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Abstract

In this paper, we develop algorithms to achieve optimal pro-

cessor allocation for pipelined hash joins in a multiprocessor-

based database system. A pipeline of hash joins is composed

of several stages, each of which is associated with one join op-

eration. The whole pipeline is executed in two phases: (1)

the table-building phase, and (2) the tuple-probing phase.

We focus on the problem of allocating processors to the

stages of a pipeline to minimize the query execution time.

We formulate the processor allocation problem as a two-

phase mini-max optimization problem, and develop three

optimal allocation schemes under three different constraints.

The effectiveness of our problem formulation and solution

is verified through a detailed tuple-by-tuple simulation of

pipelined hash joins. Our solution scheme is general and

applicable to any optimal resource allocation problem for-

mulated as a two-phase mini-max problem.

1 Introduction

In recent years, multiprocessor-based parallel database

machines have attracted considerable attention from

both the academic and industrial communities because

they can efficiently execute complex database opera-

tions [1] [5] [10] [17]. In relational database systems,

joins are the most expensive operations to execute, espe-

cially with the increases in database size and query com-

plexity [3] [14] [19]. Many applications usually need to

specify the desired results in terms of multi-join queries,

some of which may take hours or even days to complete.

As a result, parallelism has been recognized as the only

solution for the efficient execution of multi-join queries

for future database management [6] [7] [8] [12].
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Among various join methods, the hash join has been

the focus of much research effort and reported to have

performance superior to that of others, particularly

because it presents an opportunity for pipelining [4]

[13] [15] [18]. Using hash joins, multiple joins can

be pipelined so that the early resulting tuples from a

join, before the whole join is completed, can be sent

to the next join for processing. A pipeline of hash

joins is composed of several stages, each of which is

associated with one join operation that can be executed,

in parallel, by several processors. Though pipelining has

been shown to be very effective in reducing the query

execution time, prior studies on pipelined hash joins

have focused mainly on heuristic methods for query

plan generation. Most of the prior work on query

plan generation, such as static right-deep scheduling,

dynamic bottom-up scheduling [16], and segmented

right-deep trees [2] 1, resorted to simple heuristics to

allocate processors to pipeline stages. Also, these

methods dealt with only memory as a constraint for

the execution of pipelined hash joins. Little effort

waa made to take processing power into consideration

and optimize processor allocation. Notice that two

opportunities for parallelism exist for pipelined hash

joins: Not only can each hash join be implemented

by several processors, but also several joins can be

pipelined. As a result, processor allocation arises as

an important unexplored issue in the performance of

pipelined haah joins. In view of this fact and the

increasing demand for better performance of database

operations, the objective of this paper is to study and

improve processor allocation for pipelined hash joins.

In this paper we derive optimal processor allocation

algorithms that take both memory constraint and

processing power into account. We assume that a

pipeline of hash joins is given a priori, which can be

generated based on the approaches in [2] [16]. A pipeline

of hash joins is sequentially executed in two phases:

1SeWented right-deep trees are bushy trees with right-deep

subtrees [2].



(1) the table-building phase and (2) the tuple-probing

phase. In the table-building phase, hash tables are

constructed from inner relations using hash functions

on join attributes. In the tuple-probing phase, tuples of

the outer relation are used to probe the hash tables for

matches. Note that the processing time of each phase

is determined by the maximal execution time among all

stages, and that the same allocation of processors to

a stage is retained across the table-building and tuple-

probing phases. The execution time of a pipeline is thus

the sum of two correlated msxima. The characteristics

of pipelined hash joins allow the processor allocation

problem to be formulated as a two-phase mini-max

optimization problem. Specifically, for a pipeline with

k stages, the execution time of the pipeline, TS, can be

expressed as

where WBi and WP; are, respectively, the workloads

for the table-building and tuple-probing phases in stage

i. Consequently, the processor allocation problem for

pipelined hash joins can be stated as follows: “Given

WB~ and WP~, O < i < k – 1, determine the processor

)allocation (n~) = (no, nl, . . ., nk– 1 , so as to minimize

TS in Eq. ( 1), where ni is the number of processors

allocated to stage i.”

For example, consider the workloads shown in Table

1 for a pipeline of five stages. First, it is observed

that the workloads of stage 2 are less than those of

stage 3, suggesting that stage 3 should be assigned more

processors than stage 2. However, stage 3 has a heavier

load in the table-building phase than stage 4, while the

latter has a heavier load in the tuple-probing phase.

