
1

0
2

1
1

0
2

1
1

Tε

∞

0
1

3
3

Tε

∞
2 1

Insert x
T:

λ(T):

Rx Query x
False Pos. (Ix2 = 4)

Query x
True Neg. (Ix1 = 4)

Rx

Fig. 5. A BTBF with no padding. Timers touched by the last insertion are highlighted. Timestamp T expires
once λ(T) ≥ 3, and is shown with a slash until it is changed to Tε . Since B = 2, we need only check half the
timers for expiration after each insertion.

We approximate it as

F (rx , cx , j) ≈

((
1 −

1

m

)kD (j))cx (
1 −

(
1 −

1

m

)kD (j))rx−cx
(21)

The probability that a given timer is not touched during a given insertion is (1 − 1/m)k . If we
take (1 − 1/m)k j to be the probability that a timer is not touched during j insertions, we ignore
dependencies that arise when the same item is inserted more than once. We account for such

dependencies by replacing j with D (j), where D (j) gives the expected number of distinct items

among j insertions (see Section 2.5). Raising a probability to an expectation is not entirely valid,

but it is an efficient and adequate approximation here, as our approximation error results show

(Section 6.1.4).

4.1 Case λx > ⌈w−bB ⌉

Theorem 2. If λx > ⌈w−bB ⌉, then P (Ix < w |Rx) = 0.

, Vol. 1, No. 1, Article . Publication date: January 2019.

:14 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

Proof: If λx > ⌈
w−b
B ⌉, then at least one timestamp in Rx has expired, so we know for certain

that Ix ≥ w , and thus P (Rx |i) = 0 for 0 ≤ i < w , giving

P (Ix < w |Rx) =

∑w−1
i=0 P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

=

∑w−1
i=0 P (i) · 0∑∞

i=0 P (i)P (Rx |i)

= 0. □

P (Ix < w |Rx) = 0 when timestamps in Rx have expired because the standard BTBF has no false

negatives.

4.2 Case λx = 0

Lemma 4.1. If λx = 0, then

P (Rx |i) =



1 if i < b

F (rx , 0,b) if i ≥ b
(22)

Proof. If λx = 0, then all timers in Rx must have timestamp T+ with age 0, so cx = rx .
Case i < b: If i < b, then x would have been inserted since T+ was last incremented, and all

timers in Rx must have had their timestamps set to T+ and could not have been changed since, so

P (Rx |i) = 1.

Case i ≥ b: If i ≥ b, then x would have been most recently inserted before T+ was last incre-
mented. Thus, for all the timers in Rx to have timestamp T+, every one of the rx timers must have

been touched through some combination of the last b items inserted, none of which were x . The
probability that this event occurs is F (rx , 0,b). □

Theorem 3. If λx = 0, then

P (Ix < w |Rx) = 1 −
(1 − px)

w

1 − (1 − px)
b

F (rx , 0,b)
+ (1 − px)b

. (23)

Proof: Taking P (Rx |i) from Equation 22, we get

P (Ix < w |Rx) = 1 −

∑∞
i=w P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

= 1 −
F (rx , 0,b) · px

∑∞
i=w (1 − px)

i

px
∑b−1

i=0 (1 − px)
i + F (rx , 0,b) · px

∑∞
i=b (1 − px)

i

= 1 −
F (rx , 0,b) (1 − px)

w

(1 − (1 − px)b) + F (rx , 0,b) (1 − px)b

= 1 −
(1 − px)

w

1 − (1 − px)
b

F (rx , 0,b)
+ (1 − px)b

. □

4.3 Case 0 < λx ≤ ⌈
w−b
B ⌉

Definition 12. Let G (rx , cx , λx) be the probability that a specific subset of cx out of rx timers are
touched by B inserts, and that the same cx timers are not touched by any of the subsequent (λx −1)B+b
inserts, while the remaining rx − cx timers are touched by those subsequent inserts.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :15

i
bw 0

0

1

0

0F(rx, cx, (λx - 1)B + b)G(rx, cx, λx)

(λx - 1)B + b

λxB + b

G(rx, cx, λx)

F(cx, 0, λx)

λxB + b

F(rx, cx, (λx - 1)B + b)

(λx - 1)B + b

λx >
w - b
B

w - b
B

w - b
B

λx = 0

0< λx<

λx =

Fig. 6. P (Rx |i) for different values of λx and i .

Lemma 4.2. If 0 < λx ≤ ⌈
w−b
B ⌉, then

P (Rx |i) ≈




0 if i < (λx − 1)B + b

G (rx , cx , λx) if i ≥ λxB + b

F (rx , cx , (λx − 1)B + b) otherwise
(24)

Proof. We know that exactly (λx −1)B+b insertions occurred sinceT+ changed from timestamp

Tx with age λx .
Case i < (λx − 1)B +b: In this case, x would have been inserted sinceT+ changed fromTx , so all

timers in Rx would have been assigned a timestamp more recent than Tx . If so, λx would be less

than its observed value, which is a contradiction. Thus, P (Rx |i) = 0.

Case i ≥ λxB + b: In this case, x would have been most recently inserted before T+ = Tx . Thus,
the observed cx , rx , and λx values must have resulted as follows:

(1) All cx timers in Cx were touched by one of the B insertions during which T+ = Tx .
(2) The same cx timers were not touched during the (λx − 1)B + b insertions since T+ = Tx , but

the remaining rx − cx timers were touched during those insertions.

The joint probability of these events is exactly G (rx , cx , λx), so we have P (Rx |i) = G (rx , cx , λx).
Case (λx − 1)B + b ≤ i < λxB + b: In this case, x would have been most recently inserted

while T+ = Tx , so all timers in Rx must have been set to Tx . Thus, P (Rx |i) is just the probability
F (rx , cx , (λx − 1)B + b) that the cx timers that we observe as still having timestamp Tx would not
have been overwritten during the last (λx − 1)B + b insertions, and that the remaining rx − cx
timers that differ from Tx would have been overwritten. □

We obtain G (rx , cx , λx) by finding the probability of each of its constituent events. First, the

probability that a particular set of cx timers were touched by one of B insertions is given by

F (cx , 0,B). Second, the probability that the same cx timers were not touched by any of (λx − 1)B+b
insertions, while the remaining rx −cx timers were, is given by F (rx , cx , (λx − 1)B + b)). These two
events are largely independent for common BTBF parameters, so we can approximateG (rx , cx , λx)
by multiplying their probabilities:

G (rx , cx , λx) ≈ F (cx , 0,B) · F (rx , cx , (λx − 1)B + b). (25)

Computing P (Ix < w |Rx) is different for λx = ⌈
w−b
B ⌉ and 0 < λx < ⌈

w−b
B ⌉, so we handle each

separately. In both cases, P (Rx |i) is defined as in Equation 24. To shrink equations, we substitute

F (·) for F (rx , cx , (λx − 1)B + b) andG (·) forG (rx , cx , λx). Since F (·) is a term in our approximation

for G (·), G (·)/F (·) simplifies to F (cx , 0,B).

, Vol. 1, No. 1, Article . Publication date: January 2019.

