
A Scalable Approach to Approximating Aggregate Queries over
Intermittent Streams �

Shanzhong Zhu and Chinya Ravishankar
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92521

�szhu, ravi�@cs.ucr.edu

Abstract

We present a novel approach to approximate evaluation
of standing aggregate queries over streaming data, sub-
ject to user-specified error bounds. Our method models the
behavior of aggregates as Brownian motions, and adap-
tively updates the model according to stream characteris-
tics. This approach has two advantages. First, it greatly im-
proves system scalability since we can defer query evalu-
ation as long as the difference between the returned and
true aggregate values remains within user-specified bounds.
Second, we are able to provide approximate answers dur-
ing stream interruptions by estimating the rate at which the
streams and the aggregate drift during the blackout periods.
We also study processor allocation issues in such approxi-
mate aggregate evaluation systems. Our experiments show
that our model captures the behavior of real-world streams
such as sensor data and stock traces with excellent fidelity,
and scales very well for large numbers of standing queries.

1. Introduction

There has been increasing recent interest in managing
data streams [4, 6]. Streaming data, unlike relational data,
are continuous in principle, of unbounded extent, and need
not be persistent. Examples of streaming data include real
time tick-by-tick stock data [3] and sensor data (tempera-
ture, pressure, illumination, and so on) [2]. Applications of
such streaming data abound, and include real-time financial
applications [29], network traffic monitoring systems [8],
sensor monitoring systems [20, 19], security systems, and
manufacturing process.

� This work was supprted in part by grants from Tata Consultancy Ser-
vices, Inc., the Digital Media Innovations program of the University
of California, and by the Fault-Tolerant Networks program of the De-
fense Advanced Research Projects Agency, under contract F30602-
01-2-0536.

Aggregates are commonly used to summarize large vol-
umes of streaming data, and typically involve functions
such as AVG, SUM, COUNT, and MIN/MAX. Evaluation
of aggregate queries over data streams has already received
some attention [13, 11, 23, 5, 20]. In our work, we consider
standing (continuous) aggregate queries [4], which remain
in effect on streams indefinitely. For example, a facilities
manager who monitors the temperatures from a large num-
ber of sensors deployed in a building may wish to be noti-
fied when the average temperature of the third floor changes
by more than �Æ� . Similarly, a brokerage may manage sev-
eral hundred thousands of stock portfolios over thousands
of stocks, and each customer may wish to be notified when
portfolio changes by a certain prespecified amount, say ��.

In practice, it is generally unnecessary to rigidly eval-
uate aggregate queries each time a new stream item ar-
rives, since users can typically tolerate some errors in the
query results. Such flexibility can be used to enhance query
processor performance. In the examples above, a naive ap-
proach would evaluate all aggregates each time a new item
arrives, and generate notifications when the aggregate value
exceeds the prespecified bound. If each standing query is as-
signed a thread, this approach clearly does not scale [7].

1.1. Approximate Query Evaluation by Deferral

Our work is a new approach to trading off aggregate re-
sult precision for query processor scalability, by deferring
query evaluations as long as the error in a cached value for
the aggregate remains within user-specified bounds.

Scalability is particularly important when the num-
ber of standing queries is large. For example, a real-time
stock monitoring system may handle a few thousand stock
streams, but monitor the values of millions of portfolios [3].
In such a system, re-evaluating all standing queries when-
ever a stream item arrives will be expensive, even if each
aggregate is easy to compute. We will incur significant sys-
tem overheads, including thread switching and cache

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

misses as the query processor switches between aggre-
gates [7] (see Figure 7 for a comparison of scalability under
the naive approach and our adaptive approach). The prob-
lem clearly worsens as the rate of incoming data streams
increases.

A train scheduling technique is proposed in the Aurora
data stream manager [6, 7] to improve system scalabil-
ity. Their goal is to queue as many items as possible for
each query operator, and process the complete train at once.
This approach reduces the overall item processing costs, but
may fail to deliver the results in a timely manner due to
queuing delays. Our approach achieves high scalability by
avoiding processing some stream items, and delivers results
promptly.

1.2. Handling Stream Interruptions

An implicit, albeit unrealistic, assumption made com-
monly is that streams are unbroken and uninterrupted. In
practice, however, sensors could malfunction or links could
become congested temporarily, leading to data loss or de-
lay. Query processing must continue regardless, especially
for standing queries. Standard methods for interpolating
data lost during the interruption is not always viable, since
stream data usually contains a stochastic component.

In our work, we address two challenges, namely, how
to improve system scalability given user tolerance to er-
ror, and how to continue approximate aggregate evaluation
when stream interruptions occur.

1.3. Our Model

Our approach is to model numerical data streams as
Brownian motions [12]. Brownian motion models are ap-
propriate when increments in values are independent Nor-
mal distributions, and are widely used to characterize fluc-
tuating data in fields like finance, engineering, telecom-
munication, and physics. We show in section 3 that many
important streaming data such as stock traces and sensor
data can be modeled as Brownian motions. We then show
how to model stream aggregates, such as AVG, SUM, MIN
and MAX, based on Brownian motion streams. This model
yields parameters that allow us to estimate how far the cur-
rent values of streams and aggregates are likely to have
drifted from previous values.

