
* Towards Eliminating Random 1 / 0 in Hash Joins

Ming-Ling Lo and Chinya V. Ravishankar
Electrical Engineering and Computer Science Department

University of Michigan-Ann Arbor
1301 Beal Avenue, Ann Arbor, MI 48109
mingling, ravi@eecs.umich.edu

Abstract
The widening performance gap between CPU and

disk is significant for hash join performance. Most
current hash join methods try t o reduce the volume of
data transferred between memory and disk. In this pa-
per, we try to reduce hash-join times b y reducing ran-
dom I/O. We study how current algorithms incur ran-
dom I/O, and propose a new hash join method, Seq+,
that converts much of the random 1/0 t o sequential
I/O. Seq+ uses a new organization for hash buckets
on disk, and larger input and output buffer sizes. We
introduce the technique of batch writes t o reduce the
bucket-write cost, and the concepts of write- and read-
groups of hash buckets to reduce the bucket-read cost.
We derive a cost model for our method, and present
formulas for choosing various algorithm parameters,
including input and output buffer sizes. Our perfor-
mance study shows that the new hash join method
performs many times better than current algorithms
under various environments. Since our cost func-
tions under-estimate the cost of current algorithms
and over-estimate the cost of Seq+, the actual per-
formance gain of Seq+ is likely t o be even greater.

1 Introduction
Since the introduction of the GRACE hash join

method [l], many other hash join algorithms have
been proposed [2, 3, 4, 5, 6 , 71. Such work has fo-
cussed mainly on three goals: (1) reducing CPU costs,
(2) reducing the amount of data transferred between
memory and disk, and (3) improving the stability of
hash joins in the presence of data skew.

However, machine capabilities have changed dra-
matically since the introduction of hash joins. CPU
speeds and the sizes of memory and disk have all in-
creased greatly, but increase in disk speeds has not
matched. Another important factor is the significant

*This work was supported in part by the Consortium for
International Earth Science Information Networking.

disparity between the efficiency of random and sequen-
tial disk accesses [8]. As these trends continue, it is
likely that 1/0 costs will dominate hash join costs even
more. Minimizing 1/0 costs thus becomes crucial to
join performance.
1.1 Sequential versus Random 1 / 0

Hash-join methods have tried to improve perfor-
mance by reducing the data transfer volumes between
memory and disk. However, reducing data transfer
volume is not the same as reducing 1/0 costs, since the
costs of random and sequential 1/0 are very different.
Reading ten disk blocks from disk in one sequential ac-
cess generally costs much less than reading five blocks
from disk in five random accesses. We argue that a
good hash-join algorithm must transfer data between
memory and disk in sequential 1/0 as far as possi-
ble. [9] explored using sequential 1/0 in the context
of hybrid join.

In this paper, we propose a new hash join method
that reads/writes its source, intermediate, and result
data mostly using sequential disk accesses. To transfer
intermediate data using sequential 1/0 operations, we
introduce a new organization of intermediate data on
disk, storing each bucket as a small number of bucket
segments instead of one contiguous file. To support
this disk layout, we use a technique called batch writes,
which writes pages from multiple buckets to disk when
the buffer becomes full, and enables buckets output
mostly in sequential writes. We have used a similar
technique to build seeded trees for spatial databases
[lo]. The new bucket organization on disk leads to
the concepts of write groups and read groups for hash
buckets, which significantly reduce bucket read costs
with slightly increased bucket write cost. Transfer-
ring source and result relations with sequential 1/0 is
conceptually straightforward, and is achieved by in-
creasing the input and output buffer sizes.

Our method has the followingfeatures. First, using
fixed or target 1/0 clusters either increases minimum
memory requirement and/or limit the size a (spilled)

422
1063-6382196 $5.00 0 1996 IEEE

mailto:ravi@eecs.umich.edu

a bucket can grown before written to disk [ll]. The
concept of 1/0 cluster is immaterial to our method.
Second, when writing bucket contents to disk dur-
ing the partition phase, our method writes more than
one bucket in one sequential write, while most ear-
lier methods restrict their write sizes to less than one
bucket. Like the dynamic hash GRACE join [5], our
method allows a large number of hash buckets, and
dynamically combines multiple buckets to form a hash
table. Thus, it retains stability against bucket over-
flow similar to that of the dynamic hash GRACE join.
Also, our work also discusses the 1/0 of source/result
relations, which most current work ignores. We sug-
gest a minimum amount for buffers for I/O.