:16 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

4.3.1 Case 0 < λx < ⌈
w−b
B ⌉.

Theorem 4. If 0 < λx < ⌈
w−b
B ⌉, then

P (Ix < w |Rx) = 1 −
(1 − px)

w−(λx−1)B−b

1 − (1 − px)
B

F (cx , 0,B)
+ (1 − px)

B
. (26)

Proof: If λx < ⌈
w−b
B ⌉, then λx ≤

w−b
B , and λxB + b ≤ w . Thus, we can construct the posterior

sum as follows:

P (Ix < w |Rx) = 1 −

∑∞
i=w P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

= 1 −
G (·)

∑∞
i=w (1 − px)

i

F (·)
λxB+b−1∑

i=(λx−1)B+b

(1 − px)
i + G (·)

∞∑
i=λxB+b

(1 − px)
i

= 1 −
(1 − px)

w

F (·)

G (·)
(1−px)

(λx−1)B+b (1− (1−px)
B) + (1−px)

λxB+b

= 1 −
(1 − px)

w−(λx−1)B−b

F (·)

G (·)
(1 − (1 − px)

B) + (1 − px)
B

= 1 −
(1 − px)

w−(λx−1)B−b

1 − (1 − px)
B

F (cx , 0,B)
+ (1 − px)

B
. □

4.3.2 Case λx = ⌈w−bB ⌉.

Theorem 5. If λx = ⌈w−bB ⌉, then

P (Ix < w |Rx) =
1 − (1 − px)

w−(λx−1)B−b

1 − (1 − px)
B (1 − F (cx , 0,B))

. (27)

Proof: If λx = ⌈
w−b
B ⌉, then (λx − 1)B + b < w ≤ λxB + b. Thus, we can construct the posterior

sum as follows:

P (Ix < w |Rx) =

∑w−1
i=0 P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :17

=

F (·)
w−1∑

i=(λx−1)B+b

(1 − px)
i

F (·)
λxB+b−1∑

i=(λx−1)B+b

(1 − px)
i +G (·)

∞∑
i=λxB+b

(1 − px)
i

=
(1 − px)

(λx−1)B+b (1 − (1 − px)
w−(λx−1)B−b)

(1 − px)
(λx−1)B+b (1 − (1 − px)

B) +
G (·)

F (·)
(1 − px)

λxB+b

=
1 − (1 − px)

w−(λx−1)B−b

1 − (1 − px)
B (1 − F (cx , 0,B))

. □

4.4 Computing Probabilities Efficiently
Consider the inferential BTBF’s posteriors given by Equations 23, 26, and 27. Sincem and k are

fixed, (1− 1/m)k can be precomputed for Equation 21. Equation 23 requiresO (log
2
(w · rx ·D (b))) ⪯

O (log
2
(w · k · B)) multiplications to compute exponents. The cost of computing D (b), depends on

the distribution (Section 2.5). Equation 23 is the most expensive, but is needed only in the rare case

when λx = 0.

Equation 26 needs O (log
2
w) multiplications, and the cost to compute F (cx , 0,B). As cx takes

O (k) values and B is fixed, all O (k) values of F (cx , 0,B) can be pre-computed and cached. These

cached values are used for Equation 27, which requires only O (log
2
B) more multiplications, as

λ(x) = ⌈w−bB ⌉. Using these techniques, we spent less time computing probabilities than managing

the filter itself.

5 GENERALIZED BLOOM FILTER
The Generalized Bloom Filter (GBF) was used in [16] for static set membership queries. As new

items are added to the GBF, its memory of older items decays, so it is also well-suited to queries on

continuous data streams. Unlike the BTBF, the standard GBF is not built for a particular window

widthw . Over a stream, however, we can still view GBF as responding to sliding window queries.

We use it to show how our analysis can be applied to different filter types.

The GBF consists of k0 + k1 hash functions and an array of m 1-bit cells. GBF notation is

summarized in Table 3.

5.1 Insert
To insert item x into the GBF, we do the following:

(1) Set each cell mapped to by the k1 hashes to 1

(2) Set each cell mapped to by the k0 hashes to 0

If a k0-hash and a k1-hash collide, the cell is set to 0. Hence, Rx = Rx,0 ∪ Rx,1, with cells Rx,0 =
{h1 (x), . . . ,hk0 (x)} set to 0, and cellsRx,1 = {hk0+1 (x), . . . ,hk0+k1 (x)}\Rx,0 set to 1. Future insertions
may set cells in Rx,0 to 1, and cells in Rx,1 to 0, so the filter loses its memory of x .

5.2 Query
To query a standard GBF for item x , we do the following:

(1) Identify Rx,0 and Rx,1
(2) Return Pos if and only if every cell in Rx,0 is set to 0 and every cell in Rx,1 is set to 1

, Vol. 1, No. 1, Article . Publication date: January 2019.

:18 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

Table 3. GBF Notation

k0,k1 Num. hashes that set cells to 0, 1 resp.

Rx,0,Rx,1 Cells set by hashes to 0, 1 resp.

rx,0, rx,1 rx,0 = |Rx,0 |, rx,1 = |Rx,1 |
Cx,0,Cx,1 Cells in Rx,0 set 0 and in Rx,1 set 1, resp.
cx,0, cx,1 cx,0 = |Cx,0 |, cx,1 = |Cx,1 |

q0,q1,qϵ Prob. cell set to 0, 1, or not touched, resp.

f0 (ϕ0, j) Prob. cell left 0 after j inserts if initially zero with prob. ϕ0

Cs
d,e Coefficient in efficient form of P (Ix < w |Rx)

k
0
= 2, k

1
= 2, w = 2

Insert x

Query x
True Neg.

m = 12
Time

0 1 0 1 0 1 0 0 0 1 1 0

Rx,

0 1 0 0 0 1 0 1 0 1 1 1

Rx,

Query x
True Pos.

0 1 0 1 1 1 0 1 0 1 0 1

Query x
False Neg.

Rx,Rx,

Query x
False Pos.

0 0 0 0 1 1 1 1 0 1 1 1

Rx, Rx,

Rx, Rx,

Rx, Rx,

Rx, Rx,

Rx, Rx,

Insert x

Insert x

Fig. 7. Operation of a standard GBF. Cells touched by insertions shaded.

False positives and false negatives are both possible. Say we use the GBF for sliding window

queries with window widthw . A false negative occurs when Ix < w , but a cell in Rx,0 is 1, or a cell
in Rx,1 is 0. Such false negatives occur if an item y inserted after x changes one of the cells in Rx ,
and that cell is not changed back by a subsequent insert.

A false positive occurs when Ix ≥ w , but all cells in Rx,0 are 0 and all in Rx,1 are 1. This happens
if (1) later inserts happen to set all cells in Rx appropriately, (2) none of thew or more inserts since

x change any of the cells in Rx , leaving them unchanged since x ’s last insertion. Combinations of

these cases may also generate false positives. For example, a subsequent insert may change a single

cell in Rx , which is later changed back by yet another insert.

Increasing k0 or k1 increases false negatives, as cells are changed sooner, but reduces false

positives, as more cells must be correctly set in order to respond Pos. Figure 7 demonstrates the

standard GBF’s operation.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :19

5.3 GBF Analysis
Instead of just a binary Pos or Neg, the inferential Generalized Bloom Filter (GBF) returns the

sliding window posterior limn→∞ P (Ix < w |Rx) in response to queries. We now derive P (Ix = j |Rx)
for the GBF using techniques from Section 2. From this posterior, we derive an expression for the

sliding window posterior using Equation 9.

Definition 13. Let Cx,0 be the subset of cells in Rx,0 that are set to 0, and Cx,1 the subset of Rx,1
set to 1.

Let rx,0 = |Rx,0 |, rx,1 = |Rx,1 |, cx,0 = |Cx,0 |, cx,1 = |Cx,1 |. The values cx,0 and cx,1 indicate how
many of the rx,0 and rx,1, respectively, are set as they would be if x had just been inserted. Intuitively,

the larger cx,0 and cx,1, the higher the probability that x was recently inserted. Notation for the

GBF analysis is summarized in Table 3.