Our approach avoids aggregate evaluations each time a
new data item arrives. Each aggregate query � includes a
user-defined error bound � and a belief threshold �. We de-
fer �’s evaluation as long as our Brownian motion model
estimates its value to be within � of its previous value, with
probability �. If some stream input to � is interrupted, our
approach allows us to estimate the increments in aggregate
values, and generate error bounds at probability level �. We

show that this is an accurate and useful model for signif-
icant classes of streaming data, such as sensor and stock
streams.

We update the Brownian motion model on-line, since
stream characteristics can change over time. Fluctuations
in sensed temperatures will depend on wind conditions,
and the intra-day volatility of stocks may depend on mar-
ket sentiment. When stream values have larger fluctuations,
more frequent evaluations are required. Consequently, our
approach raises some processor allocation issues. Given a
set of aggregate queries with error bounds, and a query pro-
cessor with fixed computing capacity, we must, at any time,
be concerned about whether we can schedule all query eval-
uations so that their error bounds are met. If the processor is
so overloaded that some evaluations cannot meet their error
bounds, we aim to schedule these evaluations intelligently
so that the total incurred error can be minimized.

We organize the rest of this paper as follows: Section 2
reviews some related work. In Section 3, we show that
some numerical streams can be modeled as Brownian mo-
tions. Section 4 discusses how to adaptively trigger aggre-
gate evaluations based on our Brownian motion models.
Section 5 briefly discusses how to schedule aggregate eval-
uations according to system load. In Section 6, we conduct
experiments that evaluate our adaptive aggregation scheme
on both stock traces and sensor data. Section 7 concludes
our work.

2. Related Work

A summary of models and issues in data stream system
appears in [4], and discusses approximation techniques in-
cluding sampling [22], histograms [17], and wavelets [15].
Such techniques focus on building bounded summary infor-
mation on unbounded data streams, and have been shown to
be quite efficient for traditional query operators.

Approximating aggregate queries over data streams has
already received attentions [11, 13, 16]. Dobra et al. [11]
propose techniques to approximately answer complex ag-
gregate queries based on sketches. Gehrke et al. [13] pro-
pose single-pass techniques to approximate correlated ag-
gregates based on histograms. Since the exact evaluation of
the aggregates is expensive, both aim to provide imprecise
answers. In contrast, our approximation scheme is based on
deferral of query evaluations, so that aggregates are selec-
tively reevaluated at times guided by stream characteristics
and the user’s error bounds.

Our system can also be regarded as a stream monitor-
ing system [6, 18, 19, 29]. In Aurora [6], data flows through
a graph of primitive operators, such as select, merge, and
join, and an output stream is returned. Operator batching
and tuple batching (train scheduling) techniques [7] are ap-
plied to reduce scheduling and operator overheads, and thus

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

improve system scalability. In the StatStream system [29],
stream correlation and � value are monitored online, us-
ing Discrete Fourier Transform (DFT) approximation and
grid data structure to reduce computation. While the goal of
StatStream is to discover all pairs of streams with correla-
tion bigger than the prespecified threshold, our goal is to re-
port all significant changes (more than users’ error bound)
of stream aggregates with low overheads.

We also design a scheduler to schedule aggregate evalu-
ations under real-time constraint. Load shedding techniques
[10, 25] have been proposed to selectively shed loads when
system is overloaded. Our scheduler aims to carefully se-
quence pending jobs so that the total incurred error can be
minimized under overload.

TRAPP [5, 23, 24] investigates techniques to trade off
precision (user-provided precision constraint) for commu-
nication overheads in replicated data environments. They
consider how to reduce communication overhead in an en-
vironment where distributed data sources with limited re-
sources continuously stream updates to a central server
[23], and how to monitor streams with top � values in a
similar environment [5]. Our work, unlike TRAPP, assumes
no cooperation at remote sources. Besides, our focus is on
query processor scalability instead of communication over-
head, and how to provide best available query answers over
intermittent streams.

3. Modeling the Streams

We consider data streams of numerical values, such as
stock price streams, sensored temperature streams, and net-
work traffic load streams. Numerical streams usually dis-
play random fluctuations, making it hard to predict their be-
haviors.

Brownian motion [12] is a stochastic model widely used
to characterize fluctuation of random data. A stochastic pro-
cess �� is called a Standard Brownian motion (SBM) if it
satisfies three conditions: (1) �� � �, (2) �� ��� is nor-
mally distributed with mean � and variance � � �, and (3)
�� � �� is independent of �� � �� if ��� �� and ��� ��
are non-overlapping time intervals. Property (2) is the key
property of SBM, meaning every increment of SBM follows
standard Normal distribution. In general, SBM is a Martin-
gale process [14], meaning loosely that the best estimate for
its future value is its current value.

We can generalize SBM to Drifting Brownian Motion
(DBM) by introducing a secular drift in the expectation of
the process (see Figure 1). A DBM process �� can be mod-
eled by the following difference equation

��� � 	����
����� (1)

where 	� and
� are time dependent parameters. Fundamen-
tally, DBM is a combination of a predictable linear trend

Time

V
al

ue

stochastic variation
represents theσ

represents the upward
trend in the mean

µ

Figure 1: Brownian motion with drift

and a Brownian motion process. The term 	��� represents
the non-stochastic part of the process, and characterizes the
current moving trend. The term
���� is the stochastic or
Brownian motion part, and represents the randomness in the
data. At time �, the process increment��� follows the Nor-
mal distribution �	����
�����.

