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Abstract

We present a new adaptive broadcast dissemination
model to support flexible responses to client requests. Sev-
eral features distinguish our model. First, client queries
do not target individual documents, but specify the re-
quired information by attributes. Second, clients are satis-
fied by responses that are sufficiently close to the desired
information. Finally, the server in our model solicits ran-
domized feedback from clients to adapt its broadcast pro-
gram to client needs. Our simulation results show that our
model captures the interest patterns of clients more ef-
ficiently and more accurately and scales very well with
the number of clients, while reducing overall client aver-
age waiting times.

1. Introduction

A communication and power asymmetry characterizes
many current and emerging information delivery applica-
tions, such as news feeds and traffic information systems.
Such systems are designed to deliver data from a few servers
to a large number of mobile clients, but there is significantly
more “downlink” bandwidth from servers to clients than in
the opposite or “uplink” direction. Also, clients have low
power reserves, while servers have plenty of power. Con-
sequently, the traditional request-response or pull model, in
which clients initiate information transfers from servers is
inappropriate, and will not scale with the number of clients.

Given a broadcast medium, the push approach [13] can
overcome some of the scalability problems in asymmetric
communication environments. Servers predict client access
patterns, initiate data delivery, and broadcast information to
client populations. All clients with identical interests will
be satisfied simultaneously. The push model has already
played an important role in our daily lives (e.g., the tele-
vision programs), in computing (e.g., Bellcore’s Datacycle
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database machine [27]) and on the Internet (e.g. the CNN’s
Newswatch [2]).

Unfortunately, current push-based models [5, 6, 7,
16, 17, 21, 26] typically make many restrictive assump-
tions. Typical assumptions are that client access patterns
are static [5, 6], that it suffices to have static periodic broad-
cast schedules [5, 6, 7, 16, 17], that server databases are
small [5, 6, 7], or that prior knowledge of the access prob-
abilities of data items in database exists [14, 28, 29].
For servers to push meaningful data to clients and max-
imize the overall system performance, we need adaptive
and efficient scheduling schemes, so that servers can pro-
vide high-quality services and can also scale well in terms
of client populations and server database sizes.

1.1. Our Contributions

We present a new data dissemination model that gener-
ates adaptive broadcast programs to satisfy as many client
requests as possible while minimizing the average waiting
times for clients. First, we are able to determine the client
interest patterns on-line using feedback messages from a
small sample of the client population. Second, as elabo-
rated in Section 2, we increase flexibility by allowing clients
to specify their requests imprecisely. The server attempts
to broadcast the smallest subset of documents that matches
client requests adequately, in accordance with a similarity
threshold.

Our model is superior to current models in sev-
eral ways. First, the server is more responsive because a
single data item may satisfy many client requests. Sec-
ond, the server broadcasts only a subset of data item in its
database. This model reduces client waiting times and over-
heads for scheduling computations. We also use a random-
ized feedback mechanism in our model to help servers
make intelligent scheduling decisions. In current mod-
els, servers change broadcast schedules in response only
to complaints from unsatisfied clients. This skews the
server behavior to favor unhappy clients, possibly at the ex-
pense of a silent but satisfied majority of the client popula-
tion.
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Finally, we demonstrate the performance of our model
using real-life data collection by conducting simulations.
We demonstrate that our model can scale well by examining
different client populations. We use Zipf distribution and
uniform distribution to shape client access patterns, show-
ing that our model can achieve good adaptability for both of
them. We also compare the performance of our model with
that of existing models.

The rest of the paper is organized as follows: section 2
presents the salient features of our approach. Section 3 re-
views some related work. We introduce the background for
our model in section 4, and briefly present the system archi-
tecture of our model in section 5. We describe our random-
ized feedback mechanism in section 6, and the approximate
response mechanism in section 7. In section 8, we propose
an objective function for optimizing our model, and gener-
ate a near-optimal broadcast program to conform to the ob-
jective function. We conduct experiments and performance
evaluation in section 9. Section 10 concludes this work.

2. Approach and Rationale

Our approach has two salient features. First, we deter-
mine the interest patterns of clients explicitly, efficiently,
and on-line. Second, we satisfy clients requests approxi-
mately, subject to a user-specified error tolerance.