5.3.1 Computing Probabilities. We want limn→∞ P (Ix < w |Rx), given limn→∞ P (j) from Equa-

tion 4. Again, we omit the limit notation for brevity. We first find an expression for P (Rx |j), which
can be used in Equation 9 or 10 to find P (Ix < w |Rx).

Let q0 be the probability that at least one of the k0 hashes sets a given cell to 0.

q0 = 1 −

(
1 −

1

m

)k0
(28)

Similarly, let q1 be the probability that at least one of the k1 hashes, but none of the k0 hashes,
mapped to a given cell.

q1 =

(
1 −

(
1 −

1

m

)k1) (
1 −

1

m

)k0
(29)

Let qϵ be the probability that no hash maps to a given cell.

qϵ = 1 − q0 − q1 =
(
1 −

1

m

)k0+k1
(30)

Theorem 6. Let f0 (ϕ0, i) denote the proability that a cell contains a 0 after i insertions, given that
it was initially 0 with probability ϕ0. f0 (ϕ0, i) is given by:

f0 (ϕ0, i) = ϕ0q
i
ϵ +

q0
q0 + q1

(1 − qiϵ) (31)

Proof: A cell can contain a 0 after i insertions in two cases. First, if it contained a 0 before the

insertions and was not touched during any of the i inserts, with probability ϕ0q
i
ϵ . Second, if the cell

was set to 0 by an insert, then not touched by any subsequent inserts, with probability

∑i−1
ℓ=0 q0q

ℓ
ϵ .

Since these events are independent,

f0 (ϕ0, i) = ϕ0q
i
ϵ +

i−1∑
ℓ=0

q0q
ℓ
ϵ = ϕ0q

i
ϵ + q0

1 − qiϵ
1 − qϵ

= ϕ0q
i
ϵ +

q0
q0 + q1

(1 − qiϵ) □

A parallel analysis appears in [16] for false positive and negative rates. We now use it to

approximate P (Rx |i). When x was inserted, all rx,0 cells in Rx,0 were set to 0, and all rx,1 cells in
Rx,1 set to 1, so we know each cell’s starting value. P (Rx |i) is the probability that all cells in Rx,0
and Rx,1 are set as we observe them, given that i items have been inserted since x was last inserted.

Our observations imply that the following events occurred over the i insertions:

, Vol. 1, No. 1, Article . Publication date: January 2019.

:20 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

Events Prob. Each

cx,0 cells that started 0 remained 0 f0 (1, i)
rx,0−cx,0 cells that started as 0 changed
to 1

(1 − f0 (1, i))

cx,1 cells that started as 1 remained 1 (1 − f0 (0, i))
rx,1−cx,1 cells that started as 1 changed
to 0

f0 (0, i)

We can approximate P (Rx |i) by treating these events as independent and taking the product of

their probabilities:

P (Rx |i) ≈ f0 (1, i)
cx,0 × (1 − f0 (1, i))

rx,0−cx,0×

(1 − f0 (0, i))
cx,1 × f0 (0, i)

rx,1−cx,1
(32)

We can use P (Rx |i) from Equation 32 and P (i) from Equation 4 in Equation 9 to get P (Ix < w |Rx).
The resulting infinite sum having no closed form, we use approximations.

5.3.2 Computing Probabilities Efficiently. To utilize space efficiently, the numbers of 0-cells and

1-cells must be balanced, so k0 = k1 = k . Now,

q0
q0 + q1

=
1

1 +
q1
q0

≈
1

1 +

(
1−(1− 1

m)k
)
(1− 1

m)k(
1−(1− 1

m)k
)

=
1

1 +
(
1 − 1

m

)k
Whenm is large, as is common, we get

(
1 − 1

m

)k
≈ 1, and

q0
q0+q1

≈ 1

2
. Thus, Equation 31 reduces to:

f0 (ϕ0, i) ≈ ϕ0q
i
ϵ +

1

2

(1 − qiϵ) = q
i
ϵ

(
ϕ0 −

1

2

)
+
1

2

Thus, Equation 32 reduces as follows:

P (Rx |i) ≈ f0 (1, i)
cx,0 × (1 − f0 (1, i))

rx,0−cx,0×

(1 − f0 (0, i))
cx,1 × f0 (0, i)

rx,1−cx,1

=

(
1 + qiϵ

2

)cx,0
×

(
1 − qiϵ

2

)rx,0−cx,0
×(

1 + qiϵ
2

)cx,1
×

(
1 − qiϵ

2

)rx,1−cx,1
=

(
1 − qiϵ

2

)rx,0+rx,1
×

(
1 + qiϵ
1 − qiϵ

)cx,0+cx,1
Now we apply Equation 9 to get:

P (Ix < w |Rx) =
∑w−1
i=0 P (i)P (Rx |i)∑∞
i=0 P (i)P (Rx |i)

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :21

=

∑w−1
i=0 px (1 − px)

i
(
1−qiϵ
2

)rx,0+rx,1
×

(
1+qiϵ
1−qiϵ

)cx,0+cx,1
∑∞

i=0 px (1 − px)
i
(
1−qiϵ
2

)rx,0+rx,1
×

(
1+qiϵ
1−qiϵ

)cx,0+cx,1
=

∑w−1
i=0 (1 − px)

i
(
1 − qiϵ

)rx,0+rx,1
×

(
1+qiϵ
1−qiϵ

)cx,0+cx,1
∑∞

i=0 (1 − px)
i
(
1 − qiϵ

)rx,0+rx,1
×

(
1+qiϵ
1−qiϵ

)cx,0+cx,1 (33)

We turn to Equation 33. Let us substitute d = cx,0 + cx,1 and e = rx,0 + rx,1 − d . In general, we

want the sum:

Ψη =

η−1∑
i=0

(1 − px)
i (1 + qiϵ)

d (1 − qiϵ)
e

Using the binomial theorem, we can re-write:

(1 + qiϵ)
d (1 − qiϵ)

e =

d+e∑
s=0

Cs
d,e (q

i
ϵ)

s

where Cs
d,e is the coefficient of (qiϵ)

s
from the convolution

Cs
d,e =

s∑
ℓ=0

(
d

ℓ

)
(−1)s−ℓ

(
e

s − ℓ

)
=

s∑
ℓ=0

(
d

s − ℓ

)
(−1)ℓ

(
e

ℓ

)
where

(
a
b

)
= 0 if b > a. Now we can re-write Ψη as:

Ψη =

η−1∑
i=0

(1 − px)
i *
,

d+e∑
s=0

Cs
d,e (q

i
ϵ)

s+
-

=

d+e∑
s=0

Cs
d,e

η−1∑
i=0

((1 − px)q
s
ϵ)

i

=

d+e∑
s=0

Cs
d,e

1 − ((1 − px)q
s
ϵ)

η

1 − (1 − px)q
s
ϵ

Applying to Equation 33 we get:

P (Ix < w |Rx) =
Ψw

limη→∞ Ψη

=

∑d+e
s=0 C

s
d,e

1−((1−px)qsϵ)
w

1−(1−px)qsϵ∑d+e
s=0 C

s
d,e

1

1−(1−px)qsϵ

(34)

This is easy to evaluate. First, d + e = rx,0 + rx,1 ≤ 2k , so we need to sum at most 2k terms, with k
being usually small. We also have d, e, s ≤ 2k , so there are at most 8k3 distinct coefficients Cs

d,e ,

which we can easily pre-compute. It is also unlikely that rx,0 + rx,1 is much less than 2k , so only

O (k) combinations of d, e occur in practice, reducing the number of precomputed coefficients to

O (k2). In our experiments we precompute at most 16k2 coefficients, which is manageable.