In earlier work [28], we have shown experimentally that
numerical streams such as stock price traces and sensed
temperature streams can be modeled as DBMs. We ap-
plied the Wilk-Shapiro test [26] to verify that the stream
increments were normal, and concluded that these numeri-
cal streaming sources can be modeled as Brownian motions
with high confidence under small time intervals (� and
�
are relatively constant over small time intervals).

According to the DBM model, the behavior of each
stream can be characterized by the drift and diffusion pa-
rameters 	 and
, respectively. As explained above, 	 mod-
els a secular upward or downward trend in the mean of
the stream data values, and
 models the variance or ran-
domness associated with the stream. A higher
 means that
stream values are likely to exceed the user-specified error
bound sooner, so higher estimates for
 trigger more fre-
quent aggregate evaluations. Stream behavior is determined
by
 in the short term, and by 	 in the longer term. Both pa-
rameters need to be estimated on a regular basis (see Sec-
tion 4.6).

In the rest of this paper, we show how to predict the be-
havior of aggregates provided individual streams are mod-
eled as DBMs.

4. Query Processing

Let � � ���� ��� � � � � ��� be � continuous data streams
streaming into the query processor (QP) (see Figure 2).
Standing queries are of the form ��� � ��, in which � is
the aggregate query, and and � are the user-specified er-
ror bound and the belief threshold, respectively. The error
bound is the error in query results that users can tolerate,
and the belief threshold represents the desired confidence
that this error is within bounds.

We consider two categories of aggregate queries: linear
aggregates and min/max over a time window. Each linear

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

Scheduler

Stream
buffers

PEP Standing queries

Query ProcessorStreams Result Streams Users

��

��

��

��

��

��

��

��

��

� � � ������� ������� ������

� � � ������� ������� ������

� � � ������� ������� ������

� � � ������� ������� ������

� � � ������� ������� ������

� � � ������� ������� ������

��

Figure 2: The architecture. The QP accepts standing queries and returns result streams

aggregate is a time dependent value:

���� �
�

����

�������� (2)

computed as weighted sum over a subset of streams � � �.
Aggregates such as SUM, AVG, COUNT are in this cate-
gory.

We also discuss min/max aggregates over time windows
(see Section 4.3). Consider the queries “Return the max-
imum value of my stock portfolio in the last hour”, and
“Give me today’s minimum average temperature on the 2nd
floor”. The former is a sliding window query, and the lat-
ter is a landmark window query [13]. Both queries are very
common in streaming applications.

Let ���� be the result stream of the aggregate�. Our ap-
proach evaluates � only at times �� � �� � �� � � � � , so
that ���� will comprise ������� ������ ������ � � � �. These
evaluation times for � are not equally spaced, since the
characteristics of the component streams may change over
time. Therefore, to make our scheme adaptive, we must de-
cide ��� � ���� � �� as we evaluate ����� at time ��.

Consider the following probability function:

� ������ � ����������������� � �	 (3)

� ������ is the probability that the increment of aggregate
� is within bound � at time � � ��, given that the last
evaluation time was �. Therefore, whenever �� is such that
� ������ 	
, we believe that the aggregate value is still
within � of its previous value after time ��. Clearly, �
must be re-evaluated before � ������ drops below the be-
lief threshold
. In other words, the deadline for the next
evaluation of � is determined by the smallest �� for which
� ������ �
.

Section 4.1 describes the architecture of our QP. Sec-
tion 4.2 and Section 4.3 discuss how to apply the Brow-
nian motion to approximately evaluate linear aggregates
and windowed min/max aggregates, respectively. We dis-
cuss how to adaptively evaluate aggregates according to
user-specified error bounds in Section 4.4 and how to com-
pute approximate aggregates during streams interruptions in
Section 4.5. Finally, we address the issue of on-line param-
eter estimation.

4.1. Query Processing Architecture

As Figure 2 shows, stream values are generated at remote
sources (sensors, routers, etc), and pushed to the QP contin-
uously. Each arriving stream item is of the form: ���� ���,
where �� is the timestamp when the item is generated at the
source and �� is its value. Stream items are immediately
delivered to the QP after they are generated at the sources.
We assume constant network delays from remote sources to
the QP. A buffer is associated with each stream, where the
� most recent items of the stream are buffered. An on-line
Parameter Estimation Process (PEP) repeatedly estimates
� and � based on the item values in the buffer (see Sec-
tion 4.6).

Standing aggregate queries are registered at the QP by
users. The QP is responsible for adaptively evaluating the
aggregates, and streaming results back to the users.

Each pending aggregate evaluation must be scheduled to
complete before a deadline determined by its next evalu-
ation. When streams have high �, or when the number of
aggregates is large, the query evaluation rate may be high
enough to saturate the CPU. The scheduler must dynami-
cally detect such overload, and behave appropriately. Thus,
the QP must also address a real-time scheduling issue.

4.2. Linear Aggregates

We begin by showing that a linear aggregate is also a
DBM when its component streams are DBMs. Stream �� is
governed by the equation:

��������� � �������� �������� (4)

As before, ����� and ����� are the drift and diffusion param-
eters, respectively. �� is a standard Brownian motion, and
��� follows Normal distribution �
����. Equation 4 can
be rewritten as

��������� � ���������� �
�
� ������� (5)

showing that the increment of each data stream is normally
distributed, and that the mean and variance are both depen-
dent on ��. A linear combination of Normals is also Nor-

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

mal, so Equations 2 and 5 together yield

�������� � �
�
�������� ��������

�
�

����� �

��
���

��������� � �
�
���� �

��
���

���������
�
� (6)

showing that the aggregate increments of DBM streams are
also Normal, so that the aggregate ���� can be also mod-
eled as a drifting Brownian motion.