2.1. Flexible Queries and Responses

Current models [5, 9, 15, 16, 17, 21, 26] typically require
clients to explicitly specify their requests, using data item
numbers or document names, for example. Unfortunately,
clients may not know document names, or even what the
server holds. Also, a client request can often be satisfied by
any of a set of documents in the server. For example, a query
for the current temperature in a city should not have to re-
quest a specific document by name (say a web page) since
the client may not know the exact name of the document.
It should be allowed to make a more generic request, spec-
ifying keywords such as temperature, and the city’s name.
Surely, the client will be satisfied with other documents con-
taining this information, the home page of a local newspa-
per, for example. It may even be satisfied with the tempera-
ture in another city nearby.

Some methods broadcast all documents in the
database [5, 6, 29]. This is both impractical and un-
necessary. In practice, it is likely that a single document
will satisfy many client requests, even if they are not identi-
cal. The home page of a local newspaper is likely to satisfy
requests for weather, for news, for information regard-
ing current events in the city, and perhaps even requests for
weather in adjoining locations. In real life, requests fre-
quently follow the Zipf distribution, so that many client

requests tend to be for similar documents. In princi-
ple we can broadcast the smallest set of documents from
the database that satisfies client requests given the simi-
larity threshold. This approach minimizes average client
waiting times.

Servers in our model use an approximate response mech-
anism to broadcast data items that are likely to satisfy client
request approximately. Only data items with similarity val-
ues above a predefined similarity accuracy are assumed to
satisfy client requests. This threshold is tunable, subject to
parameters such as client requirements, system workloads,
and so on.

2.2. Integrating Client Feedback

Some models [7, 16, 26] allow clients to make explicit
requests to the server, and interleave the broadcast program
and explicit requests on the broadcast medium. Unfortu-
nately, these systems do not truly capture the interest pat-
terns across the client population. Other models [17] have
clients send explicit feedback to servers when they have un-
satisfied requests. However, soliciting feedback only from
unsatisfied clients will skew the server’s view in their fa-
vor. Even if only a small fraction of clients are unhappy, the
system will try to accommodate them, at the expense of the
majority.

Since it is impossible to solicit feedback from all clients
in a large population, we develop a randomized feedback
mechanism (see Section 6) that serves as a random sample
from the client population. At any given time, each client
sends a feedback message to the server with a small prob-
ability �. The feedback is a bit vector with bit � set if the
client is happy with the �-th distinct document in the broad-
cast. Rescheduling occurs when enough feedback has been
collected, but frequently enough to reflect current client in-
terest patterns.

3. Related Work

Much work has appeared on data dissemination re-
cently [5, 7, 16, 17, 21, 26, 29], but several issues have
yet to be adequately addressed. Some models, such as the
Broadcast Disks (BD) model [5], assume static client ac-
cess patterns. This pure push-based data delivery model
achieves scalability by repeatedly broadcasting data items
of common interest to a large client population, so clients
with the same requests can be served simultaneously. How-
ever, the BD model only performs well in fairly stable
environments, since its schedules do not incorporate feed-
back from clients effectively.

Hybrid data dissemination schemes [7, 16, 26] include a
backchannel for clients to explicitly request data items not
in the standard broadcast cycle for immediate delivery over
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the broadcast channel. Two data transmission modes exist in
such delivery schemes: the periodic broadcast or push mode
and the on-demand broadcast or pull mode. Servers inter-
leave the pushed and pulled data items based on an ad-hoc
bandwidth partition parameter. The main advantage of the
hybrid schemes is that servers can schedule data of common
interest in the periodic broadcast program, and other data
items in the on-demand pull mode, reducing average wait-
ing times. The main disadvantage to the hybrid scheme, is
that it is hard to estimate the access patterns across the client
population based only on such explicit requests, since satis-
fied clients do not communicate with the servers.

The use of client feedback and bit vectors is not new [8,
17, 31]. It has been suggested that each client maintain
its own bit vector to provide client access statistics [17].
The major problem with current methods is that clients
send feedback to the server only when they are unsatis-
fied. Consequently, changes made by the server may be bi-
ased towards a minority of unhappy clients, at the expense
of a satisfied majority. This majority would then be poorly
served, triggering a massive amount of negative feedback
from them.

On-line algorithms to make broadcasting data more
adaptive to dynamic client access patterns have been pro-
posed in [14, 28, 29]. However, such work focuses only
on scheduling, assuming that interest patterns are al-
ready known to the server. Other models [5, 6] assume
small-sized server databases. Servers schedule all data
items in the databases into broadcast programs and ignore
computation overheads incurred for making scheduling de-
cisions. When access probabilities change significantly
or the server database sizes increase, estimating the ac-
cess probabilities of all data items in server databases will
result in fairly high scheduling overhead.