Equation 34 is accurate only for relatively small values of k . As k grows, the coefficients Cs
d,e

and the corresponding terms can have large absolute values, though their sum must lie between

0 and 1. If precision is limited and k is large, roundoff error can occur. Using double-precision

, Vol. 1, No. 1, Article . Publication date: January 2019.

:22 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

floating point numbers, such roundoff error leads to posterior probabilities outside the [0, 1] range
for approximately k ≥ 30.

An advantage of the inferential GBF over the inferential BTBF is that we can varyw at any time,

whereasw for the BTBF must be fixed up-front. We could improve the accuracy of the inferential

GBF by replacing i in Equation 31 with D (i) (Equation 15), as we did for the inferential BTBF.

However, doing so would prevent us from constructing the efficiently computable expression in

Equation 34.

6 EXPERIMENTS
6.1 Experimental Setup
We examined four approaches for sliding window queries: the standard GBF and BTBF, which

return Pos or Neg, and the inferential GBF and BTBF, which return the sliding window posterior

P (Ix < w |Rx). We now test if using posteriors reduces overall penalties, when penalties for false

positives and negatives vary across queries. Our experiments use a real-world data stream and two

synthetic data streams.

6.1.1 Queries and Error Penalties. We use the same data stream for queries and inserts. As each

new item x arrives, we always query for x and then insert x . This model might be used for an

expensive multi-level LRU cache, where we only want to do an expensive check of a large cache

level if we are likely to find the item. This model also resembles duplicate detection as used for

mitigating click fraud [15, 38], although duplicates would not be inserted in that case.

Let $FP and $FN be the penalties incurred if the filter makes false positive/negative errors,

respectively. We choose $FP and $FN independently and uniformly at random from the range

[1.0, 10.0) for each query. The inferential BTBF uses the minimum expected penalty strategy

described in Section 2.6 for deciding whether to return Pos or Neg.

6.1.2 Parameter Selection. Poor choices for filter parameters lead to more errors. However, there

is no consensus on how to choose parameters for the BTBF, though [16] and [33] provide limited

guidance. For the GBF, we fix k0 = k1 = k . For the BTBF, we fix bpt = k as in [33]. If k < 3, we set

the minimum bpt = 3 needed by the BTBF. Given k , we choose the smallest P that allows us to

check at most k timers per insertion.

Our focus is not on predicting optimal parameters, so we tried all k for 1 ≤ k ≤ 30 for each

trial, chosing k to minimize total penalty (see Figure 8). Thus, penalties measured for each filter are

independent of the parameter selection mechanism. This way, we are able to ensure that a sub-

optimal parameter selection strategy does not adversely impact any filter’s reported performance.

In the GBF, bits set by one of the k0 and k1 hashes are set to 0, so the GBF would benefit from

separately optimizing k0 and k1, allowing for a k0 slightly less than k1 [16]. For simplicity, we do

not optimize them separately here. The standard GBF is prone to false negatives if k is large, so its

optimal k are small. However, optimal k are larger for the inferential GBF, which uses the added

information available with large k .

6.1.3 Measuring Performance for Each Filter. Each filter is given bpi bits per item in the window,

so the total space isw · bpi bits. Each experimental trial measures the total penalty incurred by a

given filter for a specific data stream, choice ofw , and choice of bpi. Each trial over a given stream

uses the same sequence of n = 2
22
item inserts/queries, and the same sequence of penalties $FP and

$FN , ensuring comparable results. Before each trial, all cells in the BTBF are set toTε . We then insert

2
20
items without issuing queries, initializing the filters with “past” items from the data stream.

An experiment is a group of trials with the same stream andw , and measures penalties incurred

by the standard and inferential BTBF for a range of bpi values. For each stream, we used two

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :23

Prior Only Buffer Inferential Buffer BTBF Inferential BTBF GBF Inferential GBF

Student Version of MATLAB

0.1 5 10 15 20
0

5

10

15

20

25

30

Bits Per Item (bpi)

M
in

im
um

 C
os

t P
ar

am
et

er

Uniform Stream, Pos ≈ Neg, |U| = 216, n = 222

Student Version of MATLAB(a) Uniform Stream, [Pos≈Neg].

0.1 5 10 15 20
0

5

10

15

20

25

30

Bits Per Item (bpi)
M

in
im

um
 C

os
t P

ar
am

et
er

Uniform Stream, Pos > Neg, |U| = 216, n = 222

Student Version of MATLAB(b) Uniform Stream, [Pos>Neg].

0.1 5 10 15 20
0

5

10

15

20

25

30

Bits Per Item (bpi)

M
in

im
um

 C
os

t P
ar

am
et

er

Power Law Stream, Pos ≈ Neg, |U| = 216, n = 222

Student Version of MATLAB(c) Power Law Stream, [Pos≈Neg].

0.1 5 10 15 20
0

5

10

15

20

25

30

Bits Per Item (bpi)

M
in

im
um

 C
os

t P
ar

am
et

er

Power Law Stream, Pos > Neg, |U| = 216, n = 222

Student Version of MATLAB(d) Power Law Stream, [Pos>Neg].

0.1 5 10 15 20
0

5

10

15

20

25

30

Bits Per Item (bpi)

M
in

im
um

 C
os

t P
ar

am
et

er

IP Source Stream, Pos ≈ Neg, |U| = 232, n = 222

Student Version of MATLAB(e) IP Source Stream, [Pos≈Neg].

0.1 5 10 15 20
0

5

10

15

20

25

30

Bits Per Item (bpi)

M
in

im
um

 C
os

t P
ar

am
et

er

IP Source Stream, Pos > Neg, |U| = 232, n = 222

Student Version of MATLAB(f) IP Source Stream, [Pos>Neg].

Fig. 8. Minimum cost parameters (k for BTBF/GBF, bph for Simple Buffer) in each experiment suite.

experimental conditions. Condition [Pos≈Neg] uses a small enough w to make the numbers of

, Vol. 1, No. 1, Article . Publication date: January 2019.

:24 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

Table 4. Data parameters and characteristics for each experiment/condition. Pos/Neg gives the ratio of
queries for items with Ix < w to those with Ix ≥ w .

Stream |U | Condition w Pos/Neg

Uniform 2
16

[Pos≈Neg] 2
16

1.718

Uniform 2
16

[Pos>Neg] 2
18

53.547

Power Law 2
16

[Pos≈Neg] 2
11

1.182

Power Law 2
16

[Pos>Neg] 2
18

13.451

IP Source 2
32

[Pos≈Neg] 2
8

1.171

IP Source 2
32

[Pos>Neg] 2
15

8.893

queries requiring Pos and Neg responses roughly the same. Condition [Pos>Neg] uses a largerw ,

so Pos queries outnumber Neg ones.

Each experiment is shown as a single curve on a graph. Some graphs show the total penalty

over the trial, while others show the penalty ratio, which is the ratio of the total penalty of the

inferential filter over that of the corresponding standard one. A penalty ratio under 100% indicates

that the inferential filter outperformed the standard one.

The choice ofw and the Pos/Neg ratios for each experiment are given in Table 4. For simplicity,

we chosew to be a power of 2, but our implementation supports arbitrary integralw values.