Equations 3 and 6 clearly indicate that � ������ is a de-
creasing function of ��. Thus, it suffices to find �� for
which � ������ � �. We must hence solve,

� �

��

��
�	��

�
��

���
���� ������

���
�
��

��� � � (7)

Despite its imposing look, Equation 7 is a routine evaluation
of the error function, and yields the next time to re-evaluate
the aggregate to ensure that the expected error is within
bounds. Since Brownian motions are Martingales [14], we
can repeatedly calculate �� on-line.

Equation 6 can be also rewritten as:

�������� ����� � �������� � �
�
�� ��������

�
(8)

The term ���� � ������� is the expected value of � at
time � � ��. Thus, instead of only returning users the ag-
gregate value ���� at those evaluation times, we can return
users pair of values ������� ������ so that users can obtain
better estimates of the aggregate, ���� � �������, at fu-
ture time ����. In this case, the next aggregate evaluation
time can be determined using Equation 7 with �� � �.

Either Equation 6 or Equation 8 can be used to adaptively
predict aggregate evaluation times. In our experiments, we
use Equation 6 to calculate ��.

We so far only considered absolute error bounds, but rel-
ative error bounds are also frequently of interest. For ex-
ample, a user may need to know the average temperature
within a given percentage error bound. If we denote the rel-
ative error bound as ���, at time �, we need to find �� such
that:

	
��������������� � ��� � ������� � � (9)

Now treating relative error case is similar to treating ab-
solute error case as described before.

4.3. Min/Max over Time Windows

We show how to apply the Brownian motion model to
the deferred approximate evaluation of �� and �� aggre-
gates over time windows, triggering reevaluation only when
the error is expected to exceed � . We only consider the ��
aggregate, since �� is similar.

We first consider the �� over sliding windows. If the
window size is � and the current time is �, the �� of linear

determine

�� � � ��

��

��

� �� � �

��

��������� �� �

���	
����
�

��

���

������ � � � ��� ���

�� �

�� � ��

�� � ��

����	��
 �

������ ������

Figure 3: The next evaluation time for �� aggre-
gate: �� � ������ ���

aggregate���� over the sliding window ����� �� is defined
as

���� �� � ������� � �� � � � � �� (10)

As in the case of linear aggregates, our goal is to define a se-
ries of evaluation times ���� so that we remain within the
error bound �. The following theorem presents how to adap-
tively calculate ��, and is justified in [27].

Theorem 1. Let � be the windowed �� function defined
over aggregate �, as in Equation 10. Let � have last been
evaluated at ��, and let � have attained its maximum ��

at time �� during the last evaluation window ��� � �� �� �.
To remain within error bound �, � ’s next evaluation must
occur at time ����, where ���� � �� � ������ ���, and

�� � ���� � ����� � � �� � �� � �� � � � � �

� �� � ��� �� � if no such � exists�
�� � ���� � 	
����� � �� � �� � �� � ��� (11)

The significance of �� and �� is shown in Figure 3. In
window ��� ��� �� �, � was determined to be ��, attained
at time ��. As the current window slides forward, the trail-
ing edge �� � � � �� is the time when the �� aggregate
over window ��� ������ ��� first drops below �� � �. If
the aggregate � continues to drop, the �� value � over
the current window will equal �� � � at this point, so that
reevaluation must be triggered when its leading edge is at
�� � ��. If the �� over ��� � � � ��� ��� is always above
�� � �, we reevaluate after time �.

If however, � does not continue to drop, we must model
its behavior into the future using the Brownian motion.
Clearly, the next reevaluation must be triggered at time
�� � ��, before � is about to exceed �� � �. Thus, the
next reevaluation time ���� must be the smaller of �� and
��, i.e., ���� � �� � ������ ���. �� can be computed
from one scan of window ���� ���. �� is equivalent to �� �

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

����� � ������� � �	 �����	 � �� � ����	 � �
 � ��,
which can be similarly solved as Equation 3.

In [13], another type of time window based query, land-
mark window query, is introduced, defined as

����� �	 � ������	 � � � � � ��� (12)

where � denotes a landmark time. In this case, �� aggre-
gates over a growing window, whose trailing edge is fixed
at �. Since �� is monotonic over the landmark window,
���� is determined by �� alone, the time when the aggre-
gate � deviates beyond �� � �.

4.4. Deferring Query Evaluations

As explained above, each time the QP evaluates aggre-
gate�, it will also compute�� (Equation 7 and 11) to deter-
mine the next evaluation time for the error bounds and prob-
ability constraints to be met. Since stream items are gener-
ated and delivered at discrete times, we must wait until the
stream items with timestamps 1 most close to �	���� have
arrived to perform the next aggregate evaluation (�	� is the
timestamp of the current latest item involved in �). Since
we assume constant network delays from the sources to the
QP, the stream items in question will arrive at the QP within
next �� time. The adaptive aggregate evaluation scheme is
shown in Algorithm 1.

����� is the current QP system time. ���	� is the next ag-
gregate evaluation time, which is incremented by �� at ev-
ery evaluation instance. �	

�� and ���� are the approxi-
mate aggregate result and its associated error during stream
interruptions (see Section 4.5).
 is a time constant which
dictates the interval between consecutive aggregate evalua-
tions (and parameter estimations) during interruptions.