In such a configuration, there is no obvious way to

allocate processors to minimize the pipeline execution

time specified in Eq. (1). For an illustrative purpose,

suppose the total number of processors available to

execute the pipeline in Table 1 is 20. It can be

seen that the allocation (ni)= (4, 4, 4, 4, 4) leads

‘p = 1.2, and TS = 2.7,to max~~ *= 1.5, maxvi ~

whereas the one (ni)= (6, 3, 3, 6, 2), which is based

on the workloads of the table-building phase, leads

to maxvt *= 1.0, maxvi %= 2.5, and TS = 3.5.

Clearly, to develop an optimal processor allocation to

minimize TS in Eq. ( 1) is in general a very difficult

and important problem. Since the table-building and

tuple-probing phases are executed one after the other,

we minimize the sum of two correlated maxima in

Eq.(1). In view of this, the optimal processor allocation

problem in Eq. ( 1) is hence termed the two-phase mini-

max optimization problem. This feature distinguishes

our allocation problem from other conventional resource

allocation problems [9], which may be considered one-

Table 1: The workloads in two phases of each stage.

phase mini-max optimization problems.

To develop the optimal processor allocation scheme

for the two-phase mini-max optimization, we consider

the following three constraints: (1) the total number

of processors available for allocation is fixed, (2) a

lower bound is imposed on the number of processors

required for each stage to meet the corresponding

memory requirement, and (3) processors are available

only in discrete units. We develop solution schemes

by incrementally adding constraints to our optimization

problem. Specifically, three optimal processor allocation

schemes are devised, i.e., one under Constraint (l),

another under Constraints (1) and (2), and the third

under all the three constraints. The three allocation

schemes will be shown to be optimal under their

corresponding constraints. Also, it can be verified that,

for a system with N processors and k pipeline stages,

the time complexity of the first two allocation schemes is

O(k.log k), and that of the third one is O(Nk.log(Nk)).

Generally speaking, a complex real world problem

such as pipelining usually needs to be simplified and ab-

stracted before it can be mapped into a mathematical

model to further analyze and optimize. The contribu-

tions of this study are twofold. We not only formulate

the optimal processor allocation problem for pipelined

hash joins as a two-phase min-max problem, but also de-

rive solutions to this new class of optimizat ion problem.

We verify the effectiveness of our problem formulation

and solution procedure through a detailed simulation

of pipelined hash joins. Simulation results show that

the proposed allocation schemes lead to much shorter

query execution times than conventional approaches. It

is worth mentioning that our solution scheme is gen-

eral and applicable to any optimal resource allocation

problem formulated as a two-phase mini-max problem.

Although the one-phase mini-max optimization prob-

lem has been studied extensively in the literature, this

study, to the best of our knowledge, provides the first

solution to the two-phase mini-max optimization prob-

lem.

This paper is organized as follows. Section 2 provides

the background and the problem description. Section

3 develops three algorithms for deriving three optimal

processor allocations. Proofs of lemmas and theorems

can be found in [11]. In Section 41 we demonstrate

the performance improvement achieved by our proposed
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scheme via simulation. The paper concludes with

Section 5.

2 Preliminaries

2.1 Notation, Assumption and Definition

As in most prior work, we assume that execution time is

the primary cost measure for estimating the efficiency

of database operations. The architecture assumed is

a multiprocessor system with distributed memory and

shared disks. Each processing node (or processor) in

the system has its own memory and address space, and

communicates with others through message passing.

Each node is assumed to have the same amount of

memory, and the amount of memory available to execute

a join is in proportion to the number of processors

involved. The disks in the system are accessible by all

nodes through shared 1/0 buses.

A pipeline of hash joins is composed of several stages,

each of which is associated with one join operation. The

relation in a hash join that is loaded into memory to

build the hash table is called the inne~ relation, while

the other relation, whose tuples are used to probe the

hash table, is called the outer relation. The inner

relations of a pipeline are the inner relations of its

stages. The outer relation of a pipeline is defined to

be the outer relation of its first stage. In the table-

building phase, the hash tables of the inner relations

are built using hash functions on join attributes. In the

tuple-probing phase, tuples of the outer relation are first

probed, one by one, against the entries in the hash table

of the first stage using the corresponding hash function.