6.1.4 Errors from Approximations. Wemade several approximations while deriving the posterior

P (Ix < w |Rx), so we evaluate its accuracy for each dataset. In each experiment, we group queries

into 20 bins based on the posterior value P returned. The first bin contains queries with 0 ≤ P < 0.05,
the second with 0.05 ≤ P < 0.1, on up to the last with 0.95 ≤ P ≤ 1. Let ηℓ be the number of

queries in bucket ℓ, and letMℓ be the midpoint of bucket ℓ. We let fℓ be the fraction of queries in

bucket ℓ for which Ix < w . Without approximations, we should have fℓ ≈ Mℓ for all ℓ.
Posterior Error, defined as the average absolute difference between a query posterior and its

bucket midpoint, equals

1

n

20∑
ℓ=1

| fℓ −Mℓ | · ηℓ . (35)

Some Posterior Error is unavoidable due to the coarseness of our grouping. Thus, we expect

a baseline error of less than half the bucket width (0.025). We graph Posterior Errors for each

experiment below.

6.1.5 Implementation. We implemented the filters in Java, running each trial as a single thread

on a 2.4GHz processor. The average time to query and insert an item fell between 0.5 and 1.5
microseconds for the standard and inferential BTBF. Table 5 shows the average time to do an

insert/query pair for each decision technique, with a fixed k = 4, bpi = 15, w = 2
16
for all trials.

Times were measured for the Uniform data stream (see Section 6.3) and averaged over all n items;

times for other streams and window sizes were comparable.

Increasing bpi primarily increases the number of cells, which should have negligible effect on

runtime as long as the filter still fits in RAM. Time varies roughly linearly with k ; the GBF evaluates
2k hashes for each insert/query, so its times are double those of the BTBF. Hashing is done separately

for query and insert. Times can be reduced using optimized or hardware implementations.

The inferential BTBF cachesO (k) static floating-point values to speed up computation in common

cases (Section 4.4), and the GBF caches O (k2) static floating-point values (Section 5.3.2). Cache

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :25

Table 5. Average time per insert/query on the Uniform [Pos≈Neg] data stream with bpi = 10 and k = 4.

Technique Time per Query (µs)

Prior Only 0.33

BTBF (Standard) 0.80

BTBF (Inferential) 1.13

GBF (Standard) 1.64

GBF (Inferential) 1.85

sizes are substantial only for a GBF with smallw , small bpi, and large k , so we do not count caches

as part of the space consumed by our filters.

6.2 Simple Buffer
One might ask under what circumstances space devoted to filters could be better spent on a list of

bph-bit hashes of the last δ ≤ w items inserted. The Simple Buffer is a contrived decision technique

that performs queries via a linear scan over such a list. Practical techniques based on such a list

may index it using a Counting Bloom Filter [13, 35, 36] or a hash table. If the GBF or BTBF incurs

lower costs than (outperforms) the Simple Buffer, then it also outperforms these other techniques,

which store the list and the index.

Storing all items in the window (δ = w , bph = bpi) is impractical when bpi is small, as all

2
bpi

hash values will be in the buffer with high probability. Thus, for each trial, we tried all bph
for 1 ≤ bph ≤ 30, and chose the value of bph that minimized total cost, with δ = ⌊w · bpi/bph⌋
(see Figure 8). Once bpi is large enough to uniquely represent each item in U or in the window

(bpi ≈ log
2
Min(w, |U |)), the Simple Buffer achieves near-perfect accuracy.

We can analyze the Simple Buffer using the framework described in Section 2. Let Rx = 1 if the

bph-bit hash of x is in the buffer, and Rx = 0 otherwise. The posterior is given by:

P (Ix < w |Rx) =




1 − (1 − px)
w−δ Rx = 0

1 −
(1−px)w

1−(1−px)δ

1−

(
1−(1

2
)bph

)D (δ) +(1−px)
δ

Rx = 1 (36)

If a technique outperforms the inferential Simple Buffer, then it also outperforms inferential list-
based techniques.

6.3 Uniform Data Stream
The Uniform data stream samples uniformly with replacement, from a set U of 2

16
integers. px =

1/|U | forall x ∈ U .D (j) is given by Equation 16. Figure 9a shows Penalty ratios, and Figure 9b shows
Posterior Errors. At very low bpi all the filters hold little information, so posteriors depend primarily

on the prior P (Ix = i). Since the prior is known exactly, the posterior here is quite accurate.

Penalties for the inferential BTBF are about 80% of those for standard BTBF. For large bpi, so
much state information is available that most posteriors are close to 0 or 1. They differ from their

corresponding bin centers by half the bin width, hence the convergence to 0.025 for the BTBF. Our
approximations produce noteworthy error in the BTBF only for moderate bpi. The Posterior Errors
for such bpi remain under 0.05, indicating largely accurate posterior expressions.

The inferential GBF consistently outperforms the standard GBF (see Figure 10a), but both perform

poorly overall. For the GBF under [Pos≈Neg], posterior error increases steadily with bpi (see Figure
10b).

, Vol. 1, No. 1, Article . Publication date: January 2019.

:26 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

0.1 5 10 15 20
0%

50%

100%

150%
BTBF Penalties, Uniform Stream, |U| = 216, n = 222

Bits Per Item (bpi)

P
en

al
ty

 R
at

io
: I

nf
er

en
tia

l/S
ta

nd
ar

d

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(a) Penalty Ratios, Uniform Stream.

0.1 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05
BTBF Posterior Error, Uniform Stream, |U| = 216, n = 222

Bits Per Item (bpi)

A
ve

ra
ge

 P
os

te
rio

r
E

rr
or

Pos ≈ Neg
Pos > Neg
Half Bin Width

Student Version of MATLAB(b) Posterior Errors, Uniform Stream

0.1 5 10 15 20
0%

50%

100%

150%
BTBF Penalties, Power Law Stream, |U| = 216, n = 222

Bits Per Item (bpi)

P
en

al
ty

 R
at

io
: I

nf
er

en
tia

l/S
ta

nd
ar

d

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(c) Penalty Ratios, Power Law Stream.

0.1 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05
BTBF Posterior Error, Power Law Stream, |U| = 216, n = 222

Bits Per Item (bpi)

A
ve

ra
ge

 P
os

te
rio

r
E

rr
or

Pos ≈ Neg
Pos > Neg
Half Bin Width

Student Version of MATLAB(d) Posterior Errors, Power Law Stream.

0.1 5 10 15 20
0%

50%

100%

150%
BTBF Penalties, IP Source Stream, |U| = 232, n = 222

Bits Per Item (bpi)

P
en

al
ty

 R
at

io
: I

nf
er

en
tia

l/S
ta

nd
ar

d

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(e) Penalty Ratios, IP Source Stream.

0.1 5 10 15 20
0

0.1

0.2

0.3

0.4
BTBF Posterior Error, IP Source Stream, |U| = 232, n = 222

Bits Per Item (bpi)

A
ve

ra
ge

 P
os

te
rio

r
E

rr
or

Pos ≈ Neg
Pos > Neg
Half Bin Width

Student Version of MATLAB(f) Posterior Errors for IP Source stream.

Fig. 9. BTBF performance for various stream types. Lower Y values are better.

Figures 11a and 11b show that in both suites, the inferential BTBF outperforms all other techniques

until bpi ≈ 20, where the Simple Buffer can afford nearly-unique representations of all items in the

window. One exception occurs in the [Pos≈Neg] suite at bpi = 1, where the inferential GBF beats

the BTBF by a small margin. For the [Pos≈Neg] suite, k reaches our maximum value 30 at bpi = 19

(see Figure 8), indicating that larger k , though inefficient, may yield better results for higher bpi.

6.4 Streams with Skewed Distributions
For skewed stream item distributions, computing accurate posteriors requires the following:

Assumption 1. px is easy to compute for each x .

Assumption 2. px is time-invariant for each x .

