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Abstract 
The widening performance gap between CPU and 

disk is significant for hash join performance. Most 
current hash join methods try t o  reduce the volume of 
data transferred between memory and disk. In this pa-  
per,  we try to reduce hash-join times b y  reducing ran- 
dom I/O. We study how current algorithms incur ran- 
dom I/O, and propose a new hash join method, Seq+, 
that converts much of the random 1/0 t o  sequential 
I/O. Seq+ uses a new organization for hash buckets 
on disk, and larger input and output buffer sizes. We 
introduce the technique of batch writes t o  reduce the 
bucket-write cost, and the concepts of write- and read- 
groups of hash buckets to reduce the bucket-read cost. 
We derive a cost model for our method, and present 
formulas for choosing various algorithm parameters, 
including input and output buffer sizes. Our perfor- 
mance study shows that the new hash join method 
performs many times better than current algorithms 
under various environments. Since our cost func- 
tions under-estimate the cost of current algorithms 
and over-estimate the cost of Seq+, the actual per- 
formance gain of Seq+ is likely t o  be even greater. 

1 Introduction 
Since the introduction of the GRACE hash join 

method [l], many other hash join algorithms have 
been proposed [2, 3,  4, 5,  6 ,  71. Such work has fo- 
cussed mainly on three goals: (1) reducing CPU costs, 
(2) reducing the amount of data transferred between 
memory and disk, and (3) improving the stability of 
hash joins in the presence of data skew. 

However, machine capabilities have changed dra- 
matically since the introduction of hash joins. CPU 
speeds and the sizes of memory and disk have all in- 
creased greatly, but increase in disk speeds has not 
matched. Another important factor is the significant 
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disparity between the efficiency of random and sequen- 
tial disk accesses [8]. As these trends continue, it is 
likely that 1/0 costs will dominate hash join costs even 
more. Minimizing 1/0 costs thus becomes crucial to 
join performance. 
1.1 Sequential versus Random 1 / 0  

Hash-join methods have tried to improve perfor- 
mance by reducing the data transfer volumes between 
memory and disk. However, reducing data transfer 
volume is not the same as reducing 1/0 costs, since the 
costs of random and sequential 1/0 are very different. 
Reading ten disk blocks from disk in one sequential ac- 
cess generally costs much less than reading five blocks 
from disk in five random accesses. We argue that a 
good hash-join algorithm must transfer data between 
memory and disk in sequential 1/0 as far as possi- 
ble. [9] explored using sequential 1/0 in the context 
of hybrid join. 

In this paper, we propose a new hash join method 
that reads/writes its source, intermediate, and result 
data mostly using sequential disk accesses. To transfer 
intermediate data using sequential 1/0 operations, we 
introduce a new organization of intermediate data on 
disk, storing each bucket as a small number of bucket 
segments instead of one contiguous file. To support 
this disk layout, we use a technique called batch writes, 
which writes pages from multiple buckets to disk when 
the buffer becomes full, and enables buckets output 
mostly in sequential writes. We have used a similar 
technique to build seeded trees for spatial databases 
[lo]. The new bucket organization on disk leads to 
the concepts of write groups and read groups for hash 
buckets, which significantly reduce bucket read costs 
with slightly increased bucket write cost. Transfer- 
ring source and result relations with sequential 1/0 is 
conceptually straightforward, and is achieved by in- 
creasing the input and output buffer sizes. 

Our method has the followingfeatures. First, using 
fixed or target 1/0 clusters either increases minimum 
memory requirement and/or limit the size a (spilled) 
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a bucket can grown before written to disk [ll]. The 
concept of 1/0 cluster is immaterial to our method. 
Second, when writing bucket contents to disk dur- 
ing the partition phase, our method writes more than 
one bucket in one sequential write, while most ear- 
lier methods restrict their write sizes to less than one 
bucket. Like the dynamic hash GRACE join [5], our 
method allows a large number of hash buckets, and 
dynamically combines multiple buckets to form a hash 
table. Thus, it retains stability against bucket over- 
flow similar to that of the dynamic hash GRACE join. 
Also, our work also discusses the 1/0 of source/result 
relations, which most current work ignores. We sug- 
gest a minimum amount for buffers for I/O. 