Also, as discussed in Section 2, current models do not
deal with the issues of flexible queries and responses. We
address these issues in our new data dissemination model,
which adapts to dynamic client access patterns, and scales
well for larger client populations and larger database sizes.
We study the problem in on-line settings.

4. The Vector Space Model

We focus on text-based documents, without loss of gen-
erality, and choose the Vector Space Model (VSM) [25],
the most widely used information retrieval model, as the
request-document matching model in our work. The VSM
characterizes a document by the terms it contains. Terms are
content-bearing words extracted from a document collec-
tion. Words in the collection are first reduced to their word
stems using a well-defined set of rules [22]. Furthermore,
words that are largely irrelevant to the information content

of documents (such as and, the, of, to, and so on) are placed
in a stoplist [12] and filtered out.

The VSM represents documents as vectors of terms in
a high-dimensional vector space. Each unique term cor-
responds to one dimension in the space. A non-negative
weight is assigned to each document along each dimen-
sion based on the term’s importance within the document.
Higher weights can be assigned to more important terms.
The weight of a term is commonly determined based on the
TF-IDF weighting scheme [24]. The term frequency �� ����
indicates the number of occurrences of a term � � in a doc-
ument. The document frequency ������ of a term �� is the
number of documents in the document collection that con-
tain term ��. The more frequently a term �� occurs in a doc-
ument, the more its importance in that document. However,
if a term occurs in many documents, it may be less signif-
icant in that document collection. Therefore, we must also
consider ������ in calculating a term weight.

Length normalization is also applied to documents for
deemphasizing differing document lengths. It is done by di-
viding each document by its Euclidean length. The weight,
��, of �-th term �� in a document vector is

�� �
�� ���� � ���

���
���������

���

�
�� ���� � ���

���
������

��

where � is the length of the document vector, and ���
is the number of documents in collection. A document
vector �� is represented by (term, weight) pairs as �� �
����� ���� � � � � ���� ����. Natural language requests entered
by users are also converted into weighted term vectors.

4.1. Measuring Document Similarity

The angle between two vectors can be a more reliable in-
dication of the content similarities of document vectors than
the distance between them [12]. Jaccard, Dice and Cosine
coefficients [23] can be used to measure the angle between
a request vector and a document vector. We use the cosine
coefficient measure in our study since it is the most popu-
lar similarity measure method in literature. The cosine sim-
ilarity between a user request vector �	 and a document vec-
tor �� is measured by a vector inner-product function, which
can be formulated as:


�� ��
�
�	� ��
�
�

�	 � ��

��	�����
� �	 � �� �

�
�

�
����	 � �

���


�

where t is a term present in both �	 and ��. ����	 is the
weight of term t in �	 and �

���

is the weight of term t in

��. Since �	 and �� have been normalized by their lengths, i.e.
��	� � ���� � �, the cosine similarity between them is sim-
ply their inner product. The higher the cos sim value, the
more similar the vectors.
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Figure 1: System Architecture

5. System Architecture

The two major components in our data dissemination
model are the server and the clients, as shown in Fig-
ure 1. The server may broadcast documents relevant to var-
ious topics, such as news, stock prices, traffic conditions,
weather forecast, and so on. It broadcasts a small subset of
documents it holds, selected based on the random client-
feedback sample, and the approximate response mechanism
which we will now discuss in detail.

There are several functional units in the server. The feed-
back manager estimates the number of feedback and/or
client explicit requests that should be collected for the
server to summarize interest patterns with a desired pre-
cision (see Section 6). It monitors the incoming feedback
and exploits interest patterns of the documents in the cur-
rent broadcast program. The request manager deals with the
sampled client explicit requests incrementally based on our
approximate response mechanism (see Section 7). These
two managers coordinate to help the server capture the ac-
cess patterns of the entire client population. The broadcast
scheduler is then used to generate new broadcast programs.

The clients listen to the broadcast and download the doc-
uments they need. At the same time, they keep evaluat-
ing the broadcast and generating feedback. All clients send
feedback at random times through the backchannel. If a
client is not satisfied with the broadcast, its explicit request
will be taken as its feedback.