If Assumption 1 is violated, priors, and thus posteriors, cannot be computed efficiently. If As-

sumption 2 is violated, the time-invariant priors yield inaccurate posteriors, increasing penalties.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :27

0.1 5 10 15 20
0%

50%

100%

150%
GBF Penalties, Uniform Stream, |U| = 216, n = 222

Bits Per Item (bpi)

P
en

al
ty

 R
at

io
: I

nf
er

en
tia

l/S
ta

nd
ar

d

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(a) GBF Penalty Ratios, Uniform Stream.

0.1 5 10 15 20
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
GBF Posterior Error, Uniform Stream, |U| = 216, n = 222

Bits Per Item (bpi)

A
ve

ra
ge

 P
os

te
rio

r
E

rr
or

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(b) GBF Posterior Errors, Uniform Stream.

0.1 5 10 15 20
0%

50%

100%

150%
GBF Penalties, IP Source Stream, |U| = 232, n = 222

Bits Per Item (bpi)

P
en

al
ty

 R
at

io
: I

nf
er

en
tia

l/S
ta

nd
ar

d

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(c) GBF Penalty Ratios, Power Law Stream.

0.1 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05
GBF Posterior Error, Power Law Stream, |U| = 216, n = 222

Bits Per Item (bpi)

A
ve

ra
ge

 P
os

te
rio

r
E

rr
or

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(d) GBF Posterior Errors, Power Law Stream.

0.1 5 10 15 20
0%

50%

100%

150%
GBF Penalties, IP Source Stream, |U| = 232, n = 222

Bits Per Item (bpi)

P
en

al
ty

 R
at

io
: I

nf
er

en
tia

l/S
ta

nd
ar

d

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(e) GBF Penalty Ratios, IP Source Stream.

0.1 5 10 15 20
0

0.1

0.2

0.3

0.4
GBF Posterior Error, IP Source Stream, |U| = 232, n = 222

Bits Per Item (bpi)

A
ve

ra
ge

 P
os

te
rio

r
E

rr
or

Pos ≈ Neg
Pos > Neg

Student Version of MATLAB(f) GBF Posterior Errors for IP Source stream.

Fig. 10. GBF performance for various stream types. Lower Y values are better.

We must distinguish between x ’s value and its rank. More frequent items (larger px) have lower
rank. Often, item ranks follow a predictable distribution, such as a power law in the case of Zipf-

distributed data, while values do not. Thus, this property only helps compute px if we can infer x ’s
rank from its value, which is often not the case.

6.4.1 Power Law Stream. Our Power Law stream samples items from setU = {x ∈ Z | 1 ≤ x ≤

2
16} according to the discrete power law distribution px = 1/(x · H |U |), where H |U | =

∑ |U |
i=1 1/i .

Computing px is easy since H |U | is fixed, and px is time-invariant. Equation 17 gives D (j).
BTBF penalty ratios are shown in Figure 9c, and Posterior Errors in Figure 9d. The standard BTBF

has no false negatives, so it performs well under condition [Pos>Neg]. Thus, penalty reductions are
more pronounced under [Pos≈Neg]. Posterior Errors stay under 0.035 for all bpi, so our posterior

expressions are again largely accurate. In this case, as for Uniform streams, Posterior Errors are low

, Vol. 1, No. 1, Article . Publication date: January 2019.

:28 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

Prior Only Inferential Buffer Inferential BTBF Inferential GBF

Student Version of MATLAB

0.1 5 10 15 20
0

2

4

6

8

10

x 10
6

Bits Per Item (bpi)

T
ot

al
 P

en
al

ty

Uniform Stream, Pos ≈ Neg, |U| = 216, n = 222

Student Version of MATLAB(a) Uniform Stream [Pos≈Neg].

0.1 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

6

Bits Per Item (bpi)

T
ot

al
 P

en
al

ty

Uniform Stream, Pos > Neg, |U| = 216, n = 222

Student Version of MATLAB(b) Uniform Stream [Pos>Neg].

0.1 5 10 15 20
0

2

4

6

8

10

x 10
6

Bits Per Item (bpi)

T
ot

al
 P

en
al

ty

Power Law Stream, Pos ≈ Neg, |U| = 216, n = 222

Student Version of MATLAB(c) Power Law Stream, [Pos≈Neg].

0.1 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

6

Bits Per Item (bpi)

T
ot

al
 P

en
al

ty

Power Law Stream, Pos > Neg, |U| = 216, n = 222

Student Version of MATLAB(d) Power Law Stream, [Pos>Neg].

0.1 5 10 15 20
0

2

4

6

8

10

x 10
6

Bits Per Item (bpi)

T
ot

al
 P

en
al

ty

IP Source Stream, Pos ≈ Neg, |U| = 232, n = 222

Student Version of MATLAB(e) IP Source Stream, [Pos≈Neg].

0.1 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

6

Bits Per Item (bpi)

T
ot

al
 P

en
al

ty

IP Source Stream, Pos > Neg, |U| = 232, n = 222

Student Version of MATLAB(f) IP Source Stream, [Pos>Neg].

Fig. 11. Total Penalty values for different input stream types and parameters. Lower Y values are better.

for very low bpi, where the posterior depends largely on the precisely-known priors, and converges

to 0.025 when bpi is large.
GBF penalty ratios are shown in Figure 10c, and Posterior Errors in Figure 10d. Under [Pos>Neg],

the inferential GBF penalty ratio increases for bpi > 5, since k reaches our maximum of 30 by the

time bpi = 5 (see Figure 8). After this point, the most effective choice of k ≤ 30 for the inferential

GBF is k = 1, which incurs lower posterior error, but slightly increases the penalty ratio.

Figures 11c and 11d show that the inferential BTBF has lowest penalty until bpi ≈ 16 for

[Pos≈Neg], and bpi ≈ 22 for [Pos>Neg]. The inferential BTBF’s advantage is greater for [Pos≈Neg]
since the standard BTBF has no false negatives, and benefits when most queries return Pos.

6.4.2 Source IP Data Stream. The Source IP data stream [4] draws anonymized source addresses

from IPv4 packet headers (|U | = 2
32
). Address distribution is complex, so px is hard to model

analytically (see Assumption 1). We handled this problem by pre-processing the stream items x to

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :29

be queried, computing px based on the observed frequency of address x , and saving (x ,px) pairs
for the queried x .

We sample D (j) for j ∈ {1, 10, 102, 103, 104, 105, 218} over the stream itself. We inserted 2
18
items

during each of 8 sampling trials. We then averaged D (j) values over all 8 trials, and interpolated

between averages using Equation 18.

BTBF penalty ratios are shown in Figure 9e, and Posterior Errors in Figure 9f. GBF penalty ratios

are in Figure 10e, and Posterior Errors in Figure 10f. The stream is bursty, so px is not strictly

time-invariant, violating Assumption 2. Thus, priors are not accurate, leading to higher Posterior

Error for low bpi, where the posterior relies heavily on the prior.

These high errors, combined with the zero false negative rate of the standard BTBF, cause

the inferential BTBF to incur higher penalties for some low bpi under [Pos>Neg]. However, the
inferential BTBF still generally reduces penalties for most trials.

Figures 11e and 11f show total penalties for the IP Source stream. Every queried item is re-inserted.

For [Pos≈Neg], where data is bursty andw is small, any other prior insertions of x are likely to

have been recent. The BTBF spends comparable space on each item in the window, but the GBF

and Simple Buffer devote more space to more recent items, so they initially outperform the BTBF.

The GBF thus has the potential to outperform the BTBF in such scenarios, where more recent items

are more important to remember.

Under [Pos>Neg],w is larger, so an item is more likely to have multiple bursts throughout the

window, which the BTBF handles well. The inferential GBF costs increase near bpi = 9, where k
reaches 30 (Figure 8).