This paper is organized as follows. Section 2 dis- 
cuss the design of current hash joins and analyzes 
their costs. Section 3 describes our new method for 
hash join. Section 4 compares of the 1/0 costs for 
our method and other current methods, and Section 5 
concludes this paper. 

2 Previous Work 
Traditional hash join algorithms have been dis- 

cussed extensively in literature [2, 3, 4, 5, 6, 71. Here 
we summarize only their relevant aspects. Given two 
relations to  be joined, we assume without loss of gen- 
erality that the smaller relation is the i n n e r  relation, 
denoted R, andl the other relation is outer  relation, 
denoted S. The result relation of the join is RES. 
The size of a relation U is denoted by 1171, the size of 
memory by M ,  and the size of a buffer B by MB.  

Hash join algorithms are generally divided into a 
par t i t ion  phase  and a j o i n  phase.  In the partition 
phase, the source relations R and S are each parti- 
tioned into H ,  disjoint buckets using the same hash 
function $1, called the par t i t ion  f u n c t i o n .  Since source 
relations are generally larger than the buffer size, the 
total bucket size may become larger than the buffer 
size during partition, and bucket contents must be 
written to disk. In the join phase, each pair of inner 
relation/outer relation buckets is processed in turn. 
The inner relation bucket is read back into memory 
and built into a hash table using another hash function 
4 2 .  The corresponding outer relation bucket is read 
into memory, its tuples hashed with 4 2 ,  and probed 
against the hash table for R tuples with the same join 
attribute values. 

Typically, the memory buffer is divided into the in- 
put buffer IB, the output buffer OB, each with one 
page, and the staging buffer SB, with the rest of the 
memory space. The input buffer is used to read both 
source relations during the partition phase, and to 
read the outer relation during the join phase. The out- 

put buffer is used to hold the result tuples before they 
are written to disk. The staging buffer holds bucket 
contents in the partition phase, and hash tables in the 
join phase. 

The pages of the staging buffer are assigned to var- 
ious buckets as necessary during the partition phase. 
We call the staging buffer space assigned to one bucket 
a bucket buger.  Each bucket buffer is a t  least one 
page in size. Since the number of SB pages is gen- 
erally greater than the number of buckets, there are 
usually several pages per bucket buffer. Researchers 
have investigated various way for using the additional 
SB space. 

The Hybrid Hash-join (HH join for short) method 
[2, 31 is reduces 1 /0  costs by saving part of the inner 
relation in this additional space and never writing it to 
disk. The size of one of the buckets is taken to equal 
to the space not used for bucket buffers, and all its 
tuples are stored in this space through the partition 
phase. We call this bucket the a n c h o r  bucket. Af- 
ter the inner relation is partitioned, the anchor bucket 
is built into a hash table. As the outer relation is 
partitioned, tuples hashing into the anchor bucket are 
matched against the hash table immediately, produc- 
ing some result tuples. Other tuples are inserted into 
their respective bucket buffers in SB. In the join phase, 
non-anchor buckets are processed as usual. HH max- 
imizes bucket sizes to minimize their number and to 
save space for the anchor bucket. The anchor bucket 
is of size MSB - H ,  + 1, and all other buckets are of 
size M S B .  HH has the drawback that it adjusts the 
number of buckets so that the projected bucket sizes 
are approximately the size of available memory, and 
is thus most likely to have overflow buckets. 

The Dynamic-Hashing GRACE Hash-join (DHGH 
join for short) [4, 51 tries to avoid overflow buck- 
ets, while retaining many of the benefits of the an- 
chor bucket. During the partition phase, the DHGH 
method dynamically selects buckets for paging out to 
disk. It favors paging out buckets that have been writ- 
ten to disk before. After the inner relation is fully par- 
titioned, the R buckets that have never been output 
to disk are built into one hash table. By analogy with 
HH join, we call such buckets anchor buckets. During 
the join phase, multiple R buckets can be combined to 
into one hash table, so that there are fewer hash tables 
and lower hash table initialization overhead. Since the 
hash table are assembled from multiple buckets, and 
the average buffer size is smaller, buckets overflow is 
much less likely. 
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2.1 Cost Analysis of Current Methods 
Most current methods attempt to reduce the vol- 

ume of data transferred between memory and disk, 
but not the number of random 1 / 0  operations. The 
cost analyses presented for these methods do not dis- 
tinguish between random and sequential disk I/O, for 
the most part. Moreover, their design makes sequen- 
tial 1/0 difficult. 