4.5. Handling Stream Interruptions

At time �, assume we are trying to evaluate the query
����	� �� �	� � � ���� ��� � � � � ���. Let the most recent
estimates for stream parameters be ����� �	� � � � � � ���,
estimated at times ���� � � � � � ���, ��� � �	, respectively.
Further, let the subset � � � of streams be inactive at time
�, having suffered interruptions at various times before �.

Though the stochastic components � of the inter-
rupted streams are completely unpredictable, the determin-
istic components �� provide good estimates for the sec-
ular trend in each interrupted stream. Let �����	 be the
best available estimate for stream �� at time �. Clearly,
�����	 � ����	 for uninterrupted stream �� � � � � , and
�����	 � �����	��� � ��� ��	, for interrupted stream �� � � .
The best approximate aggregate value (both for linear ag-
gregate and ���/�� aggregate) that QP can provide at

1 Formally, stream items with �� � ����� � � � ��� ����

Algorithm 1 Adaptive Aggregate Evaluation Scheme

Standing Query ��� �� �� Execution
loop

if ����� �� ����� then
/* time to reevaluate aggregate value */
if no stream interruptions detected then

Evaluate the aggregate ������, return ������;
Calculate �� according to Equation 7 or 11;
����� � ����� ���;

else
/* some streams are interrupted */
Calculate ��		�� according to Equation 13;
Calculate �
���;
Return pair ���		���� �
����;
����� � ����� � � ;

end if
else

/* no evaluation needed since the error is within bound */
end if

end loop

time � is

�	

����	 � �� �����	� �����	� � � � � �����		� (13)

Along with this approximate result, we also return the
expected error ���� associated with the result. For linear ag-
gregates, the expected error in the aggregate is the weighted
average of the expected errors in the interrupted compo-
nent streams, which can be obtained from Equation 7. For
���/�� over time windows, the expected error is bounded
by the expected error of its associated linear aggregate. We
use the stochastic behavior of the linear aggregate to ap-
proximate the ���/�� error.

4.6. On-line Parameter Estimation

We now turn to the issue of estimating the time-
dependent drift parameter ����	 and diffusion parame-
ter ���	 for each stream ��. As mentioned in Section 4.1,
The QP maintains the latest � items for each stream �� in a
buffer ��: ���	�� ����	� ��	�� ����	� � � � � ��	���� ������	
.
If a new stream item of �� arrives and sees �� full, it sim-
ply displaces the oldest item in ��. We use the contents of
buffer �� to estimate �� and � at any time.

Let �� be the increment of two adjacent stream items in
��: �� � ����������� �� � � � ���	, and Æ� be the inter-
val between their generation times: Æ� � �	� � �	���. Since
�� is a Normal sample with distribution ����Æ� �

�
� Æ�	,

buffer �� provides � � � independent Normal samples
���� ��� � � � � �����, and �� and � are estimated using these
samples. The issue of parameter estimation has been ex-
tensively studied in the statistics domain, and maximum-
likelihood (ML) estimators are typically used [21].

Given independent Normal samples ��� ��� � � � � ���� of

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

Algorithm 2 On-line Parameter Estimation Process

on-line estimation process for stream ��
loop

if ����� �� ����� then
/* time to re-estimate parameters */
if no stream interruption detected then

Update ��������� according to Equation 15;
Update ��������� according to Equation 16;
����� � ����������

���������

���������
���������	
���� ��
��;

else
/* stream �� is interrupted */
��������� � ����	
���� ��������� � ����	
���;
����� � ����� � � ;

end if
�	
�� � �����;

end if
end loop

stream ��, the likelihood function of �� and �� is:

����� ��� �

����

���

��� ��� � ��� ����

��� ��� � ��� ��� �
��

����� Æ�
�	
��

��� � ��Æ��
�

���� Æ�
�� (14)

where ��� ��� � ��� ��� is the density function for Normal
sample �� . The ML estimators for �� and �� can be derived
by maximizing the likelihood function in Equation 14. Af-
ter solving two partial derivative equations, we obtain the
ML estimator for ��:

��� �

����

��� ������

��� Æ�
�

����� � ���

����� � ���
� (15)

and the estimator 2 for ��� :

���� �
�

� � �

����

���

��� � Æ� ����
�

Æ�
� (16)

Due to the lack of space, we omit the derivation of Equa-
tion 15 and 16 in this paper. ��� and ���� are both unbiased
estimators and easy to compute. If stream items are gener-
ated at constant rates at the sources, i.e., Æ� � Æ� � � � � �
Æ��� � �, Equation 15 and 16 can be simplified as:

��� �
��

�
� ���� �

�

�� � ���

����

���

��� � ����� (17)

Since ��� � � � � ���� become i.i.d samples from
������ �

�
� ��, when the generation rate is constant, the un-

biased estimators for ��� and ��� � are the sample mean

2 The actual ML estimator for ��� is �
���

����
��

����Æ� ����
�

Æ�
, which is

not unbiased. �

�
�
� obtained in Equation 16 is an unbiased estimator.

Evaluation
Task 1

Evaluation
Task 2

Evaluation
Task 3

������ ��������� ���

��� ��� ���

�� �� �� ��

������ ���

Figure 4: Query evaluation time constraints

�� and sample variance �

���

����

��� ��� � ����, respec-
tively. Thus, by dividing both estimators by �, the resulting
estimators for �� and ��� are consistent with what we de-
rived in Equation 17.