7 RELATEDWORK
An extensive survey of various Bloom Filter variants appears in [20], the variants being compared

with respect to their performance and generality. Applications of Bloom Filters are discussed in [3].

Filters including the Standard Bloom Filter [2], the Generalized Bloom Filter [16], and others

[17, 19] use single-bit cells. Other filters use multiple bits in each cell to represent counters, as in

the Counting Bloom Filter (CBF) [11], timers, as in the TBF [38], or other values [5, 8, 30].

Simple filters [2, 9, 31] only allow items to be inserted, and generally represent static sets.

Deletable filters [19, 29, 30] allow items to be deleted as well as inserted, and represent dynamic

sets. Decaying filters represent a dynamic set of recently inserted items. As new items are inserted,

decaying filters lose their memory of older items.

Deletable filters such as the CBF can function as decaying filters by storing a queue of recent

items [35, 36]. When a new item arrives, an old item is removed from the queue and deleted from

the filter. Storing the queue requires many bits per item, so such techniques are only practical when

a great deal of space is available to the filter.

Common decaying filters use multi-bit counters and insert an item by setting all its touched cells

to some maximum value such as a window width. Cells are regularly decremented, with minimum

value 0. When the filter is queried, the item is deemed to be in the window if all touched cells have

values greater than 0. In [8], cells to decrement are chosen randomly after each insertion, while

in [15, 33, 39], all non-zero counters are decremented after each block of inserts. The TBF [38]

implicitly decrements cells by assigning each cell a timestamp, and periodically incrementing a

current timestamp. Posterior expressions for such decaying filters are similar to those of the BTBF.

The work in [14] addresses the false positive problem by applying techniques from Combinatorial

Group Testing to create an auxiliary data structure called the EGH filter, and gurantees the absence

of false positives as long as the number of inserted items is below a threshold d . Bloom Filters have

been used for comparing sets, in applications such as distributed joins [18, 22, 26, 27] and cache

, Vol. 1, No. 1, Article . Publication date: January 2019.

:30 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

management [11]. The work in [21] designs a new data structure called the Invertible Counting

Bloom Filter that permits comparison operations, such as set differencing, on multisets.

Current designs ignore much of the information latent in filters. Authors of [15] note that in

decaying filters, the number of timers with minimum value touched by x affects the posterior

probability that x is in the window, but do not derive that probability. Authors of [31] use specific
counter values in a CBF to derive the posterior probability that x is in a static set. They show that

the posterior depends on the product of the counters touched by x , and use it to improve accuracy.

Authors of [5] use knowledge of data stream item frequencies to improve accuracy. They build a

hierarchy of decaying filters and assign items to filters based on frequency, using more information

to store more frequent items.

We introduced our framework for constructing inferential time-decaying filters and an analysis

of the Timing Bloom Filter in [7]. The present work significantly extends and generalizes this

prior work in numerous ways. First, it discusses the Generalized Bloom Filter (GBF) and presents

an Inferential version of the GBF, with detailed analysis and proofs that analyze its performance

and inferential properties. Next, it presents a baseline comparison standard for Bloom filters in

the form of an idealized Simple Inferential Buffer approach that uses equivalent total storage, to

contrast with the Bloom filter approach of dedicating a fixed number of bits to a small hash for each

item in the filter. This comparison is important, because when any Bloom filter variant presented

outperforms this approach, it is guaranteed to outperform inferential versions of all such list-based

techniques. The current work also presents a direct comparison (total penalty vs. bits per item)

between the Inferential BTBF, the Inferential GBF, the Inferential Buffer, and a scheme relying only

on prior probabilities (0 bits stored per item) as a lower bound on quality. The experiments and

implementation presented are greatly expanded, including tables with time per query for each

type of filter in microseconds. Finally, this paper presents significantly expanded details on optimal

parameter selection (Figure 8).

8 CONCLUSION
We have shown how to turn standard time-decaying filters into inferential filters, using prior

probabilities and previously unused information in the filter. We showed how inferential filters can

support new types of retrospective queries and adapt to query-specific error penalties on existing

sliding window queries. We developed a space-efficient extension of the existing Timing Bloom

Filter called the Block Timing Bloom Filter (BTBF), and turned the standard BTBF into an inferential

BTBF. We also developed an inferential version of the Generalized Bloom Filter (GBF).

We showed that our sliding window posterior expressions for the inferential GBF and BTBF are

accurate in practice. We experimentally evaluated the standard and inferential filters, comparing

total penalties incurred by each when answering sliding window queries with query-specific

penalties. The inferential BTBF generally reduced penalties by 10%–70%. Accurate modeling of

filters and item probabilities is important, as poor modeling can cause inferential filters to perform

poorly.

We showed that in most cases, the inferential GBF and BTBF outperform the standard GBF and

BTBF when false positive/negative costs vary between queries. We also showed that the inferential

BTBF outperforms the inferential GBF when the window width is fixed for all queries, and that the

inferential BTBF outperforms buffer-based techniques, such as those using Counting Bloom Filters,

when storage space is limited.

Future work in this area may include additional modeling, developing inferential versions of

other filters, and identifying optimal parameters for inferential filters.

, Vol. 1, No. 1, Article . Publication date: January 2019.

Inferring Insertion Times and Optimizing Error Penalties in Time-Decaying Bloom Filters :31

9 ACKNOWLEDGEMENTS
This work was supported by grants N00014-07-C-0311 from the Office of Naval Research, CPS-

1330110 and IIS-1527984 by the National Science Foundation, and by the National Physical Science

Consortium Graduate Fellowship.

REFERENCES
[1] Kursad Asdemir, Özden Yurtseven, and Moin Yahya. 2008. An Economic Model of Click Fraud in Publisher Networks.

Int. J. Electron. Commerce 13, 2 (Dec. 2008), 61–90.
[2] B.H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[3] Andrei Broder and Michael Mitzenmacher. 2003. Survey: Network Applications of Bloom Filters: A Survey. 1 (11

2003).

[4] CAIDA. 2011. The CAIDA UCSD Anonymized Internet Traces 2011 - Equinox Chicago Direction A starting 20110217-

125904. Available at http://www.caida.org/data/passive/passive_2011_dataset.xml.

[5] K. Cheng, L. Xiang, and M. Iwaihara. 2005. Time-decaying bloom filters for data streams with skewed distributions. In

Proc. RIDE-SDMA 2005. 63–69.
[6] K. Christensen, A. Roginsky, and M. Jimeno. 2010. A new analysis of the false positive rate of a Bloom filter. Inform.

Process. Lett. 110, 21 (2010), 944–949.
[7] Jonathan L Dautrich Jr and Chinya V Ravishankar. 2013. Inferential time-decaying Bloom filters. In Proceedings of the

16th International Conference on Extending Database Technology. ACM, 239–250.

[8] F. Deng and D. Rafiei. 2006. Approximately detecting duplicates for streaming data using stable bloom filters. In Proc.
SIGMOD. 25–36.

[9] B. Donnet, B. Baynat, and T. Friedman. 2006. Retouched Bloom filters: allowing networked applications to trade off

selected false positives against false negatives. In Proc. CoNEXT. 13.
[10] M Douglas McIlroy. 1982. Development of a Spelling List. 1 (02 1982), 91 – 99.

[11] L. Fan, P. Cao, J. Almeida, and A.Z. Broder. 2000. Summary cache: a scalable wide-area web cache sharing protocol.