5.1. Broadcast Program Structure

The broadcast program determines the documents to be
broadcast, and their order. Assume � documents in the
broadcast cycle, that document �� has size ��, and that it
takes one time unit to broadcast a document of unit length.
Let the broadcast cycle broadcast documents of combined
length of � units. For a skewed client access pattern, some
documents will appear more than once in a broadcast cy-
cle. Each occurrence is referred to as a copy of the docu-
ment. The number of copies of a document � � in a broad-
cast cycle is called its frequency and is denoted as ��. The
size of a broadcast cycle is therefore given by

��

��� ����. Fi-

Ctrl SEG Ctrl SEG Ctrl SEGCtrl SEG

D1 D1D2 D3 D4 D5

Spacing between 1st and 2nd
occurrences of data item1

Figure 2: Part of a broadcast cycle

nally, the spacing between two copies of a document is the
time it takes to broadcast information from the beginning
of the first copy to the beginning of the second copy. Fig-
ure 2 shows an example of a part of a broadcast program in
our model. We can also spare a small fraction of the band-
width for broadcasting control segments so that system per-
formance can be tunable to the workloads.

6. Client Interests and Randomized Feedback

Our model incorporates a mechanism for randomized
feedback from client, allowing the server to estimate the
client interest patterns. It integrates this information with
explicit requests from clients in constructing a new broad-
cast schedule. In Section 6.1, we present the structure of
client feedback, and in Section 6.2, we estimate how many
feedback messages are required for the server to form reli-
able estimates of client interests.

6.1. Structure of Client Feedback

Each client continually evaluates each document in the
broadcast program, and constructs a feedback vector in-
dicating whether or not each document meets its require-
ments. Let �� be the set of keywords that characterizes the
client’s interests. Let the similarity between client request ��
and document �� be denoted by ��� �	
���� ���, as com-
puted in Section 4.1. We say that a client is satisfied with
�� if this similarity is no lower than a threshold � main-
tained by the server and broadcast in the control segments
of the broadcast program. Thus, client  � sends the feed-
back bit vector �� � ����� � � � � ��� � to the server, where

��� �

�
� if ��� �	
���� ��� � �

� ���������

Thus the feedback of � will be a bit string. If � is not
satisfied with any document in the broadcast, it sends an ex-
plicit request �� to the server as a feedback message.

6.2. Client Population and Sample Size

In wireless communication environments, it is imprac-
tical for servers to analyze feedback from all clients in
a large population. The communication and computation
overheads are simply too large. Our model effectively takes
random samples of client feedback and explicit requests,
and forms estimates of client interest based on them.
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Let us say that we sample � clients randomly and in-
dependently in estimating the interest patterns of the entire
client population. We must determine � . Let ��� � � � � ��

be the random sample of client feedback vectors. Element
��� of vector �� is 1 if client � is satisfied with document
�� . Obviously, ��� are independent since clients are chosen
independently. Let � be the number of distinct documents
in the broadcast. Let �� denote the expected fraction of the
client population interested in document �� � � � � � � ,
and let ��� be our estimate of �� , computed as

��� � �

�

��
���

��� �

For each �� in the broadcast, we want to estimate ��
within some absolute error bound 	. We will require


�� � ��� � �� � � 	 � � Æ (1)

where Æ is the probability that ��� deviates from �� by more
than 	. In estimating �� , � � � � � so that Equation 1 is
satisfied, we will require


�� ���
�����

� ��� � �� � � 	 � � Æ�

Several statistical techniques, such as the Cheby-
shev [20] and Chernoff [19] bounds can be applied to
determine the sample size of our estimation problem. Us-
ing the Chernoff bound, which we call it N-Chernoff
method, we obtain a required sample size of (see [30] for
details):

� �
�

� 	�
�	

�

�� 
�� Æ����
�

In our work, we develop a new method that can yield an
even tighter bound for the sample size, which we call the
N-Gaussian method. The sample size estimated using our
method is (see [30] for details):

� �
���
� 	�

�

where �� is the �-value associated with probability , and
 � 
�  
�� Æ���� ���.

Figure 3 illustrates the sample sizes estimated by the N-
Chernoff method and our N-Gaussian method, given 	 �
��� and Æ � ���. We see that the N-Gaussian method can al-
ways give a tighter bound for the sample size. Also, with our

method, the sample size increases slowly with � . In other
words, this method works well when the number of clients
is large, or when the client interest pattern changes dramat-
ically. We therefore use the N-Gaussian method.