This paper is organized as follows. Section 2 dis-
cuss the design of current hash joins and analyzes
their costs. Section 3 describes our new method for
hash join. Section 4 compares of the 1/0 costs for
our method and other current methods, and Section 5
concludes this paper.

2 Previous Work
Traditional hash join algorithms have been dis-

cussed extensively in literature [2, 3, 4, 5, 6, 71. Here
we summarize only their relevant aspects. Given two
relations to be joined, we assume without loss of gen-
erality that the smaller relation is the i n n e r relation,
denoted R, andl the other relation is outer relation,
denoted S. The result relation of the join is RES.
The size of a relation U is denoted by 1171, the size of
memory by M , and the size of a buffer B by MB.

Hash join algorithms are generally divided into a
par t i t ion phase and a j o i n phase. In the partition
phase, the source relations R and S are each parti-
tioned into H , disjoint buckets using the same hash
function $1, called the par t i t ion f u n c t i o n . Since source
relations are generally larger than the buffer size, the
total bucket size may become larger than the buffer
size during partition, and bucket contents must be
written to disk. In the join phase, each pair of inner
relation/outer relation buckets is processed in turn.
The inner relation bucket is read back into memory
and built into a hash table using another hash function
4 2 . The corresponding outer relation bucket is read
into memory, its tuples hashed with 4 2 , and probed
against the hash table for R tuples with the same join
attribute values.

Typically, the memory buffer is divided into the in-
put buffer IB, the output buffer OB, each with one
page, and the staging buffer SB, with the rest of the
memory space. The input buffer is used to read both
source relations during the partition phase, and to
read the outer relation during the join phase. The out-

put buffer is used to hold the result tuples before they
are written to disk. The staging buffer holds bucket
contents in the partition phase, and hash tables in the
join phase.

The pages of the staging buffer are assigned to var-
ious buckets as necessary during the partition phase.
We call the staging buffer space assigned to one bucket
a bucket buger. Each bucket buffer is a t least one
page in size. Since the number of SB pages is gen-
erally greater than the number of buckets, there are
usually several pages per bucket buffer. Researchers
have investigated various way for using the additional
SB space.

The Hybrid Hash-join (HH join for short) method
[2, 31 is reduces 1 /0 costs by saving part of the inner
relation in this additional space and never writing it to
disk. The size of one of the buckets is taken to equal
to the space not used for bucket buffers, and all its
tuples are stored in this space through the partition
phase. We call this bucket the a n c h o r bucket. Af-
ter the inner relation is partitioned, the anchor bucket
is built into a hash table. As the outer relation is
partitioned, tuples hashing into the anchor bucket are
matched against the hash table immediately, produc-
ing some result tuples. Other tuples are inserted into
their respective bucket buffers in SB. In the join phase,
non-anchor buckets are processed as usual. HH max-
imizes bucket sizes to minimize their number and to
save space for the anchor bucket. The anchor bucket
is of size MSB - H , + 1, and all other buckets are of
size M S B . HH has the drawback that it adjusts the
number of buckets so that the projected bucket sizes
are approximately the size of available memory, and
is thus most likely to have overflow buckets.

The Dynamic-Hashing GRACE Hash-join (DHGH
join for short) [4, 51 tries to avoid overflow buck-
ets, while retaining many of the benefits of the an-
chor bucket. During the partition phase, the DHGH
method dynamically selects buckets for paging out to
disk. It favors paging out buckets that have been writ-
ten to disk before. After the inner relation is fully par-
titioned, the R buckets that have never been output
to disk are built into one hash table. By analogy with
HH join, we call such buckets anchor buckets. During
the join phase, multiple R buckets can be combined to
into one hash table, so that there are fewer hash tables
and lower hash table initialization overhead. Since the
hash table are assembled from multiple buckets, and
the average buffer size is smaller, buckets overflow is
much less likely.

423

2.1 Cost Analysis of Current Methods
Most current methods attempt to reduce the vol-

ume of data transferred between memory and disk,
but not the number of random 1 / 0 operations. The
cost analyses presented for these methods do not dis-
tinguish between random and sequential disk I/O, for
the most part. Moreover, their design makes sequen-
tial 1/0 difficult.