IEEE/ACM Transactions on Networking (TON) 8, 3 (2000), 281–293.
[12] Lee L. Gremillion. 1982. Designing a Bloom Filter for Differential File Access. Commun. ACM 25, 9 (Sept. 1982),

600–604. https://doi.org/10.1145/358628.358632

[13] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. 2010. The dynamic Bloom filters. Knowledge and Data Engineering, IEEE
Transactions on 22, 1 (2010), 120–133.

[14] Śandor Kiss, Éva Hosszu, János Tapolcai, Lajos Rónyai, and Ori Rottenstreich. 2018. Bloom Filter with a False Positive

Free Zone. In INFOCOM 2017. IEEE International Conference on Computer Communications. IEEE. IEEE.
[15] G. Koloniari, N. Ntarmos, E. Pitoura, and D. Souravlias. 2011. One is enough: distributed filtering for duplicate

elimination. In Proc. CIKM. 433–442.

[16] R.P. Laufer, P.B. Velloso, and O.C. Duarte. 2011. A Generalized Bloom Filter to secure distributed network applications.

Computer Networks (2011).
[17] X. Li, J. Wu, and J. Xu. 2006. Hint-based routing in WSNs using scope decay bloom filters. In Proc. IWNAS. IEEE, 8–15.
[18] Zhe Li and Kenneth A. Ross. 1995. PERF Join: An Alternative to Two-way Semijoin and Bloomjoin. In Proceedings of

the Fourth International Conference on Information and Knowledge Management (CIKM ’95). ACM, New York, NY, USA,

137–144. https://doi.org/10.1145/221270.221360

[19] Y. Lu, B. Prabhakar, and F. Bonomi. 2005. Bloom filters: Design innovations and novel applications. In Proc. Allerton
Conference.

[20] Lailong Luo, DekeGuo, Richard T. B.Ma, Ori Rottenstreich, and Xueshan Luo. 2018. Optimizing Bloom Filter: Challenges,

Solutions, and Comparisons. CoRR abs/1804.04777 (2018). arXiv:1804.04777 http://arxiv.org/abs/1804.04777

[21] L. Luo, D. Guo, J. Wu, O. Rottenstreich, Q. He, Y. Qin, and X. Luo. 2017. Efficient Multiset Synchronization. IEEE/ACM
Transactions on Networking 25, 2 (April 2017), 1190–1205. https://doi.org/10.1109/TNET.2016.2618006

[22] Lothar F. Mackert and Guy M. Lohman. 1986. R* Optimizer Validation and Performance Evaluation for Distributed

Queries. In Proceedings of the 12th International Conference on Very Large Data Bases (VLDB ’86). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 149–159. http://dl.acm.org/citation.cfm?id=645913.671480

[23] Udi Manber and Sun Wu. 1994. An Algorithm for Approximate Membership Checking with Application to Password

Security. Inf. Process. Lett. 50, 4 (May 1994), 191–197. https://doi.org/10.1016/0020-0190(94)00032-8

[24] Ahmed Metwally, Dharma Agrawal, and A El Abbadi. 2005. Duplicate detection in click streams. (01 2005), 12–21.

[25] Calvin N. Mooers. 1951. Zatocoding applied to mechanical organization of knowledge. American Documentation 2, 1

(1 1951), 20–32. https://doi.org/10.1002/asi.5090020107

[26] J. K. Mullin. 1990. Optimal semijoins for distributed database systems. IEEE Transactions on Software Engineering 16, 5

(May 1990), 558–560. https://doi.org/10.1109/32.52778

, Vol. 1, No. 1, Article . Publication date: January 2019.

http://www.caida.org/data/passive/passive_2011_dataset.xml
https://doi.org/10.1145/358628.358632
https://doi.org/10.1145/221270.221360
http://arxiv.org/abs/1804.04777
http://arxiv.org/abs/1804.04777
https://doi.org/10.1109/TNET.2016.2618006
http://dl.acm.org/citation.cfm?id=645913.671480
https://doi.org/10.1016/0020-0190(94)00032-8
https://doi.org/10.1002/asi.5090020107
https://doi.org/10.1109/32.52778

:32 Jonathan L. Dautrich Jr. and Chinya V. Ravishankar

[27] James K. Mullin. 1993. Estimating the Size of a Relational Join. Inf. Syst. 18, 3 (April 1993), 189–196. https:

//doi.org/10.1016/0306-4379(93)90037-2

[28] L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank citation ranking: Bringing order to the web. (1999).

[29] C.E. Rothenberg, C.A.B. Macapuna, F.L. Verdi, and M.F. Magalhaes. 2010. The deletable Bloom filter: a new member of

the Bloom family. Communications Letters, IEEE 14, 6 (2010), 557–559.

[30] O. Rottenstreich, Y. Kanizo, and I. Keslassy. 2012. The variable-increment counting Bloom filter. In Proc. Infocom.

[31] O. Rottenstreich and I. Keslassy. 2012. The Bloom Paradox: When not to Use a Bloom Filter?. In Proc. Infocom.

[32] S. Saroiu, K.P. Gummadi, R.J. Dunn, S.D. Gribble, and H.M. Levy. 2002. An analysis of internet content delivery systems.

ACM SIGOPS Operating Systems Review 36, SI (2002), 315–327.

[33] H. Shen and Y. Zhang. 2008. Improved approximate detection of duplicates for data streams over sliding windows.

Journal of Computer Science and Technology 23, 6 (2008), 973–987.

[34] S. Tarkoma, C. Rothenberg, and E. Lagerspetz. 2012. Theory and practice of bloom filters for distributed systems.

Communications Surveys & Tutorials, IEEE 99 (2012), 1–25.

[35] X. Wang and H. Shen. 2010. Approximately Detecting Duplicates for Probabilistic Data Streams over Sliding Windows.

In Proc. PAAP. 263–268.
[36] J. Wei, H. Jiang, K. Zhou, D. Feng, and H. Wang. 2011. Detecting Duplicates over Sliding Windows with RAM-Efficient

Detached Counting Bloom Filter Arrays. In Proc. NAS. 382–391.
[37] W.B. Wu and C.V. Ravishankar. 2003. The performance of difference coding for sets and relational tables. Journal of

the ACM (JACM) 50, 5 (2003), 665–693.
[38] L. Zhang and Y. Guan. 2008. Detecting click fraud in pay-per-click streams of online advertising networks. In Proc.

ICDCS. IEEE, 77–84.
[39] Y. Zhao and J. Wu. 2010. B-SUB: A Practical Bloom-Filter-Based Publish-Subscribe System for Human Networks. In

Proc. ICDCS. 634–643.

, Vol. 1, No. 1, Article . Publication date: January 2019.

https://doi.org/10.1016/0306-4379(93)90037-2
https://doi.org/10.1016/0306-4379(93)90037-2

	Abstract
	1 Introduction
	1.1 Inferential Time-Decaying Filters
	1.2 Contributions

	2 Inferential Filter Framework
	2.1 The Classical Bloom Filter
	2.2 Analytical Approximations
	2.3 Probability Functions
	2.4 Example: Classical Bloom Filters
	2.5 Expected Number of Distinct Items
	2.6 Minimum-Penalty Decisions

	3 Standard Timing Bloom Filters
	3.1 Timing Bloom Filters
	3.2 Block Timing Bloom Filters

	4 Inferential BTBF
	4.1 Case x> "4264306 w - bB "5265307
	4.2 Case x= 0
	4.3 Case 0 < x"4264306 w-bB "5265307
	4.4 Computing Probabilities Efficiently

	5 Generalized Bloom Filter
	5.1 Insert
	5.2 Query
	5.3 GBF Analysis

	6 Experiments
	6.1 Experimental Setup
	6.2 Simple Buffer
	6.3 Uniform Data Stream
	6.4 Streams with Skewed Distributions

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