We define the cost of a random block access to be 
the average cost of accessing a disk block when the 
disk head is at a random position on the disk. The 
cost of a random block access is thus the sum of av- 
erage disk seek time, average rotation time, and the 
transmission time for one disk block. The cost of a 
sequential block access is defined to be that of access- 
ing a disk block when the disk head is positioned at 
the beginning of that disk block. The term sequential 
access is used to suggest access to a series of adjacent 
disk blocks in a single disk 1/0 operation. Therefore, 
the cost a sequential read of ten contiguous disk blocks 
equals the cost of one random block access and nine 
sequential block accesses. 

The 1/0 tasks of a hash join can be divided into four 
logical components: (1) Partition-phase reads (PR), 
(2) Partition-phase writes (PW), (3) Join-phase reads 
(JR), and (4) Join-phase writes (JW). We refer to 
tasks PR and J W  collectively as source/result I /O ,  
and to tasks of PW and J R  as bucket I /O.  

To the best of our knowledge, cost analyses for ear- 
lier methods did not discuss the cost of source/result 
I/O, since they are the same for all methods in terms 
of data transfer volume. The cost analysis in [2] is the 
only one to distinguish between random and sequen- 
tial I/O, and treats PW as involving random writes 
and J R  as involving sequential reads. 
2.1.1 Part it ion-P hase Writes 

Partition phase writes were listed in [2] as random 
writes. We attribute this to two reasons. First, since 
each bucket must be stored as a contiguous file on disk, 
it is necessary to seek to the end of the corresponding 
file whenever a bucket buffer is paged out. Second, 
only one output buffer page was used for each bucket, 
which must be written to disk when full. The order 
in which the bucket output buffers become full is ran- 
dom. Therefore, partition phase writes incur a series 
of random block writes. 
2.1.2 Join-Phase Reads 

Join phase reads were listed in [2] as sequential 
reads. Since a bucket is stored as a contiguous file in 
disk, it can be read back into memory with one large 
sequential read provided there is enough buffer space. 
This is true for the inner relation buckets, which are 

loaded into SB. However, it is unrealistic to treat the 
reads of outer relation buckets as sequential, for the 
following reasons: 

[A:] There is only one IB page, which means the 
disk controller must load all blocks in a sequential read 
into the same buffer page. 

[B:] Result tuples are produced as the S tuples are 
read. Since there is only one OB page, writes of result 
tuples occur frequently. The system must perform se- 
quential reads of the S tuples and the frequent writes 
of result tuples currently, without interference between 
them. 

[C:] Input S tuples are consumed as they are 
hashed and matched against the hash table. S tuples 
must be consumed before newly read blocks of S tu- 
ples overwrite old ones. However, the processing time 
for each S tuple depends on the number of R tuples it 
matches. If many S tuples with high match ratios are 
processed back to back, it is possible for the CPU to 
become a temporary bottleneck. More seriously, if the 
single output buffer page is full, input tuples will not 
be consumed till the output buffer is written to disk. 

Overcoming difficulties A and B requires special 
hardware and operating system support. C is work- 
load dependent and cannot be overcome with ad- 
vanced system’s support. We believe it is hard to  avoid 
such difficulties, and earlier work has never actually 
indicated how to overcome them. 
2.1.3 Partition-Phase Reads and Join- 

Phase Writes 
The PR and J W  tasks were not discussed in any 

earlier work we surveyed. PR reads the source re- 
lations and raises difficulties similar to  A and B of 
join-phase reads: there is only one input buffer page 
for the source relations, and reading the source rela- 
tions must proceed in parallel with the output of filled 
bucket pages. 