7. Approximate Response

We introduce a mechanism for approximate responses
to for improved system adaptability and scalability. The
mechanism results in far fewer documents scheduled in the
broadcast program, reducing the overall mean waiting time
encountered by all clients. In Section 7.1, we give a high-
level overview of the estimation of client access patterns.
The detailed clustering method for processing explicit client
requests is described in Section 7.2, and the document se-
lection for request clusters is presented in Section 7.3.

7.1. Detection of Client Access Patterns

The server summarizes client access statistics from the
randomly sampled client feedback and explicit requests,
and determines the set of documents of common interests
to form new broadcast schedules. The new broadcast pro-
gram include some documents from the previous broadcast
as well as some new documents selected in response to ex-
plicit client requests.

Algorithm 7.1 describes the details of the procedure. A
set 
 is used to store the documents to be used in the new
broadcast schedule. The document corresponding to every
“1” entry in each feedback vector is incorporated into 
 , as
are explicit document requests made by clients when they
are not satisfied with any broadcast document.

Algorithm 1 Detecting client access patterns
1: � � �
2: for each feedback �� � ����� � � � � ��� � do
3: for all � such that ��� � �, � � � � � do
4: if 	� 
� � then
5: � � � � �	��
6: set weight associated with 	� to 1
7: else
8: increment weight associated with 	�
9: for each explicit client request do

10: call explicit request clustering procedure
11: call document selection procedure
12: add the selected documents to �
13: output �

As explained in Section 7.2, a set of clusters is main-
tained to represent the distribution of client interest patterns.
Each document in 
 is placed into an appropriate cluster
based on the similarity threshold � , whose value also de-
cides the number of clusters. If � is high, more clusters will
be formed. Each cluster is represented by a feature vector
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�. We store all feature vectors in a set ��. Each feature vec-
tor �� is associated with a weight �� indicating the number
of client requests that are incorporated into this cluster.

7.2. Clustering of Explicit Client Requests

Algorithm 7.2 describes the details of clustering the
client explicit requests. Each client explicit request �� is
compared against all the feature vectors in set ��. If the
similarity between �� and a feature vector is above the sim-
ilarity threshold � , the request is incorporated into the clus-
ter represented by that feature vector. If no suitable feature
vector exists, �� forms a new cluster by itself. An adaptive
parameter � is used to adjust the feature vector of a clus-
ter after a request is incorporated into it. To treat all the re-
quests in a cluster equally, we set � � ��������, where ��
is the weight associated with the feature vector.

Algorithm 2 Clustering explicit client requests
1: �� � �

2: for each explicit request �� do
3: if �� � � then
4: �� � �� � ����
5: set weight ��, associated with �� to 1
6: else
7: find � � ��� � �� � ��� ��� ��	���� ��� � 
�
8: if � �� � then
9: for each �� � � do

10: �� ��� �� � �� � � � ��
11: �� � �� � ���� � ���
12: increment weight associated with �

13: else
14: �� � �� � ����
15: set weight associated with �� to 1
16: output ��

7.3. Document Selection

Algorithm 7.3 describes the details of how to select the
documents for the request clusters. When the feedback has
been processed, documents from the previous broadcast to
be preserved in the new broadcast schedule are already in
the set � . The explicit requests in the feedback are also in-
corporated into appropriate clusters. We next select a doc-
ument to represent each cluster, based on the similarity be-
tween the selected document and the cluster feature vec-
tor, as well as the document size. Simply selecting a doc-
ument most similar to the cluster feature vector is insuffi-
cient, since choosing a large document will use up space in
the broadcast cycle, and may affect it adversely. We know
from Equation 4 that the minimum average waiting time is
achieved when the distance between two consecutive occur-
rences of a document �� is proportional to

�
	�, so we use�

	� for determining the document selection.

Algorithm 3 Selecting documents for request clusters
1: Input: ��
2: for each �� � �� do
3: � � ��� � ��� ��	���� ��� � 
�
4: select document � � � with maximum ��� ������	��	


�������
value

8. Broadcast Scheduling

In Section 8.1, we obtain the optimal mean waiting time
seen by all clients. This result leads to the scheduling pro-
gram in Section 8.2.