The parameter estimation process for each stream is in-
dependent of each standing query execution. The query ex-
ecution process simply grabs the most recent estimates of
the parameters when it needs to calculate ��. It is unnec-
essary to re-estimate these parameters as each data item ar-
rives. If the current estimate of �� is low, indicating that the
current variance of the increments is low, we may safely use
the same �� and �� in the near term. We adopt a simple pa-
rameter estimation method based on this intuition, as shown
in Algorithm 2. ����� denotes last parameter estimation time
for ��, and ���	 denotes the maximum allowable estima-
tion interval. When some streams suffers from temporary
interruptions, the QP simply abandons the current estima-
tion task, and uses the last estimates instead.

We also need to set the sample size � properly, since
making it too large or too small will lead to bad estimated
values. We experimentally adjust � to achieve the best per-
formance.

5. Scheduling Query Evaluations

The central mission for the QP is to adaptively perform
aggregate evaluations often enough that the user-specified
error bound (�) and the belief threshold (
) are met. As ob-
served in Section 4.2, however, a very high value of � or
a huge number of standing queries may require aggregates
to be evaluated very frequently, resulting processor over-
load. Under overload, some aggregates may fail to be eval-
uated by their evaluation times, leading errors to exceed the
bounds. Thus, we need a mechanism to timely schedule all
aggregate evaluations whenever possible, and minimize the
overall errors incurred by missing evaluation times under
processor overload.

We treat the problem as a real-time uniproces-
sor scheduling problem. Each real-time task consists of
two parts: the aggregate evaluation itself, and the predic-
tion of the next evaluation time. In Figure 4, ��� ��� ��� � � �
are the times the processor is to re-evaluate the aggregate.
At time ��, we must evaluate the aggregate ����� and cal-
culate �����, so that, by time ����, we will know the next

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

Symbol Company Name � (Volatility)
NOVL Novell 2.33
BRCM Broadcom 3.91
SEBL Siebel Systems 3.06
YHOO Yahoo Inc 3.88
QCOM Qualcomm 2.05
SUNW Sun Micro 2.23
CSCO Cisco 1.98
XLNX Xilinx 2.07

GE General Electric 1.1
PALM Palm Computing 1.7

Table 1: Stock streams used in our simulation

evaluation time ���� � ���� ������. In standard schedul-
ing terminology, ���� is the deadline for the evaluation task
�, and release time for the task �� �. We assume our evalu-
ation tasks are preemptible.

We adopt EDF (earliest-deadline-first) [9] algorithm to
schedule evaluation tasks. EDF is optimal in underload con-
dition [9]. The system becomes overloaded if some pending
tasks cannot finish before their deadlines, i.e., tasks are late.
Under overload, we aim to minimize the overall incurred er-
rors. We define a penalty function which measures the extra
error of a late task as follows:

������ �

�
� �� � ��
�������� � ��� � ���

�
�� � �� �� � ��

(18)
where �� and �� are the deadline and the actual comple-
tion time for task �, respectively. In Equation 18, there is
no penalty incurred if the task completes before the dead-
line, otherwise it incurs positive penalty according to the
DBM model.

To minimize
�

� �� under overload, we sequence all late

tasks so that metric ���������
�
���

��
forms a non-increasing

order, where �� is the processing time of task �, and 	� is
the slack time at time �: 	� � �� � �� � ���. This sequenc-
ing method guarantees the overall penalty is within a ratio
bound of the minimum penalty, as proved in [27].

6. Experimental Evaluations

We conducted a series of experiments to demon-
strate the applicability of our model and the performance of
our approach to real-world streams such as real-time sen-
sor data and stock price data. Our sensor time series are
one-year’s measurements (11/1991–11/1992) of temper-
ature (temp) at various sea levels, taken from the TAO
project [2] at the Pacific Marine Environmental Labora-
tory (PMEL). Each sensor stream contains about ��� val-
ues, sampled every minute. Our stock data are collected ev-
ery minute for the entire year 06/2001–06/2002. Each
stock stream corresponds to one stock symbol and con-
tains about ��� values. The stock symbols we chose are
listed in Table 1.

We deliberately chose streams with high volatility. Such
streams show high uncertainty of movement, and display
large fluctuations over short intervals. Highly volatile data
are more challenging for our adaptive query evaluation
model. For example, the
 value is a measure of the rela-
tive volatility of a stock to the market (see Table 1). Gen-
erally, symbols with
 � ��� �	 are considered to have high
volatility. All stock traces we chose have
 bigger than 1.

We simulated our system using the csim package [1] on
an Intel Pentium 4 at 1.60GHz. We picked 10 stock streams
and 10 temp sensor streams. Each stream was simulated as a
csim process, which periodically generated data items read
from our trace files. Each standing query was also a process,
which was repeatedly invoked when its evaluation time was
due, executed the query, and calculated the next evaluation
time. The parameter estimation process for each stream up-
dated �� and �� on a regular basis. The QP buffer size (�)
of each stream was set to 100.

6.1. Applicability of Our Model

Our goal is to defer query evaluations as long as possi-
ble, but to execute them before the values have drifted so far
that the error bound and belief threshold are not met. If our
scheme schedules query evaluations at times ��� ��� , we
may ask at each �� whether it succeeds in meeting the er-
ror bound. We introduce the fidelity metric which measures
how often our predictions of query evaluation times meet
user-specified bounds.