J W  outputs result tuples to disk. It is even more 
difficult to perform these writes as sequential 1/0 op- 
erations because all three difficulties of J R  arise here. 
There is only one page output buffer for the result re- 
lation, the output proceeds in parallel with the input 
of outer relation tuples, and the rate at which result 
tuples are generated varies with the match ratio of 
incoming S tuples. 

Our analysis suggests that for these hash join al- 
gorithms, PR must be performed as random accesses 
unless special hardware/OS support is available, while 
J W  must be performed as random accesses in all cases. 

3 Eliminating Random 1/0 

and that of bucket 1/0 separately. 
We consider random accesses in source/result 1/0 

Current meth- 
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ods incur many random seeks during source/result 
1/0 mainly because their input and output buffers 
are small, so one can reduce random 1/0 by simply 
increasing the sizes of IB and OB. The key issue we 
focus on is determining how large they can be made. 

To reduce bucket I/O, our method stores each 
bucket on disk as a small number of bucket segments 
instead of as one contiguous file. Each bucket seg- 
ment consists of a number of contiguous disk blocks, 
but different segments of the same bucket need not be 
adjacent. With this new organization, both partition 
phase writes and join phase reads are performed with 
sequential disk accesses of medium data size. We in- 
troduce the technique of batch writes to realize this 
disk layout for buckets. The idea of bucket segments 
also leads to the concepts of write groups and read 
groups of buckets, which significantly reduce the cost 
of reading in buckets with a slight increase in bucket 
write cost. 

To simplify our discussions, we assume no overflow 
buckets. When bucket overflow occurs, our method 
recursively partitions the buckets into smaller sub- 
buckets till no sub-bucket overflows SB, as do tradi- 
tional methods. We also assume there are H, buckets, 
and H ,  5 MSB. The cost of one random block access 
is denoted as A,,, , that of one sequential block access, 
Aseq. The ratio Aran/A,eq is denoted as p. Other no- 
tations are the same as in Section 2. 
3.1 Behavior of Input and Output Buffers 

We read the source relations in chunks of MIS 
pages, and write the result relations in chunks of MOB 
pages. The cost of PR and JW can be shown to be: 

The formulae show that as MJB and MOB increase, 
C(PR) and C(JW) decrease. However, as the input 
and output buffers grow beyond a certain point, these 
decreases become marginal. As a rule of thumb, we 
suggest allocating approximately p - 1 to both the in- 
put and output buffers, and allocating more pages to 
them when memory is abundant. For modern comput- 
ers, memory sizes are orders of magnitude larger than 
p, so this increaffie in input and output buffer sizes is 
unlikely to represent a serious demand on memory. 
3.2 Batch Writes 

To reduce raindom desk accesses in bucket I/O, we 
introduce the concept of batch writes. Under this 
scheme, the SB pages are initially put in a free page 

Tuple 
I 

‘dl I !  
L - 1  

Figure 1: A tuple awaits insertion, and the free page 
pool is empty. A batch write is executed using buckets 
1 and 7. 

pool. When a tuple is hashed into a bucket with in- 
sufficient space, a new page is allocated from the pool 
and linked to the bucket. 

When a free page is requested and the free page 
pool is empty, we perform a batch write to reclaim part 
of the SB space. This is done by choosing a number 
of buckets and writing their pages to disk in one large 
sequential write (see figure 1). 

We call the part of a bucket written to disk by a 
batch write a bucket segment. A batch write places 
the pages of a bucket segment in contiguous blocks on 
disk. However, different segments of the same bucket 
may reside in different locations on disk. During the 
join phase, we read a bucket into memory with one 
sequential read per segment. In general, the number 
of segments in a bucket is less than the number of 
batch writes, since a bucket need not participate in 
every batch write. 

Two issues are important to the implementation of 
batch writes: (1) How much space should we reclaim in 
each batch write? (2) How should we select buckets to 
participate in batch writes? The next two subsections 
address these issues and derive the cost functions for 
PW and JR. 