8.1. Overall Mean Waiting Time

Our performance metric is the overall average waiting
time across all clients. Let 
 be the number of distinct doc-
uments in the broadcast cycle, �� be the number of requests
that can be satisfied by document �� in the broadcast, �� be
the mean waiting time for ��, and � be the broadcast fre-
quency of document ��, i.e., the number of times that �� is
broadcast in one broadcast cycle. Our objective function �
depends on the document broadcast frequencies as follows:

� ��� �� � � � � �� �

��
���

����

�� ��
���

��

�

We assume that clients generate requests at random
times. As in [5], all instances of document �� in the broad-
cast cycle are equally spaced, since this yields the best per-
formance. Let �� be the spacing between two consecutive
instances of ��, so that the average waiting time for docu-
ment �� is �� � ����.

In practice, clients may time out or give up on their re-
quests if they have to wait too long. Therefore, we require
that a boundary, �, defined by client patience, constrain the
length of the broadcast cycle. If document � � is broadcast �
times within a broadcast cycle, we have ��� � �. We then
substitute for ��, getting

� ��� �� � � � � � � �

��
���

���

��

�� ��
���

��

�

If 	� is the length of document ��, the average waiting
time is then subject to the following constraint:

��
���

	�� � �

In this case, the optimal average waiting time is obtained
as (see [30] for detailed calculations)

������	
 �
� ��

���

�
��	�

����
�

��
���

��

�
� (2)

and the broadcast frequency for each document that yields
optimal mean access time is
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�� �

�
�������

���

�
�� ��

� � � � � �� (3)

8.2. Broadcast Scheduling Program

We noted above that the occurrences of each document
should be equally spaced to archive the optimal perfor-
mance, but in practice it may not always be possible to do
so. We therefore provide a near-optimal solution to resolve
this issue.

When the occurrences of a document � � are equally
spaced, the product of the document frequency � � and the
spacing 	� between its consecutive occurrences equals the
broadcast cycle length �. From Equation 3, we obtain

	� �
�

��
�

�
��
��

� ��
���

�
�� ��

�
(4)

It is clear that
��

���

�
���� is a constant since the set of

documents to be scheduled in the new broadcast has been
determined at this point, which means that 	�

�
����� have

the same value for all �. We try to preserve this character-
istic in our scheduling algorithm. Thus, the document with
the maximum 	�

�
����� value will always be scheduled in

the broadcast. The broadcast scheduling program is given
in Algorithm 8.2.

Algorithm 4 Broadcast Scheduling Program
1: ���� �
2: while ��� � � do
3: let �� be the distance between the last occurrence of docu-

ment �� and present point of scheduling
4: find document � with maximum �� �

�
�����

5: append � to the schedule
6: ���� ���� ����	
���

9. Performance Evaluation

We evaluated the performance of our model through ex-
tensive simulations on real-life data. We describe our simu-
lation environment in Section 9.1, and demonstrate our re-
sults in Section 9.2.

9.1. Simulation Environment

We implemented our simulator using CSIM [3], and
modeled a single server and multiple clients. The server
broadcasts documents, collects feedback messages, detects
and exploits client access patterns and makes broadcast de-
cisions. The clients continuously generate requests and pro-
vides feedback messages to the server. The document set
in our simulations is the Reuters-21578 Text Categorization
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Figure 4: Client Request Characteristics

Test Collection [4], which is among the most widely used
resources for research in information retrieval.

9.1.1. The Document Model. All documents in the
Reuters collection are Reuters newswire stories, and be-
long to five different sets of content related categories,
namely TOPICS, PLACES, PEOPLE, ORGS, and EX-
CHANGES. We used the 57 categories in the TOP-
ICS set, obtaining 5000 documents. The documents were
in SGML format, and distributed across 22 data files. We
pre-processed the collection, removing SGML tags, ex-
tracting texts for each individual document, and omitting
empty documents.

We removed all words in the stoplist from the docu-
ments, and reduced the rest of the words to their stems
based on the PorterStemmer algorithm [1]. Finally, we con-
verted the documents into a word-by-document matrix fol-
lowing the methods presented in [10]. The matrix is ex-
tremely sparse, with a density of only 0.0025. The sparse
matrix was stored in the Compressed Column Storage for-
mat [11] for processing efficiency.

9.1.2. The Client Model. Each client was a CSIM pro-
cess, and ran a continuous loop, with each iteration simulat-
ing one broadcast cycle. It chooses a document of interest
in each broadcast cycle, and waits for a sufficiently simi-
lar document to appear in the broadcast. Each client gen-
erates (but does not send) feedback messages starting from
the time it picks a document request until one broadcast cy-
cle time elapses. If the broadcast program is changed within
this time period, the client starts over on the creation of the
feedback message. If no document in the broadcast cycle is
sufficiently close to its document of interest, the client in-
cludes an explicit document request in the feedback mes-
sage. Clients send feedback messages to the server at ran-
dom times, so that the number of feedback messages arriv-
ing at the server is carefully controlled.

An explicit request vector 
�� for a document is gener-
ated as a truncated version of the original document vector

� by using the top five weight-ranked terms. Consequently,
the similarity between the two may be less than the thresh-
old � . Figure 4 shows the likelihood that the database has a
document matching 
�� for different values of � .
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The Zipf distribution [18] is used by many current data
dissemination models [5, 7, 17, 26] to model non-uniform
data access patterns. For a Zipf distribution, the probabil-
ity of accessing document with frequency rank � is propor-
tional to ������� � � � � �, where � is the access skew co-
efficient. If � � �, Zipf distribution reduces to uniform dis-
tribution, and when � increases, the client access patterns
become increasingly skewed. We ran simulations for both
� � � and � � �, corresponding to the uniform and pure
Zipf distributions. See section 9.2 for details.

To ensure that our simulations were realistic, we changed
the Zipf frequencies over time, so that less popular docu-
ments became popular. Table 1 summarizes the parameters
that describe the operation of the clients.

Parameter Description Default
� skew coefficient of Zipf distribution 1

ShiftFreq shifting frequency of client access 10 cycles
pattern

Offset shift amount in client access pattern 20 docs
ReqLen number of words of a client request 5 words

Table 1: Description of Client Parameters

The client wait time is defined as the elapsed time be-
tween request generation and its fulfillment,and it is counted
in logical time units called broadcast units. The broadcast
rate is 1KB per broadcast unit. Consequently, our simula-
tion results are valid across many possible broadcast media.
For example, if we apply our model over 2G wireless net-
works that have broadcast speed of 9.6Kbps, the broadcast
unit would be about a second. For 2G+ wireless networks,
such as GPRS, the broadcast speed is about 100Kbps, so
that the broadcast unit would be about a tenth of a second.

9.1.3. The Server Model. The parameters for the server
are shown in Table 2. The server is a CSIM process and
runs in a continuous loop. If the server has received the re-
quired number � of feedback messages at the start of a
broadcast cycle, it creates a new broadcast program as fol-
lows. First, it processes client feedback messages as in Sec-
tion 7 to create feature vectors. Then it selects documents
matching these feature vectors, and assigns a broadcast fre-
quency for each document in this set based on Equation 3 in
Section 8.1. Finally, it constructs the broadcast program as
in Algorithm 4. In normal mode, the server listens for feed-
back messages from the clients. We use the CSIM event
mechanism for synchronizing clients with the server.

9.2. Simulations and Results

Most current dissemination models [7, 16, 17, 21, 26] re-
quire all clients send requests to the server when they are
unhappy with the broadcast cycle. These models will not
scale well at the servers when client population increases

Parameter Description Default
� length of one broadcast cycle 1500 units

����� broadcast rate 1KB/unit
� size of server DB 5000
� margin of error 0.05
Æ probability of error 0.1
	 similarity threshold 0.2-0.6

 sample size of client feedback
� # of unique documents in one cycle

Table 2: Description of Server Parameters

or when client access patterns shift significantly. Servers in
our model deal only with a sample of the entire client pop-
ulation, so our model scales better. We conducted extensive
simulations to demonstrate the responsiveness, scalability,
and adaptability of our model.

9.2.1. Performance Evaluation of Our Model. We com-
pared system performance under our model and model
where all clients send explicit requests to the server, vary-
ing the similarity threshold � between 0.2 to 0.6 for both the
Zipf and the uniform client access patterns. Figure 5 shows
the Average Waiting Times (AWT) for different client pop-
ulations. As client population increases, the AWT improves
considerably for Zipf access patterns under our model, as
shown in Figure 5(a) –5(c). For 10,000 clients and a similar-
ity threshold of 0.2, the AWT is improved about 30%. For a
higher similarity threshold, say 0.6, the AWT improves even
more, to about 50%. The results for uniform access patterns,
shown in Figures 5(d)–5(f), show similar improvements.