����������� �
total time A’s cache-source errors � ����
�

total simulation time

Figure 5 demonstrates the fidelity metric for our data
sets, with various error bounds (�) and belief thresholds �.
For this experiment, we compute two types of aggregates:
�� � over 9 streams, and sliding window �� over �� �.
Figures 5(a) and 5(b) show the �� � aggregate on stock
data and temp data, respectively. Each point in the plot rep-
resents the average fidelity over 10 queries. We observe that
higher � achieves higher fidelity, but needs more evalua-
tions (see Figure 6). Figure 5(c) and 5(d) show the results
of the sliding window ��. The window size is 30 mins.

Table 2 summarizes the average fidelity achieved for
each � value. For AVG, the average fidelity closely matches
to the corresponding � value for both datasets, showing that
the drifting Brownian motion is the right model to capture
the behavior of AVG. The sliding window �� aggregate,
however, achieves higher fidelity than the corresponding �

for the following reason. In this case, �� (see Equation 11)
is determined by the two factors �� and ��. While �� is
calculated to ensure that the �� value is below �� � �

with confidence �, �� provides an absolute guarantee that
the �� is above �� � �. The overall fidelity tends to be
higher than �, due to the influence of ��.

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

error bound (ε)

fid
el

ity

p = 0.95
p = 0.9
p = 0.85

(a) ��� for 9 stock streams

0.1 0.12 0.14 0.16 0.18 0.2
0.5

0.6

0.7

0.8

0.9

1

error bound (ε)

fid
el

ity

p = 0.95
p = 0.9
p = 0.85

(b) ��� for 9 temp streams

0.1 0.12 0.14 0.16 0.18 0.2
0.9

0.92

0.94

0.96

0.98

error bound (ε)

fid
el

ity

p = 0.95
p = 0.9
p = 0.85

(c) ������ �� over sliding
window (30 mins), stock streams

0.1 0.12 0.14 0.16 0.18 0.2
0.9

0.92

0.94

0.96

0.98

1

error bound (ε)

fid
el

ity

p = 0.95
p = 0.9
p = 0.85

(d) ������ �� over sliding
window (30 mins), temp streams

Figure 5: Fidelity

(agg type)/(data set) � � ��� � � ��� � � ���

AVG/stock data ������ ������ ������

AVG/temp data ������ �	���� ���
��

��/stock data ���	�� �
��
� ������

��/temp data ������ ���
�� ������

Table 2: Average fidelity for various �

Figure 6 compares the total number of AVG evaluations
triggered by our scheme for different parameter values. The
naive curve shows the number of evaluations that would
have been performed were the aggregate to be naively
reevaluated at each stream tick. The optimal curve, which is
obtained from an off-line calculation, shows the minimum
number of evaluations needed for a certain � . Clearly, the
savings of our scheme are significant, especially with big-
ger error bounds and lower belief thresholds.

6.2. Comparison of Scalability

Though our scheme clearly reduces the number of aggre-
gate evaluations, it incurs the overhead of having to find the
next evaluation time for each aggregate evaluation. Solv-
ing �� (see Equation 6) for linear aggregates is equiva-
lent to computing the standard ��� function. For windowed
���/��� aggregates (see Equation 11), it may also involve
a scan of items within the window. We must ensure this cost
is reasonable. Our experiments show that our scheme actu-
ally scales far better than the alternative scheme of evaluat-
ing all aggregates at each tick.

Figure 7 shows the percentage of aggregates that the sys-
tem is unable to evaluate in time due to CPU saturation.
Half the aggregates in the mix are linear aggregates, and
half are sliding window ��� aggregates. The CPU is mod-
eled as a facility at the speed of 1.6 GHz on a csim vir-
tual machine. According to the real machine execution cost,
�� � over 9 streams takes �	� milliseconds (ms), ��� over
the window of 30 mins takes �	�	 ms, and ��� takes �		

ms. To simplify our model, we assume all standing queries
are in main memory with no disk access involved. With the
naive scheme, the system starts missing aggregates when

0.1 0.3 0.5 0.7 0.9
0

0.5

1

1.5

2

2.5

 .
 .
 .

10

10.5

error bound (ε)
nu

m
be

r
of

 e
va

lu
at

io
ns

 (
 ×

10
4)

naive
p = 0.95
p = 0.9
p = 0.85
optimal

(a) ��� for stock streams

0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

 .

 .

 .

5.5

6

error bound (ε)

nu
m

be
r

of
 e

va
lu

at
io

ns
 (

 ×
10

4)

naive
p = 0.95
p = 0.9
p = 0.85
optimal

(b) �� � for temp streams

Figure 6: Number of evaluations

3,000 queries are in the system, and the performance wors-
ens rapidly as the number of queries rises. In contrast, our
adaptive scheme demonstrates much better scalability. Not
surprisingly, the bigger the error bound, the higher scalabil-
ity we can achieve, since fewer evaluations are triggered.

Figure 8 shows how well our scheme handles stream in-
terruptions. We compute the �� � aggregate over 9 stock
streams, and study two cases, when interruptions occur in
two, and three streams, respectively. As expected, the er-
ror increases as the interruption duration increases. As more
streams are interrupted, the error incurred in the aggregate
results increases.