If there are matches, the resulting tuples are generated,

and then sent to the next stage for similar processing.

The table-building and tuple-probing times of a pipeline

are the time spans of the building and probing phases

respectively. The execution of one pipeline is given in

Figure 1 for illustration.

2.2 Problem Formulation

As pointed out earlier, the query processing time can

be approximated as Tin, + m-a ~ + maxvi ~,

where ni is the number of nodes allocated to stage

i and Tan8 is the sum of those costs independent of

processor allocation. It is also derived in [2] that Wl?a

is proportional to I&1, where [&[ is the size of the

inner relation & at stage z of the pipeline2. Since Tin8

is constant over all processor allocations, the objective

function that we shall minimize is TS = maxvl ~ +

n-lax., *, the sum of costs dependent on processor

allocation. In what follows, we shall concentrate

on deriving the optimal processor allocation, A =

ZTfi~ ~elationstip between WBi and lRi I is u.$ef~ in o~

derivation for optimal allocation in Section 3.2 later.
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Figure 1: Execution of one pipeline.

(no, nl, . . . . nk– 1), to minimize TS, where k is the

number of stages in the pipeline.

Note that the formula for TS does not depend on

the order of stages in the pipeline. The workloads

of the various stages in the pipeline determine the

allocation. As mentioned earlier, we approach this

problem by expressing it as an allocation problem

with three constraints. We start with assuming only

one constraint holds, and incrementally consider more

constraints.

Constraint I (no idling): The total number of proces-

sors assigned to all stages is equal to the total num-

ber of processors in the system, i.e., ~~~~ ni = N.

Constraint II (sufficient memory): The amount of

memory allocated to each stage must be large

enough to accommodate the haah table of that stage,

i.e., ni z ~, for all i, where M is the memory size

of each processor.

Constraint III (discrete allocation): Processors must

be allocated to stages in discrete units.

3 Optimal Processor Allocation

We shall develop three optimal processor allocation

schemes in this section. The scheme in Section 3.1

corresponds to Constraint I (denoted by AI), that in

Section 3.2 is subject to Constraints I and II (denoted

by Arr), and the one in Section 3.3 satisfies all the three

constraints (denoted by AIII ).

3.1 Allocation under Constraint I

Under Constraint I, ni, the number of processors

allocated to stage i, could be any positive real number.

We obtain the following necessary condition for Ax,

stating that each stage under JI must be a bottleneck
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in either the table-building or the tuple-probing phase.

This is referred to as the two phase allocation condition.

Lemma 1: Let TBi and TP~ be, respectively, the

table-building and tuple-probing times for a stage i

under AI. Therl, either TBi = TB, or TP~ = TP, where

TB and TP are the pipeline building and probing times,

respectively.

Since this lemma only defines the two phase allocation

condition as a necessary condition, there may be

some non-optimal allocations which also satisfy this

condition. For every allocation, we identify an ordered

pair of sets r = (A, B) such that,

WB~
A = {stage i I— = TB},

n~

‘p~ = TP},B = {stage j [—
nj

(2)

(3)

where TB = maxvi
~ WP

and TP = maxvi —.

Specifically, A (respecti~ely, B) is the set of st;~es

that are bottlenecks in the table-building (respectively,

tuple-probing) phase. Define

‘Pj – TP, j @ A}. (4)
B’=B–(A rlB)={stagejl––

TJj

It follows from Lemma 1 that AUB’ comprises all stages

in the pipeline. The problem of finding the optimal

allocation can now be reduced to that of finding all

(A, B), or (A, B’), satisfying the two phase allocation

requirement in Eqs. (2) - (4), and then determining the

one with the shortest processing time.

To avoid the exponential complexity of enumerating

all possible two phase allocations, we shall first intro-

duce the concept of workload ratios (B/P ratios) for the

pipeline stages, and then in light of this concept, prove

that the number of allocations needed to consider is no

more than the number of pipeline stages. The B/P ra-

tio for stage i is defined as ri = ~. We order the

stages in descending order of their B/P ratios, and de-

note the sequence as 6 = (so, al, ..., ah-l). For the

example profile in Table 1, we obtain Table 2 where

stages are sorted according to their B/P ratios.