We define the cost of a random block access to be
the average cost of accessing a disk block when the
disk head is at a random position on the disk. The
cost of a random block access is thus the sum of av-
erage disk seek time, average rotation time, and the
transmission time for one disk block. The cost of a
sequential block access is defined to be that of access-
ing a disk block when the disk head is positioned at
the beginning of that disk block. The term sequential
access is used to suggest access to a series of adjacent
disk blocks in a single disk 1/0 operation. Therefore,
the cost a sequential read of ten contiguous disk blocks
equals the cost of one random block access and nine
sequential block accesses.

The 1/0 tasks of a hash join can be divided into four
logical components: (1) Partition-phase reads (PR),
(2) Partition-phase writes (PW), (3) Join-phase reads
(JR), and (4) Join-phase writes (JW). We refer to
tasks PR and J W collectively as source/result I /O ,
and to tasks of PW and J R as bucket I /O.

To the best of our knowledge, cost analyses for ear-
lier methods did not discuss the cost of source/result
I/O, since they are the same for all methods in terms
of data transfer volume. The cost analysis in [2] is the
only one to distinguish between random and sequen-
tial I/O, and treats PW as involving random writes
and J R as involving sequential reads.
2.1.1 Part it ion-P hase Writes

Partition phase writes were listed in [2] as random
writes. We attribute this to two reasons. First, since
each bucket must be stored as a contiguous file on disk,
it is necessary to seek to the end of the corresponding
file whenever a bucket buffer is paged out. Second,
only one output buffer page was used for each bucket,
which must be written to disk when full. The order
in which the bucket output buffers become full is ran-
dom. Therefore, partition phase writes incur a series
of random block writes.
2.1.2 Join-Phase Reads

Join phase reads were listed in [2] as sequential
reads. Since a bucket is stored as a contiguous file in
disk, it can be read back into memory with one large
sequential read provided there is enough buffer space.
This is true for the inner relation buckets, which are

loaded into SB. However, it is unrealistic to treat the
reads of outer relation buckets as sequential, for the
following reasons:

[A:] There is only one IB page, which means the
disk controller must load all blocks in a sequential read
into the same buffer page.

[B:] Result tuples are produced as the S tuples are
read. Since there is only one OB page, writes of result
tuples occur frequently. The system must perform se-
quential reads of the S tuples and the frequent writes
of result tuples currently, without interference between
them.

[C:] Input S tuples are consumed as they are
hashed and matched against the hash table. S tuples
must be consumed before newly read blocks of S tu-
ples overwrite old ones. However, the processing time
for each S tuple depends on the number of R tuples it
matches. If many S tuples with high match ratios are
processed back to back, it is possible for the CPU to
become a temporary bottleneck. More seriously, if the
single output buffer page is full, input tuples will not
be consumed till the output buffer is written to disk.

Overcoming difficulties A and B requires special
hardware and operating system support. C is work-
load dependent and cannot be overcome with ad-
vanced system’s support. We believe it is hard to avoid
such difficulties, and earlier work has never actually
indicated how to overcome them.
2.1.3 Partition-Phase Reads and Join-

Phase Writes
The PR and J W tasks were not discussed in any

earlier work we surveyed. PR reads the source re-
lations and raises difficulties similar to A and B of
join-phase reads: there is only one input buffer page
for the source relations, and reading the source rela-
tions must proceed in parallel with the output of filled
bucket pages.

J W outputs result tuples to disk. It is even more
difficult to perform these writes as sequential 1/0 op-
erations because all three difficulties of J R arise here.
There is only one page output buffer for the result re-
lation, the output proceeds in parallel with the input
of outer relation tuples, and the rate at which result
tuples are generated varies with the match ratio of
incoming S tuples.

Our analysis suggests that for these hash join al-
gorithms, PR must be performed as random accesses
unless special hardware/OS support is available, while
J W must be performed as random accesses in all cases.

3 Eliminating Random 1/0

and that of bucket 1/0 separately.
We consider random accesses in source/result 1/0

Current meth-

424

ods incur many random seeks during source/result
1/0 mainly because their input and output buffers
are small, so one can reduce random 1/0 by simply
increasing the sizes of IB and OB. The key issue we
focus on is determining how large they can be made.

To reduce bucket I/O, our method stores each
bucket on disk as a small number of bucket segments
instead of as one contiguous file. Each bucket seg-
ment consists of a number of contiguous disk blocks,
but different segments of the same bucket need not be
adjacent. With this new organization, both partition
phase writes and join phase reads are performed with
sequential disk accesses of medium data size. We in-
troduce the technique of batch writes to realize this
disk layout for buckets. The idea of bucket segments
also leads to the concepts of write groups and read
groups of buckets, which significantly reduce the cost
of reading in buckets with a slight increase in bucket
write cost.

To simplify our discussions, we assume no overflow
buckets. When bucket overflow occurs, our method
recursively partitions the buckets into smaller sub-
buckets till no sub-bucket overflows SB, as do tradi-
tional methods. We also assume there are H, buckets,
and H , 5 MSB. The cost of one random block access
is denoted as A,,, , that of one sequential block access,
Aseq. The ratio Aran/A,eq is denoted as p. Other no-
tations are the same as in Section 2.
3.1 Behavior of Input and Output Buffers

We read the source relations in chunks of MIS
pages, and write the result relations in chunks of MOB
pages. The cost of PR and JW can be shown to be:

The formulae show that as MJB and MOB increase,
C(PR) and C(JW) decrease. However, as the input
and output buffers grow beyond a certain point, these
decreases become marginal. As a rule of thumb, we
suggest allocating approximately p - 1 to both the in-
put and output buffers, and allocating more pages to
them when memory is abundant. For modern comput-
ers, memory sizes are orders of magnitude larger than
p, so this increaffie in input and output buffer sizes is
unlikely to represent a serious demand on memory.
3.2 Batch Writes

To reduce raindom desk accesses in bucket I/O, we
introduce the concept of batch writes. Under this
scheme, the SB pages are initially put in a free page

Tuple
I

‘dl I !
L - 1

Figure 1: A tuple awaits insertion, and the free page
pool is empty. A batch write is executed using buckets
1 and 7.

pool. When a tuple is hashed into a bucket with in-
sufficient space, a new page is allocated from the pool
and linked to the bucket.

When a free page is requested and the free page
pool is empty, we perform a batch write to reclaim part
of the SB space. This is done by choosing a number
of buckets and writing their pages to disk in one large
sequential write (see figure 1).

We call the part of a bucket written to disk by a
batch write a bucket segment. A batch write places
the pages of a bucket segment in contiguous blocks on
disk. However, different segments of the same bucket
may reside in different locations on disk. During the
join phase, we read a bucket into memory with one
sequential read per segment. In general, the number
of segments in a bucket is less than the number of
batch writes, since a bucket need not participate in
every batch write.

Two issues are important to the implementation of
batch writes: (1) How much space should we reclaim in
each batch write? (2) How should we select buckets to
participate in batch writes? The next two subsections
address these issues and derive the cost functions for
PW and JR.

3.2.1 Partition-Phase Write Cost
Let us consider the first issue. Suppose we reclaim

at least M a w pages of memory with each batch write.
The cost of PW is bounded from above by:

This formula is the same as Equation 1 for C(PR) if
M I B is substituted for M a w . By similar arguments,
we should reclaim at least p - 1 pages in each batch
write for PW to be efficient. Reclaiming more than
this amount provides additional but diminishing re-
ductions in PW cost.

425

(Buckets1,2,3,4) 1 3 2 3 4 1 4

(Buckets9,10,11,12)

There is no guarantee that all outer relation seg-
ments will be smaller than the input buffer. A segment
is larger than IB must be read in chunks of size M I B .
Each segment thus yields some number of fixed-size
chunks of size M I B , and one residual chunk of size
between 1 and M I B . Given the total segment size
and the number of segments, the number of fixed-size
chunks is maximal when the residual chunks occupy
the least space, which happens when all except one
residual chunk is 1 block in size. The number of fixed-
size chunks is thus bounded by ~ s ' - ~ ~ ~ s (s ~ . Recall
each segment also contributes an additional residual
chunk. Thus nc(S) , the number of chunks in which the
S segments are read, has the following upper bound:

11 112 1 9 Ill 112 I 1 0 I 1 2

- .. v

SI -H ,n , (S) %(S> 6 H s n , (S) + ' MIB .
Denoting the cost of reading relation S during the

join phase by C(JRs) , we have

The total cost of JR, C(JR) , is the sum of
C(JRR) and C(JRs) . Within C(JRR), the compo-
nent IRIA,,, corresponds to the time to actually trans-
fer the buckets, while the component H,n,(R)(p -
l)Aseq corresponds to the cost of disk head seeks to
the starting positions. C(JRs) can be analyzed simi-
larly. Depending on H s and p , the cost of disk head
seeks can dominate the join time read cost if not care-
fully controlled.
3.3 Write Groups

Write groups reduce the JR seek cost without limit-
ing the choices-for the number of buckets. The buckets
are divided across a number of write groups, each with
an approximately equal number of buckets. A bucket
segment belongs to a write group if its bucket belongs
to the group. During each batch write, the bucket seg-
ments belonging to the same write group are placed in
a contiguous area on disk. The batch write algorithm
now proceeds as follows: (1)Allocate a contiguous area

Figure 2: A set of write groups. W1, W2, etc. denote
successive batch writes.

on disk for each write group. (2) When SB becomes
full, choose some number of write groups to write to
disk so that at least M w b pages are reclaimed. Seek to
the next empty disk block in the area designated for
the write group. Choose some number of buckets in
this group, and write all chosen buckets to the desig-
nated area in one sequential write. Since the number
of disk seeks is the number of write groups written
to disk in a batch write, we choose the largest write
groups so that few groups need be written. Figure 2
show an example of write groups in a hash join.

Denote the number of write group as nWg. Assum-
ing the write group are approximately of equal sizes,
the cost to read a write group is A,,, + (p - l)Aseq .

The cost to read a bucket is bounded by the cost
to read its write group. C(JRR) is thus bounded by:

H .
C(JRR) 5 C(read write group o f t)

t = l

3.4 Read Groups
We can reduce read costs further with read groups.

As in [5], we combine multiple buckets into one hash
table during join phase. A set of buckets combined
into one hash table is called a read group. Each read
group is made as large as possible, but under two con-
straints. First, the size of a read group must be smaller
than M S B , so that the corresponding hash table can
fit in SB. Second, the buckets in a read group must
belong to the same write group. In other words, every
read group is a subset of some write group. Bucket
segment belongs to a read group if its bucket belongs
to the read group.

The segments of a read group are read in the order
they are written on disk, regardless of which buckets

426

1. Read roup A1
=(&et l1 31,

Read roupA2
+ucBet 2,4}.

2. Read roup A1
={Buciet I, 2,3),

Read group A2
={Bucket 4).

Write group A
(Buckets 1,2,3,4)

sequential
read

k-
... _.

4

Figure 3: Two ways of assembling read groups from
write group A and the operations to read the read group
Al .

they belong to. This way, the cost of reading all buck-
ets of one read group is still bounded by the cost of
sequentially reading its containing write group. Since
many buckets can be assembled into one read group,
the number of read groups is much smaller than the
number of buckets, and the new reading cost much
smaller.

Figure 3 shows the read groups that can be created
for the write group A of Figure 2 .

With nrg read groups, C(JRR) becomes:

(3)

The cost for reading outer relation S is again com-
plicated by the smaller size of the input buffer. The
number of additional disk seeks introduced because
of the limited size of M I B is bounded by' &. The
upper bound for the cost of reading relation S is thus:

If the S buckets were stored in a separate, dedicated
disk, the disk head would remain at the location of its
last read, and reading S buckets in chunks of MIB
would introduce no additional costs.

The cost of PW rises slightly when using write
groups, because each write group participating in a
batch write will introduce a disk seek. The aver-
age number of write groups participating in a batch
write is bounded by max(l,nWg&). Let H =

(5)

'We use a looser upper bound than derived in Section 3.2.2
to simply ensuing derivations.

3.5 Number Read and Write Groups
The number of read groups nrg is known only dy-

namically during the join phase, and is determined by
the source relations, the partition function and mem-

. However, an upper bound for nwg can be xy rived size by classifying read groups into those smaller
than 9, and those larger than or equal to *.
There is at most one read group smaller than 9
within each write group. If there are multiple such

Jad groups in a write group, we can continue com-
bining them into larger read groups, till either all or
all but one read group are larger than 9. The num-
ber of read of groups larger than 9 is apparently
smaller than &. Therefore, the number of read

groups is bounded by nrg 5 E + nwg.
Using this upper bound, and formulas 3, 4 and 5,

we have a upper bound for the bucket 110 cost. The
exact bucket 1/0 cost depends on the input data and
is thus hard to minimize. However, we can minimize
this upper bound to obtain a good performance. It can

upper bound for the bucket 1/0 cost is the minimum:

be shown that when nWg = ,/m + +2Mss p - - l , this

C(PW + JR) 5

4 Performance Analysis
In this section, we study the performance of Seq+,

and compare it with current hash join methods. Both
IB and OB are set to the smaller of (p - 1) pages and
10% of the memory size.

Since HH and DHGH have the best performance
among current methods, and have similar cost func-
tions, we assume a hypothetical hash join whose cost
function is the lower bound of these two methods. We
denote this algorithm by G-HH. In particular, we as-
sume the size of the anchor buckets for G-HH to be
always M - (IRI/M) + 1 regardless of the number of
buckets. This size is the upper bound of the actual
anchor bucket size for both HH join and DHGH join.
Thus our cost model is biased in favor of these meth-
ods. We also assume the same fraction of the outer
relation is hashed into the anchor bucket(s) as the in-
ner relation.

Based on our analysis (see Section 2), the cost func-
tion for G-HH is:

427

For simplicity, we assume the input and result rela-
tions are all of the same size, i.e., /RI = IS[= IRES\,
and reckon relation and buffer sizes in numbers of
memory pages. Figure 4 shows the cost of the join
methods under different IRI/M ratios, with p = 10,
and M = 500. Seq+ runs approximately 3 times faster
than G-HH. Figure 5 shows the performance gain of
Seq+ over G-HH with M = 500 and p = 5, 10 and 30,
respectively. As expected, the improvements of Seq+
over G-HHincrease with p, since Seq+ incurs much less
random 1/0 than G-HH. Even when p is as low as 5,
Seq+ still runs more than twice faster than G-HH.

9 3000

2500

2000

1500

lo00

500

n
20 40 60 80 100

ratio of relation size to memory size

Figure 4: Total cost of hash join methods.

12, 1

m o= 10

3 h 0 = 5 !izEl 2 1 I? 20

ratio of relation size to memory size

Figure 5: Ratio of total costs of G-HH and Seq+.

Seq+ allocates more space for IB and OB than does
G-HH, thus leaving less memory for the staging buffer.
To test the effects of memory consumption by IB and
OB, we compare the algorithms under smaller memory
(M = 100 and p = lo). As Figure 6 shows, in this case

Seq+ uses only 80% of memory as its staging buffer,
while G-HH uses 98%. Seq+ does not outperform G-
HH by as much as in earlier cases since it uses a smaller
SB. However, it still runs more than twice as fast as
G-HH overall.

'O0 7
600-

500-

400 . G-HH /
600-

500-

400 .

"
20 40 60 80 100

ratio of relation size to memory size

Figure 6: Total cost of hash join methods, 1111 = 100.

The cost ratio of G-HH to Seq+ drops as the rela-
tion size grows larger relative to the memory size. This
is as expected. As the relations grows larger, bucket
sizes increase and opportunities for combining buckets
into read groups diminish. Figure 7 shows the cross-
over points for the costs of G-HH and Seq+. Even
for p = 5 , Seq+ outperforms G-HH cost for relations
as large as 1500 times memory size. These relation
sizes are well beyond the relation size expected to be
run on any reasonable system. For p = 30, Seq+ runs
50% faster than G-HH even when the relation size is
as large as 5000 time the memory size.

0 ' I
0 lo00 3OOo 4000. 5Ooo

ratio of relation size to memory size

Figure 7: Total costs of G-HH and Seq+.

We had assumed, based on the analysis in Section 2,
that G-HH uses random 1/0 for PR, JW and reading
relation R in the join phase. But what if we assume
that a piece of data can somehow be read sequentially
with a one-page input buffer as long as it is stored
contiguously on disk, and that the result relation can

428

somehow be written to disk with sequential block ac-
cess with a one-page output buffer. This assumption
further favors G-HH, but even under this assumption,
Seqt still performs significantly better than G-HH.
Figures 8 shows the ratio of G-HH and Seqt under
the new assumption.

5.5 I I

0 ’ I
’0 20

ratio of relation size to memory size

Figure 8: Total cost ratios of G-HH and Seq”, assuming
sequential U 0 in PR, JR and join-phase read of S.

5 Conclusions
This paper proposes a new hash join method, Seq+,

that converts much of the random 1/0 to sequential
I/O. This method increases input and output buffer
sizes, and stores hash buckets on disk as segments,
enabling the use of batch writes to reduce the write
cost for buckets. It also introduces the idea of orga-
nizing buckets into read and write groups to reduce
bucket read costs. In addition, it presents guidelines
for choosing various algorithm parameters, and de-
scribes a cost model. Our method performs many
times better than current hash join algorithms.

Since we have been interested in demonstrating
the principles underlying our method, we have not
explored various inherent optimization opportunities.
For example, during the partition phase, we need no
space for OB, and space can be shared between IB and
SB. If we reserve H , pages as bucket buffers, other
SB pages can be used for IB. As tuples are consumed
from IB, IB pages can switched to SB. Because of page
sharing, the effective sizes of both IB and SB in the
partition phase are larger than modeled by our cost
function.

We have also used simple heuristics to determine
the IB, OB and SB sizes. It is possible determine
M I B , MOB, and nWg simultaneously by minimizing
the total cost function. Also, our method requires no
specific choice of H , for its performance, as long as
H s 5 M S B . Since our method reserves 80% or more
of memory for SB, the range of choice for Hb is large

and the stability against bucket overflow is very close
to that of DHGH join.

We emphasize that we have used an upper bound as
the cost function for Seqt in our performance study.
The actual performance gains of our method should
be thus be even higher than claimed in this paper.

References
[l] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “ A p

plication of hash to data base machine and its archi-
tecture,” New Generation Computing, vol. l, no. l,

[a] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. Wood, “Implementation
techniques for main memory database systems,” in
Proceedings of A CM SIGMOD International Confer-
ence on Management of Data, pp. 1-8, 1984.

[3] D. J. DeWitt and R. Gerber, “Multiprocessor hash-
based join algorithms,” in Proceedings of VLDB 85,
pp. 151-164, Stockholm, 1985.

[4] M. Nakayama, M. Kitusregawa, and M. Takagi,
“Hash-partitioned join method using dynamic destag-
ing strategy,” in Proceedings of the 14th VLDB Con-
ference, pp. 468-478, 1988.

[5] M. Kitsuregawa, M. Nakayama, and M. Takagi, “The
effect of bucket size tuning in the dynamic hybrid
grace hash join method,” in Proceedings of the Fif-
teenth International Conference on Very Large Data
Bases, pp, 257-266, Amsterdam, 1989.

[6] L. D. Shapiro, “Join processing in database sys-
tems with large main memories,” ACM Transactions
on Database Systems, vol. 11, no. 3, pp. 239-264,
September 1986.

[7] P. Mishra and M. H. Eich, “Join processing in rela-
tional databases,” ACM Computing Surveys, vol. 24,
no. 1, pp. 64-113, March 1992.

[8] P. M. Chen, E. K. Lee, C. A. Gibson, R. H. Katz,
and D. A. Patterson, “Raid: High-performance, re-
liable secondary storage,” A CM Computing Surveys,
vol. 26, no. 2, pp. 145-185, June 1994.

[9] J. Cheng, D. Haderle, R. Hedge, B. Iyer, T. Messinger,
C. Mohan, and Y. Wang, “An efficient hybrid join al-
gorithm: A DB2 prototype,” in Proceedings of Inter-
national Conference on Data Engineering, pp. 171-
180, 1991.

[lo] M.-L. Lo and C. V. Ravishankar, “Spatial joins using
seeded trees,” in Proceedings of ACM SIGMOD In-
ternational Conference on Management of Data, pp.
209-220, Minneapolis, MN, May 1994.

[ll] D. L. Davison and G. Graefe, “Memory-contention re-
sponsive hash joins,” in Proceedings of the 20th VLDB
Conference, pp. 379-390, Santiago, Chile, 1994.

pp. 66-74, 1983.

429