3.2.1 Partition-Phase Write Cost 
Let us consider the first issue. Suppose we reclaim 

at least M a w  pages of memory with each batch write. 
The cost of PW is bounded from above by: 

This formula is the same as Equation 1 for C(PR) if 
M I B  is substituted for M a w .  By similar arguments, 
we should reclaim at least p - 1 pages in each batch 
write for PW to be efficient. Reclaiming more than 
this amount provides additional but diminishing re- 
ductions in PW cost. 
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(Buckets1,2,3,4) 1 3 2 3 4 1 4 

(Buckets9,10,11,12) 

There is no guarantee that all outer relation seg- 
ments will be smaller than the input buffer. A segment 
is larger than IB must be read in chunks of size M I B .  
Each segment thus yields some number of fixed-size 
chunks of size M I B ,  and one residual chunk of size 
between 1 and M I B .  Given the total segment size 
and the number of segments, the number of fixed-size 
chunks is maximal when the residual chunks occupy 
the least space, which happens when all except one 
residual chunk is 1 block in size. The number of fixed- 
size chunks is thus bounded by ~ s ' - ~ ~ ~ s ( s ~  . Recall 
each segment also contributes an additional residual 
chunk. Thus nc(S) ,  the number of chunks in which the 
S segments are read, has the following upper bound: 

11 112 1 9  Ill 112 I 1 0  I 1 2  

- .. v 

SI -H ,n , (S )  %(S> 6 H s n , ( S )  + ' MIB . 
Denoting the cost of reading relation S during the 

join phase by C(JRs) ,  we have 

The total cost of JR, C(JR) ,  is the sum of 
C(JRR)  and C(JRs) .  Within C(JRR),  the compo- 
nent IRIA,,, corresponds to the time to actually trans- 
fer the buckets, while the component H,n,(R)(p - 
l)Aseq corresponds to the cost of disk head seeks to 
the starting positions. C( JRs)  can be analyzed simi- 
larly. Depending on H s  and p ,  the cost of disk head 
seeks can dominate the join time read cost if not care- 
fully controlled. 
3.3 Write Groups 

Write groups reduce the JR seek cost without limit- 
ing the choices-for the number of buckets. The buckets 
are divided across a number of write groups, each with 
an approximately equal number of buckets. A bucket 
segment belongs to a write group if its bucket belongs 
to the group. During each batch write, the bucket seg- 
ments belonging to the same write group are placed in 
a contiguous area on disk. The batch write algorithm 
now proceeds as follows: (1)Allocate a contiguous area 

Figure 2: A set of write groups. W1, W2, etc. denote 
successive batch writes. 

on disk for each write group. (2) When SB becomes 
full, choose some number of write groups to write to 
disk so that at  least M w b  pages are reclaimed. Seek to 
the next empty disk block in the area designated for 
the write group. Choose some number of buckets in 
this group, and write all chosen buckets to the desig- 
nated area in one sequential write. Since the number 
of disk seeks is the number of write groups written 
to disk in a batch write, we choose the largest write 
groups so that few groups need be written. Figure 2 
show an example of write groups in a hash join. 

Denote the number of write group as nWg.  Assum- 
ing the write group are approximately of equal sizes, 
the cost to read a write group is A,,, + (p - l )Aseq .  

The cost to read a bucket is bounded by the cost 
to read its write group. C(JRR) is thus bounded by: 

H .  
C(JRR)  5 C(read write group o f t )  

t = l  

3.4 Read Groups 
We can reduce read costs further with read groups. 

As in [5], we combine multiple buckets into one hash 
table during join phase. A set of buckets combined 
into one hash table is called a read group. Each read 
group is made as large as possible, but under two con- 
straints. First, the size of a read group must be smaller 
than M S B ,  so that the corresponding hash table can 
fit in SB. Second, the buckets in a read group must 
belong to the same write group. In other words, every 
read group is a subset of some write group. Bucket 
segment belongs to a read group if its bucket belongs 
to the read group. 

The segments of a read group are read in the order 
they are written on disk, regardless of which buckets 
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1. Read roup A1 
=(&et l1  31, 

Read roupA2 
+ucBet 2,4}. 

2. Read roup A1 
={Buciet I, 2,3), 

Read group A2 
={Bucket 4). 

Write group A 
(Buckets 1,2,3,4) 

sequential 
read 

k- 
... _. 

4 

Figure 3: Two ways of assembling read groups from 
write group A and the operations to read the read group 
Al .  

they belong to. This way, the cost of reading all buck- 
ets of one read group is still bounded by the cost of 
sequentially reading its containing write group. Since 
many buckets can be assembled into one read group, 
the number of read groups is much smaller than the 
number of buckets, and the new reading cost much 
smaller. 

Figure 3 shows the read groups that can be created 
for the write group A of Figure 2 .  

With nrg read groups, C( JRR) becomes: 

(3) 

The cost for reading outer relation S is again com- 
plicated by the smaller size of the input buffer. The 
number of additional disk seeks introduced because 
of the limited size of M I B  is bounded by' &. The 
upper bound for the cost of reading relation S is thus: 

If the S buckets were stored in a separate, dedicated 
disk, the disk head would remain at  the location of its 
last read, and reading S buckets in chunks of MIB 
would introduce no additional costs. 

The cost of PW rises slightly when using write 
groups, because each write group participating in a 
batch write will introduce a disk seek. The aver- 
age number of write groups participating in a batch 
write is bounded by max(l,nWg&). Let H = 

(5) 

'We use a looser upper bound than derived in Section 3.2.2 
to simply ensuing derivations. 

3.5 Number Read and Write Groups 
The number of read groups nrg is known only dy- 

namically during the join phase, and is determined by 
the source relations, the partition function and mem- 

. However, an upper bound for nwg can be xy rived size by classifying read groups into those smaller 
than 9, and those larger than or equal to *. 
There is at most one read group smaller than 9 
within each write group. If there are multiple such 

Jad groups in a write group, we can continue com- 
bining them into larger read groups, till either all or 
all but one read group are larger than 9. The num- 
ber of read of groups larger than 9 is apparently 
smaller than &. Therefore, the number of read 

groups is bounded by nrg 5 E + nwg. 
Using this upper bound, and formulas 3, 4 and 5, 

we have a upper bound for the bucket 110 cost. The 
exact bucket 1/0 cost depends on the input data and 
is thus hard to minimize. However, we can minimize 
this upper bound to obtain a good performance. It can 

upper bound for the bucket 1/0 cost is the minimum: 

be shown that when nWg = ,/m + +2Mss p - - l ,  this 

C(PW + JR) 5 

4 Performance Analysis 
In this section, we study the performance of Seq+, 

and compare it with current hash join methods. Both 
IB and OB are set to the smaller of ( p  - 1 )  pages and 
10% of the memory size. 

Since HH and DHGH have the best performance 
among current methods, and have similar cost func- 
tions, we assume a hypothetical hash join whose cost 
function is the lower bound of these two methods. We 
denote this algorithm by G-HH. In particular, we as- 
sume the size of the anchor buckets for G-HH to be 
always M - ( IRI/M) + 1 regardless of the number of 
buckets. This size is the upper bound of the actual 
anchor bucket size for both HH join and DHGH join. 
Thus our cost model is biased in favor of these meth- 
ods. We also assume the same fraction of the outer 
relation is hashed into the anchor bucket(s) as the in- 
ner relation. 

Based on our analysis (see Section 2), the cost func- 
tion for G-HH is: 
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For simplicity, we assume the input and result rela- 
tions are all of the same size, i.e., /RI = IS[ = IRES\, 
and reckon relation and buffer sizes in numbers of 
memory pages. Figure 4 shows the cost of the join 
methods under different IRI/M ratios, with p = 10, 
and M = 500. Seq+ runs approximately 3 times faster 
than G-HH. Figure 5 shows the performance gain of 
Seq+ over G-HH with M = 500 and p = 5, 10 and 30, 
respectively. As expected, the improvements of Seq+ 
over G-HHincrease with p, since Seq+ incurs much less 
random 1/0 than G-HH. Even when p is as low as 5, 
Seq+ still runs more than twice faster than G-HH. 

9 3000 

2500 

2000 

1500 

lo00 

500 

n 
20 40 60 80 100 

ratio of relation size to memory size 

Figure 4: Total cost of hash join methods. 

12, 1 

m o= 10 

3 h 0 = 5  !izEl 2 1 I? 20 

ratio of relation size to memory size 

Figure 5: Ratio of total costs of G-HH and Seq+. 

Seq+ allocates more space for IB and OB than does 
G-HH, thus leaving less memory for the staging buffer. 
To test the effects of memory consumption by IB and 
OB, we compare the algorithms under smaller memory 
( M  = 100 and p = lo). As Figure 6 shows, in this case 

Seq+ uses only 80% of memory as its staging buffer, 
while G-HH uses 98%. Seq+ does not outperform G- 
HH by as much as in earlier cases since it uses a smaller 
SB. However, it still runs more than twice as fast as 
G-HH overall. 

'O0 7 
600- 

500- 

400 . G-HH / 
600- 

500- 

400 . 

" 
20 40 60 80 100 

ratio of relation size to memory size 

Figure 6: Total cost of hash join methods, 1111 = 100. 

The cost ratio of G-HH to Seq+ drops as the rela- 
tion size grows larger relative to the memory size. This 
is as expected. As the relations grows larger, bucket 
sizes increase and opportunities for combining buckets 
into read groups diminish. Figure 7 shows the cross- 
over points for the costs of G-HH and Seq+. Even 
for p = 5 ,  Seq+ outperforms G-HH cost for relations 
as large as 1500 times memory size. These relation 
sizes are well beyond the relation size expected to be 
run on any reasonable system. For p = 30, Seq+ runs 
50% faster than G-HH even when the relation size is 
as large as 5000 time the memory size. 

0 '  I 
0 lo00 3OOo 4000. 5Ooo 

ratio of relation size to memory size 

Figure 7: Total costs of G-HH and Seq+. 

We had assumed, based on the analysis in Section 2, 
that G-HH uses random 1/0 for PR, JW and reading 
relation R in the join phase. But what if we assume 
that a piece of data can somehow be read sequentially 
with a one-page input buffer as long as it is stored 
contiguously on disk, and that the result relation can 

428 



somehow be written to disk with sequential block ac- 
cess with a one-page output buffer. This assumption 
further favors G-HH, but even under this assumption, 
Seqt still performs significantly better than G-HH. 
Figures 8 shows the ratio of G-HH and Seqt under 
the new assumption. 

5.5 I I 

0 ’  I 
’0 20 

ratio of relation size to memory size 

Figure 8: Total cost ratios of G-HH and Seq”, assuming 
sequential U 0  in PR, JR and join-phase read of S. 

5 Conclusions 
This paper proposes a new hash join method, Seq+, 

that converts much of the random 1/0 to sequential 
I/O. This method increases input and output buffer 
sizes, and stores hash buckets on disk as segments, 
enabling the use of batch writes to reduce the write 
cost for buckets. It also introduces the idea of orga- 
nizing buckets into read and write groups to reduce 
bucket read costs. In addition, it presents guidelines 
for choosing various algorithm parameters, and de- 
scribes a cost model. Our method performs many 
times better than current hash join algorithms. 

Since we have been interested in demonstrating 
the principles underlying our method, we have not 
explored various inherent optimization opportunities. 
For example, during the partition phase, we need no 
space for OB, and space can be shared between IB and 
SB. If we reserve H ,  pages as bucket buffers, other 
SB pages can be used for IB. As tuples are consumed 
from IB, IB pages can switched to SB. Because of page 
sharing, the effective sizes of both IB and SB in the 
partition phase are larger than modeled by our cost 
function. 

We have also used simple heuristics to determine 
the IB, OB and SB sizes. It is possible determine 
M I B ,  MOB, and nWg simultaneously by minimizing 
the total cost function. Also, our method requires no 
specific choice of H ,  for its performance, as long as 
H s  5 M S B .  Since our method reserves 80% or more 
of memory for SB, the range of choice for Hb is large 

and the stability against bucket overflow is very close 
to that of DHGH join. 

We emphasize that we have used an upper bound as 
the cost function for Seqt in our performance study. 
The actual performance gains of our method should 
be thus be even higher than claimed in this paper. 
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