Let WBr = ~iE1 WBi, WPI =“ ~iel WPi, and

nr = ~a=f ni, where I denotes A, B or B’. An example

of B’ can be found in Figure 2. Then, under the two

phase allocation condition, we have

(5)

TP=~=~=wpB’ ~, Vj E B.
?lj nB

(6)

ao=3 al=O a2=2 as=l a4=4

WB; 6 6 3 3 2

wPi 3 4 2 4 5

r~ 2 1.5 1.5 0.75 0.4

Table 2: The workloads in two phases of each stage after

sorting.

Tuple

,. . . . . . . . . ..... .. . . . . ... .. . .. .... ....!....
stage 3 stage O stsge 2

descending order of BIP .

Figure 2: Example of a candidate ordered pair r =

(A, B) for a pipeline of 5 stages.

The pipeline processing time can be expressed as:

TS. max~+max~.
ViEA n~ VaEB n~

Then, we get,

where the total number of processors ~ = nA + nB t. If

we select an A, thus fixing W BA and W PB,, TS can be

expressed as a function of nA.

Note that there is an upper bound and a lower bound

on the amount of processors that one can assign as nA

(and nBf) for a given pair of A and B. The reason

is that Eq. (7) is valid only when A and B satisfy the

conditions that they are the bottleneck sets in the table-

building and the tuple-probing phases, respectively. If

for a particular pair of sets A and B (and the associated

WBA and WPBJ ), we allocate so many processors to

stages in set A (i.e., assign so large a number to nA)

that the table-building times of stages in set A become

shorter than those of some stages in set B, A would

not be the bottleneck set of the table-building phase

any more, and Eq. (7) would no longer give the correct

pipeline processing time TS. Under such an allocation
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of processors, the processing time TS will be determined

by different sets of Aand B (and hence different WBA

and WP~l ). Therefore, there is an upper bound on

the amount of processors one can meaningfully assign

to stages in set A, and so is there a lower bound on the

amount of processor assignable to stages in set A since

~ = nA + nBl. This phenomenon is formally stated

below.

Let a~ be the last stage (the stage with the smallest

B/P ratio) in A, i.e., g = IAI–1, and ag+l be the first

stage in B’.

Lemma 2: Under the conditions that all stages in

set A (respectively, B) have the same table-building

time (respectively, tuple-probing time), if the stages in

set A and those in set B are indeed the bottlenecks

in the table-building phase and tuple-probin $~h~,

K!Z&> ~,Vi~B’and~~respectively, i.e. ~~

~, Vi E A, then nA ~ust satisfy the following

constraints

and vice versa.

From the above lemma, we get the following lemma

to determine the optimal allocation for a given set A.

Lemma 3: The optimal value of nA minimizes

~ + ~ under the constraints in Eq. (8).

Next we consider the nA that minimizes ~(nA ) =

K&+!K&
nA

~ _nA without any constraint. It can be derived

by taking * = O. The optimal allocation, n~”c,

where the superscript onc indicates optimality under

no constraints, is

The corresponding optimal total processing

out the constraints in Eq. (8) is given by

(9)

time with-

TS07ZC = ~ . (WBA + WP~, + 2~WBA . WPBJ). (10)

We next define inf(nA) and sup(nA ) as follows:

1
inf(nA ) = N . (11)

1+~~
7

( )

—

1
sup(nA) = N . (12)

~ WPB, “
1 + FP::;l WB~

Note that x- represents x – 6 where 6 is an infinitesimal

quantity. Let n~ be the nA that minimizes TS under

the constraints in Eq. (8).

Lemma 4: nf falls into the set of {inf(nA)$ Sup(nA), nfinc}

Obviously, if n~nc lies between inf (nA ) and 5up(nA),

i.e. n~nc satisfies the constraints in Eq. (8), n~ would

be equal to n~n’. Otherwise, if n~nc is smaller than

inf (nA ), n~ is equal to inf(nA ). on the other hand,

if nfinc is greater than sup(nA ), n: is sup(nA ). The

procedure PA1 to derive AI can now be summarized as

follows.

Procedure for allocation AI (PA1)

1.

2.

3.

4.

For each stage i, O ~ i < k – 1, calculate its B/P
WB

ratio Ti= &.
*

Sort the stages in descending order of ?i to get the

sequence &

For each j, 1 < j < k, let A = {aO, . . ..aY_J. and

find the nA that minimizes TS = ~+ ~ under

the constraint

(based on Lemma 4). Choose the A and the

associated nA that achieves the shortest processing

time.