7. Conclusion

We have proposed a novel model for approximate aggre-
gate evaluation over streaming data, based on the DBMs.
Given a user-specified error bound, evaluating the aggre-
gate every time new data stream in is unnecessary. We ex-
ploit users’ error tolerance to enhance QP’s scalability by
deferring aggregate evaluation as long as the error is within
user bound. During stream interruptions, our model pro-
vides bounds for the missing values based on estimates for
the drift and diffusion parameters

We study the suitability of our Brownian motion model,
both theoretically and experimentally, and show that for
large classes of stream data, such as stock prices and sensor

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

2000 3000 4000 5000 6000 7000 8000
0%

10%

20%

30%

40%

50%

number of queries

pe
rc

en
ta

ge
 o

f m
is

se
d

ag
g

ev
al

s

naive (tick−by−tick)
adaptive, ε = 0.5
adaptive, ε = 0.8

Figure 7: Percentage of missed aggregate evalua-
tions due to CPU saturation (stock data, � � ���)

0 5 10 15 20 25
4%

5%

6%

7%

8%

9%

10%

11%

interruption period (mins)

av
er

ag
e

er
ro

r
of

 p
re

di
ct

ed
 v

al
ue

2 streams interrupted
3 streams interrupted

Figure 8: Prediction error(� � ���� � � ���)

data, our model yields excellent performance. Our experi-
ments also show that our methods are very scalable as the
number of queries increases. We also study the issue of pro-
cessor allocation in the context of our approximate query
evaluation model.

How to extend our work to other types of queries, e.g.,
join, correlated aggregates, remains as a topic for our fu-
ture work. we are also interested in other tradeoff problems
in streaming applications. For example, how to trade query
result precision for query response time.

References

[1] http://www.mesquite.com/htmls/guides.htm.

[2] http://www.pmel.noaa.gov/tao/index.shtml.

[3] http://www.traderbot.com.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. 21th
ACM SIGACT-SIGMOD-SIGART Symp. on Principle of
Database Systems, Madison, May 2002.

[5] B. Babcock and C. Olston. Distributed top-k monitoring. In
Proc. of the 2003 ACM SIGMOD Conf, San Diego, 2003.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, et al.
Monitoring streams–a new class of data management appli-
cations. In Proc. of the 28th VLDB Conf, Hong Kong, 2002.

[7] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, et al. Opera-
tor scheduling in a data stream manager. In Proc. of the 29th
VLDB Conf, Berlin, Germany, 2003.

[8] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagracq: A
scalable continuous query system for internet databases. In
Proc. of the 2000 ACM SIGMOD Conf, Madison, May 2000.

[9] C.M.Krishna and K. G. Shin. Real-Time Systems. McGraw-
Hill, 1997.

[10] A. Das, J. Gehrke, and M. Riedewald. Approximate join pro-
cessing over data streams. In Proc. of the 2003 ACM SIG-
MOD Conf, San Diego, 2003.

[11] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. In
Proc. of the 2002 ACM SIGMOD Conf, Madison, 2002.

[12] M. Fisz. Probability Theory and Mathematical Statistics, 3rd
Edition. John Wiley & Sons, Inc, 1963.

[13] J. Gehrke, F. Korn, and D. Srivastava. On computing corre-
lated aggregates over continual data streams. In Proc. of the
2001 ACM SIGMOD Conf, Santa Barbara, 2001.

[14] G.Grimmett and D.Stirzaker. Probability and Random Pro-
cesses, 3rd Edition. Oxford University Press, 2001.

[15] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. Surfing wavelets on streams: One-pass summaries
for approximate aggregate queries. In Proc. of the 27th
VLDB, Roma, Italy, 2001.

[16] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggre-
gation. In Proc. of the 1997 SIGMOD Conf., Tucson, 1997.

[17] H.V.Jagadish, N. Koudas, S.Muthukrishnan, et al. Optimal
histograms with quality guarantees. In Proc. of the 24th
VLDB Conf, New York City, 1998.

[18] I. Lazaridis and S. Mehrotra. Capturing sensor-generated
time series with quality guarantees. In Proc. of the 19th
ICDE Conf, Bangalore, India, 2003.

[19] S. Madden and M. J. Franklin. Fjording the stream: An ar-
chitecture for queries over streaming sensor data. In Proc. of
the 18th ICDE Conf, San Jose, 2002.

[20] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks.
In the 5th Annual Symposium on OSDI, December 2002.

[21] A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to
the Theory of Statistics, 3rd Edition. McGraw-Hill, 1974.

[22] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[23] C. Olston, J. Jiang, and J. Widom. Adaptive filters for con-
tinuous queries over distributed data streams. In Proc. of the
2003 ACM SIGMOD Conf, San Diego, 2003.

[24] C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated data. In Proc.
of the 26th VLDB Conf, Cairo, Egypt, 2000.

[25] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, et al.
Load shedding in a data stream manager. In Proc. of the
29th VLDB Conf, Berlin, Germany, 2003.

[26] H. C. Thode. Testing for Normality. Marcel Dekker, Inc.,
2002.

[27] S. Zhu and C. Ravishankar. A scalable approach to ap-
proximating aggregate queries over intermittent streams.
http://www.cs.ucr.edu/�szhu/scal.pdf. Extended Version.

[28] S. Zhu and C. Ravishankar. Stochastic consistency,
and scalable pull-based caching for erratic data sources.
http://www.cs.ucr.edu/�szhu/stochpull.pdf. Technical Re-
port, Univ. of California, Riverside, 2003.

[29] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. In Proc. of the 28th
VLDB Conf, Hong Kong, China, 2002.

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

	footer1:

