
Roads, Codes, and Spatiotemporal Queries

Sandeep Gupta, Swastik Kopparty, Chinya Ravishankar
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92521

{sandeep,swastik,ravi}@cs.ucr.edu

ABSTRACT
We present a novel coding-based technique for answering spatial
and spatiotemporal queries on objects moving along a system of
curves on the plane such as many road networks. We handle join,
range, intercept, and other spatial and spatiotemporal queries under
these assumptions, with distances being measured along the trajec-
tories. Most work to date has studied the significantly simpler case
of objects moving in straight lines on the plane. Our work is an
advance toward solving the problem in its more general form.

Central to our approach is an efficient coding technique, based on
hypercube embedding, for assigning labels to nodes in the network.
The Hamming distance between codes corresponds to the physical
distance between nodes, so that we can determine shortest distances
in the network extremely quickly. The coding method also effi-
ciently captures many properties of the network relevant to spatial
and spatiotemporal queries. Our approach also yields a very effec-
tive spatial hashing method for this domain. Our analytical results
demonstrate that our methods are space- and time-efficient.

We have studied the performance of our method for large planar
graphs designed to represent road networks. Experiments show that
our methods are efficient and practical.

1. INTRODUCTION
In recent years, technologies such as the Global Positioning Sys-
tem have greatly improved our abilities to track moving objects.
Correspondingly, there has been increased interest in spatiotem-
poral queries, or queries over time-dependent position information
of moving objects. In its most general form, this problem deals
with range and join queries on spatial and temporal attributes of
objects moving along arbitrary trajectories in R

n. As we discuss
in greater detail in Section 3, however, this general problem is
extremely complex, and the literature has focused on much sim-
pler versions. The most common formulation addresses selection
queries on objects moving in straight lines in R

2.

In practice, however, linear motion is more the exception than the
rule. For example, applications as diverse as traffic congestion con-
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trol and tactical battlefield situations require answers to spatiotem-
poral queries on objects moving along highly non-linear networks
of roads. An additional complication in such applications is that
distances between objects are frequently required to be specified
along the roads, and not as the Euclidean separations in R

2, as in
most current work. Range queries typically have the form “Find
all objects that are in region R during a time interval [tq1, tq2]”,
“Find all objects that are within distance d of object o1”, or “Find
all objects that are encountered by object o1 in the time interval
[tq1, tq2]”. Typical join queries have the form “Find all pairs of ob-
jects which pass a common waypoint”, or “Find all pairs of objects
that are within distance d of one another at a given time instant tq”,
and typical intercept queries have the form “Find the time that it
will take for object o1 to catch o2”.

1.1 Our work
In this paper, we pick a significantly more general version of this
problem, and address spatiotemporal queries on objects moving
along the edges of certain class of planar graphs. We have found
these graphs to be reasonable models of many kinds of road net-
works, and quite useful in many real situations. Our approach
is based on a novel method for assigning codes to nodes in such
graphs, which allows us to compute the distance between two nodes
as the Hamming distance between the corresponding codewords.
The coding is accomplished by embedding the planar graph into a
higher-dimensional hypercube, using techniques based on the work
in [3].

Road networks are static, so assigning these codes during a prepro-
cessing phase is a reasonable strategy. While we focus in this paper
on a class of spatiotemporal queries, we believe the methods we
present are of more general applicability.

The rest of the paper is organized as follows. In Section 2 we give
an overview of the problem. In Section 3 we describe work on
problems that are similar in flavor to our problem. Then, in Sec-
tion 4 we explore the intricacies of the problem and motivate the
scheme that we ultimately develop. In Section 5 we describe our
own scheme for handling large amount of distance data. In Sec-
tion 6 we describe how our scheme can be used to answer a vast
range of spatial and spatiotemporal queries on road networks effi-
ciently. Then, in Section 7 we investigate the space and time re-
quirements of our scheme, both theoretically and experimentally.
Finally, in Section 8 we conclude with open problems and possible
future work.

2. PROBLEM FORMULATION
Consider a weighted graph G = (V, E, W ) on n nodes. V is the
set of nodes, E ⊆ V × V is the set of edges, and W : E → Z

+ is



a set of integer edge weights.

G represents a road network or some similar system of trajectories.
The edges in E are curves in R

2, and the weight of an edge mea-
sures the cost of traversing it, and may correspond, for example,
to its length. We are given a set O = {o1, o2, . . . , or} of objects,
with object oi traveling from its source node si to its destination
node di, along a prespecified path in G, at speed ui. In general, we
allow the speed to be a function ui(t) of time.

We address a broad class of spatiotemporal queries in this environ-
ment by reducing the problem to that of finding the shortest dis-
tance between two nodes on a planar graph. We develop a method
based on the work in [3] to assign codes c(vi) to nodes vi ∈ V , so
that the distance between nodes vj and vk is simply the Hamming
distance [4] between c(vj) and c(vk).

We allow the edges connecting vertices to be general curves, rather
than merely straight lines, as in most previous work. We choose
parametric representations to represent object motion in the Carte-
sian plane, using the distance along the curve as the primary pa-
rameter. This approach solves two problems. First, the parametric
representation of a curve is often cleaner than a Cartesian repre-
sentation of the form f(x, y) = 0. Second, distance is readily
computed as the velocity ui(t) integrated over time. Conversely,
time is computable from distance. Such interconvertability makes
spatio-temporal queries cleaner to deal with.

2.1 About Our Model
In order to make the problem tractable, we make some assumptions
about the planar graph. We say that a planar graph has isometric
cycles if the shortest path between two vertices on the same given
interior face is along the edges bounding the face. We generalize
this condition to a slightly more technical condition, and in Sec-
tion 5.2, we describe an encoding technique that is applicable to
planar graphs that satisfy this generalized isometry property.

Since we are dealing with trajectories in R
2, the edge weights of

the graph that model this set of trajectories will not be completely
arbitrary. It is reasonable to expect the distance along a curve be-
tween two vertices in the underlying system of curves to correlate
generally with the Euclidean distance between those vertices. We
express this constraint formally as the generalized isometry prop-
erty.

Finally our model assumes integral edge weights, but in general,
they will be non-integral. However, it is possible to approximate
these weights with integers by appropriately scaling them, or by in-
troducing user-defined approximation bounds. Finally, we observe
that it is very reasonable to assume that objects move from source
to destination along the shortest path. If an object oi is required to
pass through a way-point w that is not on this shortest path, we can
decompose its trajectory into two shortest-path segments, one from
si to w and the second from w to di. We discuss this issue further
in Section 6.

3. RELATED WORK
Research in spatiotemporal queries on moving objects has proceeded
along three directions: data models and query languages, index
structures, and efficient query processing techniques. As we have
observed, motion models tend to be simple, with many researchers

assuming linear motion. Techniques for handling systems of curves
remain underdeveloped.

Güting et al. [7] have developed a comprehensive model for imple-
menting spatiotemporal DBMS extensions. Data models and query
languages for road networks have been discussed in [16].

The research community has paid special attention to the issue of
indexing moving objects [12, 1]. Index structures for moving data
are more complex than those for traditional data because they must
deal with continuously changing positions with an additional time
dimension. Kollios et al. [8] solved the problem for objects mov-
ing in 1-dimension by using the line-point duality transformation.
The authors have alluded to the problem of objects moving in re-
stricted trajectories under the title of 1.5-dimensional trajectories.
They propose to represent each predefined route as sequence of
connected straight line segments and to index motion on a route
using the duality transform for each segment. However, their tech-
nique is inapplicable to queries involving distances along the road.

Recent work [8, 12, 14] on efficiently handling queries on objects
moving on the unrestricted plane are only applicable as a first cut
filter. For the final cut, ultimately, a slow shortest distance algo-
rithm has to be run on the underlying planar graph, making these
solutions less satisfactory.

Several algorithms have been proposed for the shortest distance
problem, and in particular, for planar graphs. However, they all
turn out not to have the properties that we require. Dijkstra’s cele-
brated algorithm [4] takes O(n) space and O(n log n) time, when
implemented with heaps. An O(n

√
log n) time algorithm [5] that

works for planar graphs is the most practical and efficient of all the
algorithms available. However, since we would like to be able to
handle very large networks, we would prefer a response time even
smaller than provided by current methods. One simple approach
might be to compute shortest paths in advance and do a simple ta-
ble lookup to give a constant time response. However, this method
is also impractical since even a network with just 100,000 nodes
would require a table with five billion entries.

Shahabi et al. [13] solved the k-nearest neighbor problem with dis-
tance measured as the shortest path on the road network. They pro-
pose to use modified Lipschitz embedding [9] which approximately
preserves shortest distances on the road network. Spatiotempo-
ral queries on road networks were also addressed by Papadias et
al. [11]. They use an R-tree over the road network to prune the
search space. However, both methods are not very useful to an-
swer exact queries, as we still need to compute shortest paths in the
underlying graph.

Gavoille et al. [6] addressed the problem of labeling the nodes of
a graph to allow computation of distances directly from their la-
bels. They show that given any distance labeling scheme on pla-
nar graphs, there exist graphs for which the labels need Ω(n1/3)
bits per node. They give an encoding scheme based on separa-
tors that assigns labels of length O(

√
n log n) to each vertex, with

the distance computable from the labels in time O(log n). Their
labeling scheme takes O(n

√
n log n) time to compute the labels.

We use Hypercube embeddings of graphs to obtain distance labels.
The labels obtained by Hypercube embeddings allows the use of
a hashing scheme that significantly improves the performance of
spatiotemporal queries.

Hypercube embeddings of general graphs have applications in the
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Figure 1: Hypercube Embedding

domains of Mathematical Chemistry and Distributed Computing.
Chepoi et al. [3] used hypercube embeddings to estimate the Weiner
index of certain aromatic chemical compounds. They developed
novel techniques for identifying a broad class of planar graphs em-
beddable in hypercubes.

In our work, we build on top of their techniques. We show methods
to assign codes for a given planar graph based on hypercube em-
beddings. The encoding allows for a hashing scheme that signifi-
cantly optimizes spatiotemporal queries on graph. Although not all
road networks can be modeled as planar graphs, these techniques
are significant step forward toward solving spatiotemporal queries.
It is likely that a suite of similar techniques can be built using the
work in [6]

4. SOME ISSUES AND CHALLENGES
Spatiotemporal queries typically use a heuristic in a filter stage, and
perform exact queries on the results in a refinement step. We argue
that in the case of road networks, the refinement step is a bottleneck,
since it typically requires the computation of the shortest distances
in the underlying planar graph. Our approach yields an efficient
shortest distance problem in the first place. We will see that our
method does very well even without a filter step.

As we observe in Section 3, the space and time requirements of cur-
rent algorithms for the shortest-path problem on weighted graphs
are far higher than we would like in our application domain. Specif-
ically, we want to treat the graph vertices as points in a suitable met-
ric space, with an easily computed metric. Unfortunately, because
of their generality and discrete structure, graphs do not readily per-
mit definition of such metrics.

The standard realization of this approach in the literature is to map
the vertices v1, v2, . . . vn to points p1, p2, . . . pn in R

m for suffi-
ciently large m, such that the Euclidean distance between pi and
pj in R

m is equal to, or arbitrarily close to, the shortest distance
between the vertices vi and vj on the planar graph. One could then
index these points using some suitable multidimensional spatial in-
dex structure.

While this approach sounds reasonable, it fails badly because of the
inherent structure of R

m. Consider the graph shown in Figure 1(a).
If d(vi, vj) is the shortest distance along the graph between ver-
tices vi and vj , we observe that the “triangle equality” d(v1, v2) =
d(v1, v0)+d(v0, v2) must hold. In R

m, this requires ||p1 −p2|| =
||p1−p0||+||p0−p2||, making points (p1, p0, p2) collinear (in that
order). For similar reasons, (p2, p0, p3) and (p3, p0, p1) would also

need to be collinear triples of points. Clearly, such a configuration
of points is impossible in R

m. In fact, arbitrary close approxima-
tions are impossible as well. Thus any graph which contains a star
shaped subgraph similar to that in Figure 1(a) cannot be embedded
in R

m. Unfortunately, this star shaped figure is found in real road
networks at every T-junction.

4.1 Hypercube Embeddings
We therefore seek a metric space which, among other things, can
handle multiple triangle equalities simultaneously. A good instance
of such a metric space is the m-dimensional hypercube Hm =
{0, 1}m with the Hamming distance as the metric1. The Hamming
distance between two points a0a1a2 . . . am−1 and b0b1b2 . . . bm−1

(ai, bi ∈ {0, 1}) is defined as the number of k such that ak 6= bk.
For example, the Hamming distance between 011010 and 101100
is 4, because the two strings differ in 4 bit positions. It turns out
that the structure of Hm is actually rich enough to embed a large
subclass of the class of planar graphs, such that the distance be-
tween points on the graph is preserved as the distance between the
corresponding points in the hypercube.

We now state some standard facts about the m-dimensional hy-
percube Hm, which are useful in developing our algorithm for
hypercube-embedding of planar graphs. Consider the set V0k of all
vertices of Hm that have 0 in their kth bit position, and the set V1k

of all vertices of Hm that have 1 in their kth bit position. Clearly
V0k and V1k are connected graphs, each isomorphic to Hm−1. Let
Ek be the set of all edges that join a vertex in V0k to a vertex in V1k.
Given a pair of vertices v0 ∈ V0k, v1 ∈ V1k, any shortest path be-
tween v0 and v1 must use one and only one edge in Ek. Conversely,
if the shortest path between two vertices v0 and v1 intersects Ek in
one edge, then v0 and v1 must be in different components of Hm

(either in V0k or in V1k). Clearly, every edge in Hm is in exactly
one Ek for some k.

For example, Figure 1(c) represents H3. V00 is the set {000, 001, 010, 011},
and V10 is the set {100, 101, 110, 111}. E0 is the set of edges
{e1, e2, e3, e4}. Observe that V00 and V10 are isomorphic to H2

(the square). Also, shortest paths within V00 lie entirely within
V00, and shortest paths from V00 to V10 necessarily intersect E0.

Let G be a planar graph embeddable in Hm. Let G0k and G1k be
the sets of vertices whose k-th bit is 0 and 1, respectively. Then
the set Ek of all edges between G0k and G1k will be such that no
shortest path contains more than one edge from Ek. Conversely,
assume we can find a set Ek of edges that connects two disjoint
partitions of a graph, such that no shortest path intersects Ek more
than once. Then Ek would define the boundary between partitions
G0k and G1k for some k.

Given such a set of edges Ek, we assign 0 in bit position k to all
nodes in one of the partitions created, and 1 to the all nodes in the
other partition. If we find that every edge of the planar graph falls
into one such set, our embedding is complete, because we have now
taken every bit position into account.

The isometric cycle property guarantees that for two opposite edges
e1 and e2 on a face, any shortest path that passes through e1 cannot
pass through e2. This idea can easily be generalized to edge se-
quences called alternating cuts, in which consecutive edges are op-
1Hm is the graph with elements of {0, 1}m as vertices. Two points
u and v have an edge between them iff u and v differ in exactly one
bit position



posite each other on a graph face. Any such sequences has the prop-
erty that a shortest path contains no more than one edge from the
sequence. We will demonstrate that identifying such sequences can
be done very easily. Once we have identified all such sequences,
the problem of embedding the graph into a hypercube is straight-
forward.

5. CUTS AND CODE ASSIGNMENT
In this section, we describe our scheme to assign codes to the nodes
in road network.

We first accommodate weighted edges in G as follows. If edge
(u, v) has weight k, we introduce k − 1 virtual nodes into G be-
tween u and v, and assign a weight of 1 to each of these new edges.
This trick preserves the shortest distances between the nodes in the
original version of G, while ensuring that the edges in the new
graph all have weight 1. For the rest of this section, we assume
that all the edges of our graph have unit weight.

5.1 Definitions and Notation
As before, a road network is represented as a planar graph G(V, E, W )
with a drawing in R

2. The orientations clockwise and anti-clockwise
are defined with respect to this drawing. We begin with some defi-
nitions.

Interior Face F: An interior face is a cycle of G that bounds a
connected region. F [n] denotes the nth edge of F , when the
edges of F are arranged in clockwise order. F [0] can be an
arbitrary edge of the face. Every edge appears in two faces,
not necessarily distinct.

Outer Face C: The outer face of G is the unbounded face in the
embedding of G in R

2.

Odd (Even) Face: A face with an odd (even) number of edges.

Opposite Edges: Edges e = (u, v) and e′ = (u′, v′) are opposite
in face F if d(u, u′) = d(v, v′) and equal the diameter of
the cycle F . If F is an even-face then every edge e ∈ F has
unique opposite edge. If F is an odd-face than every edge e
has two opposite edges e+ and e−.

Cut L: The concept of a cut is central to our method. Formally,
a cut is a sequence of edges {e1, e2, e3, . . . , ek} with the
following properties.

1. Either e1 = ek or e1 ∈ C and ek ∈ C
2. ∃F [ei, ei+1 ∈ F ]

3. ei+1 is an opposite edge of ei in face F

If the edges of a cut L are deleted from the graph G, the graph
gets partitioned into two components {G/L}0,{G/L}1.

Alternating Cut An alternating cut is a cut that alternates over odd
faces. By this we mean that if the cut takes a right (left, re-
spectively) turn on one odd face, then on the next odd face
it encounters it takes a left (right, respectively) turn. An al-
ternating cut can be visualized as a line through the graph,
intersecting select edges only. An example of an alternating
cut is shown in Figure 2 .

Core: A maximal two-connected subgraph of G.

Core Tree: It is a well known result [2] that the interconnection
graph of all the maximal two connected subgraphs of a graph
is a tree. We call this the core tree (see Figure 5).

Figure 2: Alternating cuts alternate on odd cycles

We call a cut L convex if the shortest path between any two ver-
tices in {G/L}0 lies entirely within {G/L}0. A graph satisfies the
generalized isometry property if all alternating cuts are convex.

5.2 The Encoding Scheme
We now describe the full encoding scheme for the planar graph G.
The cores of G are obtained from G by removing all edges which
have only one adjacent face. The resulting components are all the
cores of the graph. Hypercube embeddings are a lot more efficient
for two-connected graphs (as we shall see in Section 7). We there-
fore choose to encode each core into a hypercube separately. Thus
the distance computation will involve finding a distance along the
core tree (which can be done very efficiently), as well as computing
distances within two cores using the hypercube embeddings. Note
that shortest distances along a tree can be very efficiently computed
after an initial round of preprocessing. Although this is a two-stage
scheme, the resulting distances are not hierarchical. Our technique
still calculates the shortest distance between any two nodes. In de-
scribing how we encode the cores, we will treat each core as an
independent planar graph. Henceforth G will denote the core on
which the algorithm is currently being run.

5.3 Encoding Cores:Some Insights
We start by stating some properties of alternating cuts, upon which
our algorithm is based. These properties are proved in later sec-
tions. For any alternating cut L, consider the two components
{G/L}0 and {G/L}1. For any two nodes u,v with u ∈ {G/L}0

and v ∈ {G/L}1, the shortest path from u to v has one edge in
L. Furthermore, every edge of the shortest path from u to v is part
of two cuts L1 and L2. We take advantage of these facts in our
algorithm.

Our code-assignment algorithm proceeds as follows. First we ini-
tialize all codes to the null string. For every alternating cut L, we
find the connected components {G/L}0 and {G/L}1. We append
0 to the code of each node in {G/L}1 and 1 to the code of each
node in {G/L}1. On termination of the algorithm the code of each
node is a bit string of length equal to the total number of alternat-
ing cuts. We later show that for any two nodes (u,v), the Hamming
distance between their codes gives the shortest distance between
(u,v). Furthermore, there is a correspondence between alternating
cuts and bit positions in the final codes.

To find an alternating cut containing edge e, the procedure follows
naturally from the definition. Starting at edge e, we proceed in both
directions, taking opposite edges on all even faces, until we come
across the first odd face in both directions. Then, on one odd face
we take a right turn, and the other odd face we take a left turn (by
changing the choice of odd faces, we can get one more alternating
cut). From then on, we proceed in both directions alternating at
odd faces until we reach the outer face. We call a cut produced
by such a procedure starting at edge e a cut seeded at e. Note that
an alternating cut that consists of edges on even faces only, should
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be counted as two cuts, and two bits should be alloted in the code
based on this cut (for reasons that will be explained later).

5.4 Encoding the Cores: An Example
We now illustrate our algorithm through an example. Figure 3
shows a road network, which we transform into the corresponding
planar graph. Distances may be assigned by simple discretization
of the road lengths according to the precision requirements. Fig-
ure 4 shows the development of one of the cuts of the graph. In
Table 1 we list the codes for each of the nodes induced by the cuts
of the graph.

The road network consists of 7 roads with 10 nodes, which form a
planar graph in Figure 1. Virtual nodes are inserted at every unit
distance between nodes. For example, the distance between nodes
a and b is 3 units. Thus two virtual nodes are inserted between
them. A total of eight virtual nodes are added to make all edges of
unit length. For the rest of this example we will not differentiate be-
tween original nodes and virtual nodes. All faces will be described
by their bounding vertices in an anti-clockwise fashion. Now that
we have constructed the planar graph, we find all the alternating
cuts of the graph.

We describe a procedure for finding an alternating cut through the
edge (d, e), in the example graph of Figure 4. Since face (e,d,j)
has an odd number of edges, the cut has to make a turn. We start
by making a left turn to cut the edge (j,e) (another valid alternating
cut would have been formed if we had taken a right instead).

It then enters face (j, e, f , g, v1, v2, h, i, j), which has an odd
number of edges again. Since the cut alternates its turn at odd faces,
it makes a right turn in this face. The right opposite edge of (j,e)
is (v1,v2). The cut leaves the graph and enters the outer face. The
entire cut is given in Figure 4.

After finding all the cuts, we assign codes to the nodes. Each cut
partitions the planar graph in two disjoint components. The cut
shown here induces two components, namely (a,h,i,j,d,c, b) and
(g,f ,e). We append ‘1’ to the codes for nodes in one component
and ‘0’ to the nodes in the other. Since a bit is appended to the
code for each cut, the code size equals the number of cuts graph.

Node Code
a 01011111111011
b 00000001011011
c 00000000000111
d 00000000000100
e 10000000000000
f 11111000000000
g 11111110000000
h 01011111111000
i 00000001011000
j 00000000001000

Table 1: The embedding in H14 of the example road map

Table 1 list the codes for all nodes. As remarked earlier, the Ham-
ming distance between the codes is twice the length of the shortest
path between the corresponding vertices of the graph. For exam-
ple, the shortest distance on the graph between nodes a and f is
5. The corresponding codes for a and f are 01011111111011 and
11111000000000. These have a Hamming separation of 10, which
is exactly twice the distance between the graph nodes. The validity
of this encoding for other pairs of points may be verified.

5.5 Encoding the Cores: Detailed Description
Here we describe our algorithm in detail. The pseudo code is given
in Algorithms 1, 2, 3, 4, 5, 6. All algorithms assume that the planar
graph G is available as a global variable. Furthermore all of the in-
terior faces F are given. What follows now is a short description of
each part of the algorithm. In section 5.5 we put all pieces together
to present the complete picture.

Other Face As already mentioned, every edge has two adjacent
faces. Given an edge e and a face F adjacent to it, this function
gives the other face adjacent to it.

Algorithm 1 other face(edge e, face F)

Require: F is an incident face of e
1: (F1,F2) = incident faces of e
2: if F1 = F then
3: return F2
4: else
5: return F1

6: end if

Opposite Given a face F and an edge e on it, this function returns
an edge opposite to e in face F .

Algorithm 2 opposite(edge e, face F , bool τ)

1: n = sizeof(F) {number of edges F}
2: p = index(e,F){position of e in cyclic order for edges in F}
3: if sizeof(F) mod 2 = 1 then
4: if τ then
5: return F[(bn/2c + p) mod n]
6: else
7: return F[(dn/2e + p) mod n]
8: end if
9: else

10: return F[(n/2 + p) mod n]

11: end if

Allocate Codes Each time this function is called it appends a bit to
the code of each vertex. Line 4 finds the two components {G/L}0

and {G/L}1 induced by the cut L on graph G. It then appends 0 to



the code of each vertex in {G/L}0 (line 5-7) and 1 to the code of
each vertex in {G/L}1 (line 8-10).

Algorithm 3 allocate code(cut L)

1: for all edge e ∈ L do
2: delete(e,G)
3: end for
4: (G1,G2) = connected component(G)
5: for all node v ∈ G1 do
6: append(v.code,′ 1′)
7: end for
8: for all node v ∈ G2 do
9: append(v.code,′ 0′)

10: end for
11: for all edge e ∈ L do
12: add(e,G)

13: end for

Half Cut

Conceptually, the cut starts at edge e, goes through face F incident
on it, and extends further till it meets the outer face C (line 5-10).
A cut alternates its turn at every odd face (line 8-10), where the
direction of the first turn is determined by τ . It returns the list of all
edges that lie on this cut.

Alternate Cut

To find an alternating cut through edge e, the algorithm first finds
the faces adjacent to e: F1,F2 (line 2). It then finds two half
cuts, L1 and L2, starting at edge e, one going through F1, the
other through F2 (line 4,5). The variable τ makes sure that the
turn made at first odd face in L1 alternates with the turn made at
the first odd face in L2. The two half cuts are merged to form a
complete alternating cut. To find the other cut passing through this
edge, we just change the value of τ .

Putting Everything Together This section combines all the func-
tions mentioned above to produce the encoding of the vertices of
the given planar graph. Line 2 initializes a stack S of edges. We
then initialize the variables of the edges. All edges are then pushed
into the stack (line 3 -5).

For every edge e, variable e.num cut stores the number of cuts
that include e that have been found already. Since all edges have
exactly two cuts through them (this will be shown), an edge is re-
moved from the stack once both its cuts are found. Algorithm 4
increments this variable for edge e when the cut that it is exploring
crosses the edge e.

The algorithm terminates when all alternating cuts are discovered.
For each cut discovered we call the function allocate code, which
appends bits to each vertex of the graph (line 14-15).

5.6 Encoding the Cores: Proof of Correctness
The correctness of the hypercube embedding follows from the fol-
lowing theorems, whose proofs are omitted due to space limita-
tions. The following theorems hold for graphs that satisfy the gen-
eralized isometry property.

THEOREM 5.1. The shortest path between any two vertices u
and v intersects any alternating cut in at most one edge.

Sketch of a proof: This result follows from the isometric cycle
property. Since an alternating cut goes from one edge to its opposite

Algorithm 4 half cut(edge e, face F , turn τ)

1: cut L = NULL
2: edge e′ = NULL
3: face C = unbounded face(G)
4: L.insert(e)
5: while e′ /∈ C do
6: e′ = opposite(e′,F , τ)
7: e′.num cut = e′.num cut + 1
8: F = other face(e′,F)
9: if F is an oddface then

10: τ = ¬τ
11: end if
12: L.insert(e′)
13: end while
14: return L

Algorithm 5 alternate cut(edge e)

1: cut L = NULL
2: [F1,F2] = faces incident on e
3: τ = RIGHT
4: L` = half cut(F1, e, τ)
5: La = half cut(F2, e,¬τ)
6: L1 = L1` + L1a
7: τ = LEFT
8: L` = half cut(F1, e, τ)
9: La = half cut(F2, e,¬τ)

10: L2 = L1` + L1a
11: return [L1,L2]

edge, alternating on odd faces ensures that if any path p contains
two edges on an alternating cut, then one can find a path that is
shorter than p between the same vertices. For a detailed proof, the
reader is referred to [3].

THEOREM 5.2. Each edge occurs in exactly 2 alternating cuts.

PROOF. Define a relation ∼ on E by the following: e1 ∼ e2

if and only if e2 lies on a cut seeded by e1. We claim that ∼ is a
symmetric relation on E.

To show that e1 ∼ e2 ⇒ e2 ∼ e1, we first note that if e2 is on
the primitive segment of e1, the statement is trivial. The result fol-
lows by an easy induction on the number of odd faces between e1

and e2 along the cut seeded by e1. The induction uses the follow-
ing stronger induction hypothesis: a cut seeded by e1 that passes
through e2, is also a cut seeded by e2.

Algorithm 6 find code()

1: C = unbounded face(G)
2: stack S
3: for all edges e ∈ G do
4: e.num cut = 0
5: S.push(e)
6: end for
7: for all nodes v ∈ G do
8: v.code = φ { assign empty codes}
9: end for

10: while S.not empty() do
11: e = S.pop()
12: if e.num cut < 2 then
13: [L1,L2] = alternate cut(e, G)
14: allocate code(G,L1)
15: allocate code(G,L2)
16: S.push(e)
17: end if
18: end while
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Figure 5: A sample core tree

Since ∼ is a symmetric relation, the only cuts that pass through a
given e ∈ E are the cuts seeded by e. Thus there are exactly two
cuts per edge.

Now it is fairly straightforward to see that any shortest path will
intersect exactly twice as many cuts as there are edges on the path.
Thus the number of bits that change from the codes of one vertex to
the codes of another will be exactly twice the length of the shortest
path between the two vertices.

6. SPATIOTEMPORAL QUERIES
In this section, we show how to apply our shortest distance scheme
to efficiently answer several types of spatial and spatiotemporal
queries. Our scheme is asymptotically better than any existing
method, and also has vastly superior practical performance. Ex-
isting methods must depend upon an slow shortest distance algo-
rithms.

Representing Road Networks: Each vertex vi is assigned a code
c(vi) using the encoding technique presented earlier, The short-
est distance between vertices vi and vj is simply the Hamming
distance between codes c(vi) and c(vj), which we represent as
|(c(vi), c(vj)|. For each vertex vi we maintain a set Si of its adja-
cent nodes. To improve query processing efficiency, we also store
information about the core tree in the network.

Representing Points: Since objects move only along graph edges,
their positions can be defined by distances along edges. A position
pi on edge ej is assigned coordinates of the form (vj1 , vj2 , di),
where ej = (vj1 , vj2) and di indicates how far along ej the po-
sition pj is located. The shortest distance between two points can
now be trivially found with just four computations of shortest dis-
tance between vertices.

Representing Routes: Since earlier methods have only allowed
linear motion, they have sought to represent object paths as a series
of line segments, an approach that is awkward and often expen-
sive. Trajectories in real roads datasets [15] must be composed
from many line segments, which can significantly affect the overall
performance of these techniques.

Let 〈i, j〉 represent the shortest path between vertices vi and vj .
Our routes are shortest paths between the source and destination
vertices, so 〈i, j〉 would be the normal route between vi and vj . To
accommodate routes that differ from this shortest path, we define
waypoints, and require objects to follow the shortest path between
waypoints. The route for an object that moves between vertices
vi1 and vim , passing through waypoints vi2 , · · · , vim−1

, is repre-
sented as 〈i1, i2, · · · , im−1, im〉, and is obtained by concatenating

the shortest paths 〈i1, i2〉, 〈i2, i3〉, · · · , 〈im−1, im〉.

For reasonable vehicular paths, the number of way-points is likely
to be low. Further, if several shortest paths exist between the given
(source, destination) pair, one can force a choice between them by
using waypoints.

6.1 The Route Hashing Optimization
We describe a hashing scheme that places shortest paths into bins
that capture the manner in which they traverse the graph, allowing
significant query optimizations. For example, given a query region,
we are able to discard all routes in bins that don’t appropriately
match the codes for the vertices defining the region. The method
works as follows.

Each cut L corresponds to a bit position (say kL) in the encoding.
All vertices in the first partition {G/L}0 induced by L have kL =
0, and all vertices in the other partition {G/L}1 have kL = 1. If
both the source and destination of a given route belong to the same
partition, their codes will agree in the bit position corresponding to
kL, and the shortest path between this source and destination will
use no edge outside this partition.

Let subgraph R be defined by the vertices (vi1 , vi2 , · · · , vik
). Sup-

pose we can find a cut L so that all these vertices belong to {G/L}0,
i.e., their codes have kL = 0. Any shortest path 〈vi, vj〉 where both
vi and vj have kL = 1 will lie outside {G/L}0, and hence outside
R. In this case, we say that L excludes 〈vi, vj〉 from region R.
Cuts which exclude many routes from R reduce the search space
significantly.

This idea can be generalized to the the concept of route hashing.
Let a cut be called a bisector if it partitions the graph into two
halves with roughly the same number of vertices. A few bisec-
tor cuts L1,L2 . . .Lm are selected as the basis for creating bins.
The key to route hashing lies in considering only the bit positions
kL1

, · · · , kLm corresponding to these bisectors. We call these bit
positions the bisector bits. These m bits are used to define 2m

bisector bins, corresponding to regions on the planar graph, and la-
beled by binary strings of length m. The idea is to place a route in
a bin if it is not excluded from entering the corresponding region of
the planar graph. Specifically, the shortest path 〈vi, vj〉 is placed in
all bisector bins bl whose labels match the codes for either vi or vj

in all of the bit positions kL1
, · · · , kLm . Using bisectors ensures

that the bins are roughly equal-sized and routes are uniformly dis-
tributed across them. In a preprocessing step, we hash the set of
routes 〈oi〉 for the objects oi in the system into these bisector bins.
Route hashing can be used to reduce the search space for spatial
and spatiotemporal queries, boosting their performance.

6.2 Queries
Observe that a vertex v lies on a shortest path 〈i, j〉 if and only
if |c(vi, vj)| = |c(vi, v)| + |c(v, vj)|. In this case, we say 〈i, j〉
includes v. Similarly, 〈i1, i2, · · · , im〉 includes v if and only if
there are two consecutive way points vik

, vik+1
such that 〈k, k+1〉

includes v.

When we do not wish to refer explicitly to waypoints, we denote
the route taken by object oi simply as 〈oi〉. The distance of vertex
v along the route 〈oi〉 is denoted by dist(〈oi〉, v). The speed of
object oi is denoted by ui(t). If oi passes through vertex v at time
tv , we will have dist(〈oi〉, v) =

∫ tv

0
ui(t)dt.



6.2.1 Incidence Queries
Given a query vertex vq and time interval [t1, t2], an incidence
query requests all objects that pass through vq during [t1, t2]. We
first pick the bisector bins that agree with the code c(vq) on the bi-
sector bits. For each route 〈oi〉 in these bins, we first check if 〈oi〉
includes vq , and second, whether oi could passed vq during [t1, t2].
In other words, we check whether

∫ t1
0

ui(t)dt ≤ dist(〈oi〉, vq) ≤∫ t2
0

ui(t)dt.

6.2.2 Shortest Path Queries
To find the shortest path 〈vi, vj〉 between vertices vi and vj , we
start at vi, and find the neighboring vertex w of vi such that |c(vi), c(vj)| =
|c(vi), c(w)| + |c(w), c(vj)|. Clearly, 〈vi, vj〉 includes w, which
is hence the first node on this shortest path. We repeat the process
until we arrive at vj .

6.2.3 Range Queries
A range query requests all objects oi that pass through some query
region R during some time interval [t1, t2]. R is intended to bound
object positions, so R is typically a rectangle when objects move
linearly in the plane. In our case, however, objects are constrained
to graph edges, so the proper way to bound their positions is by
points on graph edges. In Figure 6, for example, the region R is
specified by the set of positions {r1, r2, r3, r4, r5, r6} on graph
edges. To answer range queries, we first identify the vertex set BR

that bounds R. In Figure 6, this bounding set is {c1, c2, · · · , c6}.

Our next step is to select a subset of bisector bins. For each vertex
vi ∈ BR, consider the encoding c(vi), and let βi be the substrings
of c(vi) obtained by choosing only the bisector bit positions. Let
γ be the set of bisector positions where all the βi match. We only
need to look at the bisector bins which match c(vi) at positions γ.
Let this set of bisector bins be called the set of γ-bins.

We observe that any object entering or leaving R during time inter-
val [t1, t2], must cross at least one of the vertices in BR during that
interval. For each route 〈oi〉 in the γ-bins of BR, we check if 〈oi〉
is incident on a vertex in BR (see Section 6.2.1) during [t1, t2].

The other case that remains is when an object o moves such that its
route 〈o〉 lies completely within the region. This can be detected
by checking if the shortest path between the source and a vertex p
lying within the region intersects BR.

6.3 Join Queries
Given a time interval [t1, t2], we are required to find all pairs of
(oi, oj), such that oi and oj are on the same edge during [ti, t2].
Since routes in different bins do not intersect, so only routes that
are within same bin need be compared. To find all routes 〈oj〉
that intersect route 〈oi〉 during [t1, t2], first enumerate the vertices
u1, u2, . . . , uk included by 〈oi〉, and the times ti1 , ti2 , . . . , tik

that
oi arrives at each of them. Discard all uj for which tij

6∈ [tq1, tq2].
For each of the remaining ui, we find all objects oj with 〈oj〉 inci-
dent on ui during the time interval [ti−1, ti+1] (see Section 6.2.1).
This procedure is repeated for each object o.

To find all pairs of objects that are within distance d of one another
at a given time tq , we use the the standard all pairs join method.
This method is feasible because shortest distance computation is
now fast.

c1

c2

c4

c5

c6

r1
r2

r3

c3

r4r5

r6

Road Segments representing Query Region R
Nodal Points c1, c2, ..., c6 bound query region R

Figure 6: Highlighted segment represents query region

6.4 Intercept Queries
An object op (the “pursuer”) starts at a specified node, and is re-
quired to catch a second object oq (the “quarry”), whose route 〈oq〉
is given. The speeds up(t), uq(t) of both vehicles are known, and
we are required to determine whether op can catch oq .

Let {v1, v2, · · · , vk} be the set of vertices included by oq’s route
〈oq〉 (see Section 6.2.2). Let the distances of each of these vertices
from the starting positions of oq and op be {dq

1, d
q
2, · · · , dq

k} and
{dp

1, d
p
2, · · · , dp

k} respectively. These are trivially obtained as the
Hamming distances between their codes. Since the speeds uq(t)
and up(t) are known, we can compute the times {tq

1, t
q
2, · · · , tq

k}
and {tp

1, t
p
2, · · · , tp

k} at which oq and op are incident on each of
these vertices (see Section 6.2).

An interception is possible if and only if tp
i ≤ tq

i for some vertex
vi. That is, op gets to vi first.

7. CODING PERFORMANCE
In this section, we prove that the performance of the algorithm
given in the previous section is asymptotically good. Our asymp-
totic results are in terms of the number of nodes n in the original
graph, not including the virtual nodes. Our experiments include
these virtual nodes as well.

To make the analysis tractable, and provide reasonable performance
estimates for realistic scenarios, we make a few assumptions that
do not affect the correctness or execution properties of our algo-
rithm. We assume that the vertex degree and edge weights are both
bounded from above by constants. In practice, it is unreasonable to
have intersections where an unbounded number of roads meet, or
to have roads of unbounded length.

Since the complexity results for encoding trees are already well-
known [4], we only present complexity results for the encoding of
cores. The space and time requirements for constructing and coding
the core tree are all asymptotically very good. Proofs are omitted
due to lack of space.

LEMMA 7.1. For road networks, the total number of alternat-
ing cuts is the same as the length of the outer face.

PROOF. Clearly, every alternating cut either starts and ends at
outer edges, or forms a loop. We will argue that for the kinds of
graphs that we are looking at, no alternating cuts will form loops.



An alternating cut through edge e will form a loop if (1) Both the
faces adjacent to e are not distinct, or (2) The alternating cut passes
through several faces before turning around and passing through the
same edge again. Our encoding methods operate on two-connected
subgraphs, and so the first case does not arise. Planar graphs in
which alternating cuts form loops (as in the second case) are highly
distorted [3], because if two edges are opposite in a face, they also
tend to be spatially opposite. For a loop to form, the cut has to turn
a complete 360 degrees, which is completely against the spatially
opposite principle.

Thus, in a typical road network we would expect that no alternating
cuts would form loops. So, all alternating cuts are from an outer
edge to an outer edge. Further, there are exactly 2 cuts per outer
edge, and every cut is counted twice, once at each end. Thus, the
total number of cuts is exactly the same as the length of the outer
face.

THEOREM 7.2. The code size in the encoding of a planar graph
by our scheme is exactly equal to the length of the outer face.
In terms of the number of nodal points n, the code size grows as
O(

√
n), on an average.

Proof Sketch:

In a road network, the bounded degree condition together with the
integer distance condition implies that there cannot be an arbitrarily
large number of nodes in a given area. Further, the bounded edge
weight condition means that there cannot be an arbitrarily small
number of nodes in a given area (given that there is at least one
node in the area). This means that the nodes/area is bounded
above and below by real numbers. Thus the total area occupied by
an embedding of the planar graph grows as O(n). Thus, since the
planar graph is 2-connected, the average number of edges on the
outer face (the perimeter) is O(

√
n). So, for a road network, where

the length of an edge is bounded, the length of the outer face is
O(

√
n). The code size is exactly equal to the total number of cuts.

From Lemma 7.1, the total number of cuts is equal to the length of
the outer face. Thus the code size is equal to the length of the outer
face and grows as O(

√
n).

COROLLARY 7.3. The total space required to store the encod-
ings of the points is O(n

√
n).

COROLLARY 7.4. The time required for computation of short-
est distance is O(

√
n).

THEOREM 7.5. The time required for the preprocessing phase
is O(n

√
n).

PROOF. The total time required for the preprocessing phase is
the sum of the time required for finding the cuts and the time re-
quired for allotting the codes. There are O(

√
n) cuts. The number

of edges is linear in the number of vertices (by Euler’s formula for
planar graphs [2]). Since each edge has exactly two cuts through it,
the average number of edges per cut is O(

√
n). Thus the total time

required for finding all the cuts is O(
√

n) × O(
√

n) = O(n).
Then for allotting the actual codes, for each cut one would al-
lot one bit to each vertex of the graph. Thus time required for
this is n times the number of cuts, which is O(

√
n). Thus the

Time to Generate Encodings (seconds)
Number Edge Density in Graph
of Nodes (% of maximal)

50 60 70 80 90 100
40,000 0.638 1.397 1.198 1.357 1.609 1.048
50,000 1.744 1.142 2.014 1.618 1.321 1.925
60,000 2.246 1.431 1.836 1.635 1.406 1.957
70,000 1.619 1.941 2.340 1.831 1.942 2.418
80,000 1.821 2.726 2.774 2.333 2.578 1.985
90,000 2.290 2.846 3.213 2.997 2.614 2.559

Table 2: Time (secs) to generate codings for planar
graphs

asymptotic time complexity of the entire preprocessing phase is
O(n) + O(n

√
n) = O(n

√
n).

Although our encoding scheme grows sublinearly with respect to
the number of nodes, the actual performance depends upon the
length of the roads. Therefore, we conducted experiments on graphs,
simulated to be abstraction of actual road networks with varying
edge lengths. Our experiments in Section 7.1 demonstrate superior
performance over different lengths of road segment.

7.1 Experimental Evaluation
We implemented our coding method in C++ using the LEDA graph
library [10], and conducted a series of experiments on a Linux box
with an Intel Pentium IV 1.4 GHz processor and 1 GB of RAM.
We generated a large number of random road networks, and mea-
sured both, the time required for generating the encodings for these
graphs, as well as their size. The edge weights were randomly dis-
tributed, with an average lengths of 5 and 10 units.

First, we demonstrate the efficiency of our coding algorithm for
graphs of varying sizes and edge densities. A maximal planar graph
with n nodes has 3n − 6 edges [2] (represented here as Mn). We
varied the edge density from 50% of Mn to 100% of Mn. We
varied the total number of nodes (real and virtual) from 40,000 to
100,000.

Table 2 shows that it takes less than 3 seconds to process 90000
nodes (real and virtual) with approximately 180000 edges. This
implies that even for large road networks, we can find all the cuts
in extremely short order. Figure 7 represents length of the resulting
codes in bytes for these same graphs. The size of the encoding
varies from under 250 bytes to under 550 bytes.

The efficiency of our method is now readily apparent. Given a road
map with 90,000 nodal points in all (corresponding to roughly 9000
real nodes), the shortest distance can be obtained by computing the
XOR of around 450 pairs of bytes. It is also clear from the graph
that the scheme works uniformly well for all edge densities.

7.1.1 Comparison With Table Lookups
An alternative approach would be to store precomputed shortest
distances, doing table lookups as needed. Figure 8 compares the
time required by our method with the time to find all pairs of short-
est paths in the planar graph. Since shortest path computations run
in O(n2logn) time [4], it scales poorly, and is impractical even for
small road networks. Our algorithm runs in time O(n

√
n), and

takes just a few seconds to assign codes. Experimentally we also
see that it scales nicely with the number of nodes in the graph.
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Figure 9 compares the space required for a table-lookup scheme
with the space required by our method. Even assuming that table
entries are only 2 bytes long, we see that space requirement for
table lookup rises dramatically relative to the space requirement
for our method. Our methods appears to win hands-down in terms
of both preprocessing time and the size of the database required.
Yet it can still compute shortest distances extremely quickly.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have addressed the problem of answering spa-
tiotemporal queries on objects moving along constrained trajectory
systems that closely simulate road networks. The solution is ex-
tremely efficient and practical, and enhances the current state of
the art significantly. It is based on a very efficient method for com-
puting shortest distances on a large class of planar graphs, based on
hypercube embedding. The method for assigning encodings to the
graph nodes is very fast, and our encodings are very space-efficient.

Based on our encoding scheme, we provide elegant and efficient
data structures and algorithms for handling a vast array of spatial
and spatiotemporal queries over very large road-like networks. We
have shown experimentally that our algorithms perform very well.

Possibilities for future work include generalizations of these tech-
niques and those in [6] to handle more complex classes of graphs,
and ultimately, to real road networks.
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