Figure 5 also shows that a higher similarity threshold �
leads to a longer AWT. There are two reasons for this ef-
fect. First, when � is higher, fewer client requests are likely
to be incorporated into any given cluster, so that more doc-
uments must be included in the broadcast program, leading
to longer AWTs. Second, the number of explicit requests in-
creases with � since clients become more demanding, and
are less likely to be satisfied by documents in the broadcast
program. We observe that the AWT under the uniform ac-
cess pattern is longer than under the Zipf pattern. Client re-
quests are more clumped under Zipf, so that the number of
documents in the broadcast program becomes smaller.

Figure 6 compares our model with existing models in
terms of the percentage of unsatisfied requests in a broad-
cast cycle, on average. Unsatisfied requests may arise for
several reasons. First, no document in the database may
match a client request when � is relatively high (see Fig-
ure 4). Second, the random sampling method in our model
estimates the client access pattern with some margin of er-
ror, so that the estimate may deviate from the real pattern.
Finally, the number of documents broadcast in a cycle is
limited, since we limit the length of the broadcast cycle,
as explained in Section 8. Figure 6(a) shows an increase
in the percentage of unsatisfied requests in our model. For
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(a) All Clients Respond (Zipf)
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(b) Random Sampling (Zipf)
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(c) Comparison (Zipf)
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(d) All Clients Respond (Uni-
form)
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(e) Random Sampling (Uni-
form)
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(f) Comparison (Uniform)

Figure 5: Feedback methods compared: random sam-
pling vs. all clients responding
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Figure 6: Percentage of Unsatisfied Requests

� � ���, and 10,000 clients, about 13.8% client requests
may be unsatisfied with the broadcast.

Figure 7 compares our method with current methods in
terms of the fraction of documents scheduled in the broad-
cast. Our method is clearly superior, since the fraction levels
off beyond a client population of 2000. The simulation re-
sults for Uniform access patterns show very similar trends.
Using our model, less documents are included in the broad-
cast, so the broadcast frequency assigned to each document
can be high, reducing the waiting times for clients interested
in the document. Our method is clearly more scalable.

We also perform experiments showing how adaptable
our model is under shifting client access patterns (see [30]
for details).
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Figure 7: Percentage of documents in server database
scheduled in broadcast

Parameter Value
� 0.95

��������	 No shift

� ����� � 400 broadcast units

� 4000KB

������������� 10KB per broadcast unit

� 3000
����������� 8192 bytes

Table 3: Parameter Settings

9.2.2. Comparison with Adaptive Broadcast Disk. We
also compared our model with the Adaptive Broadcast Disk
(Adaptive BD) scheme proposed in [17], which also ex-
plores a bit-vector feedback mechanism. In the Adaptive
BD model, only clients with explicit requests will send their
feedback to the server. We use exactly the same system pa-
rameter settings as those in the Adaptive BD model (see Ta-
ble 3), so that their values are entirely different from those in
our previous experiments. Since all documents in the Adap-
tive BD model have a fixed size of 8192 bytes, we ignore
the actual document sizes in the database we use. Figure 8
shows our result.

Clearly, or model is much more scalable than the Adap-
tive BD model. In addition, the AWTs in our model are gen-
erally shorter than those in the Adaptive BD model. In the
Adaptive BD model, a fixed ratio of broadcast bandwidth is
allocated for broadcasting on-demand requests, so that the
broadcast program can deviate from the client access pat-
terns. The mechanisms in our model helps the server to de-
tect and exploit client access patterns much more precisely.

10. Conclusions

In this paper, we have proposed an adaptive data dissem-
ination model for information systems in asymmetric com-
munication environments. We introduced an approximate
response mechanism for processing client requests based on
the vector space model and the cosine similarity measure. In
addition, we developed a randomized client feedback mech-
anism, and developed a theory for bounding the sample size
of client feedback using N-Gaussian method. This mecha-
nism helps the server summarize client access patterns pre-
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Figure 8: Performance comparison

cisely and in a timely fashion, at a very low cost. More-
over, we proposed an objective function for optimizing our
model. The server creates a near-optimal broadcast program
conforming to the objective function. Most importantly, all
these mechanisms are seamlessly integrated into our sys-
tem.

We have used real-world data set for measuring the per-
formance of our model, using an extensive and accurate
simulation testbed. Our results show that our model per-
forms very well in terms of responsiveness, scalability and
adaptability. We also compared the performance of our
model with that of the Adaptive BD model in which the
broadcast bandwidth allocated for explicit client request is
fixed, which limits the system performance due to the dy-
namic nature of a data dissemination system. Our model
clearly outperforms the Adaptive BD model.
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