From this optimal set A and nA, obtain the number

of processors ni for each stage

This is allocation AI,

For example, from the profile in Table 2, we have

the following 4 possible configurations: A= {aO},

{a~, al, az}, {aO, al, az, aq}, or {ao, al, az,a~,aq}. For

A= {ao} (and B’= {al, az, as, aq}), we have WBA=6

and WPB/ = 15 from the rows WBi and WPi in Table

2, leading to TS= 2.375 by Eq. (7). Similarly, each

configuration of A determines a value of TS by Eq.

(7). It can then be verified that from the 4 possible

configurations of A, the minimum of TS, denoted by

TSal, is 2.362 that is achieved for A= {so, al, az}. From

Eq. (9), we next have nAn4.51 and nBln 15.49, which

leads to JI= (4.51, 3.88,2.25,4.51, 4.85) from Eq. (13).
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In PAI, the combined complexity of Steps 1 and 2

is O(lc . log k) because of the need of sorting. The

complexity of Step 3 is O(k) since there are only k

different ways of determining set A, and for each A,

there are only 3 potential processor allocations that can

be optimal according to Lemma 4. The complexity of

PA1 is thus O(k . log k). Since PA1 considers all the

allocations satisfying the necessary conditions stated

in Lemmas 1 and 4, the allocation obtained AI is the

optimal.

Theorem 1: PAI determines the optimal processor

allocation to the pipeline stages under Constraint I.

3.2 Allocation under Constraints I and 11

Next, we take into account Constraint II, which imposes

a lower bound on the number of processors required for

each stage. Let ~ be the number of nodes required to

hold &, i.e., ~ = ~. As mentioned earlier, WBa =

C2 . ll& 1 where C2 is a constant. Hence, Constraint 11

w–w~fcan be expressed as na ~ mi = ~ — ~ or every

stage i.

We will show that taking Constraint II into consid-

eration for processor allocation amounts to adding the

condition nA ~ ~ into the inequality Eq. (8) de-

rived in Section 3.1. The procedure PAII to derive AII

can be summarized as follows.

Procedure for allocation Arr (PArr)

1.

2.

3.

4.

For each stage i, O ~ i < k – 1, calculate its B/P
WB

ratio Ti= &.
*

Sort the stages in descending order of ?i to get the

sequence ii.

For each j, 1 < j < k, let A = {aO,..., aj_l}, and

find the nA that minimizes TS = ~+ ~ under

the constraint

WBA
wf ~)-max(~2. M’ l+~w~.

N
<

W&9~I ~ ‘
(14)

1 + WP., +, WBA

Choose the A and the associated nA that achieves

the shortest processing time.

from this optimal set A and nA, calculate the

number of processors nz for each stage as in Eq. (13).

This is allocation ~11.

Also Lemma 4 holds if inf(nA) is defined as

WBA iv
inf (nA ) = max( — ). (15)

(72-M’ 1+~~

To show that the allocation ~11 satisfies constraint II,

we need to prove the following two lemmas.

Lemma 5: Under allocation ~11, every stage in A

satisfies Constraint II.

The lemma follows directly from Eq. (13) as nA ~

w implies n~
WB > WB

CSM ‘nA~_&.

Lemma 6: Under allocation ~111 every stage in B

satisfies Constraint II.

For example, suppose (~) = (~)= (5.0, 2.5, 2.5,

5.0, 1.7) for the profile in Table 1, with N = 20. We then

have 2 possible configurations of A to meet Constraints

I and II, i.e., A= {CZo,al, a2}, or {ao, al, a2, as}. From

Eq. (7), it can be verified that these 2 configurations

of A lead to TS=2.40 and TS=2.538, respectively. We

hence get AII= (5.00, 3.33,2.50,5.00, 4.17) and TS~rl=

2.40.

Like PA1, PA1l is also of complexity O(k . log k).

Following the same reasoning as for PAI, we have the

theorem below, stating the optimality of PA1l.

Theorem 2: PA1l determines the optimal processor

allocation to the pipeline stages under Constraints I and

II.

3.3 Allocation under three constraints

Given allocation AII, one straightforward approach to

meet Constraint III is to round up the number of

processors allocated to some stages, and truncate the

number of processors for others. However, this simple

approach, though applicable to some cases, does not in

general yield the optimal allocation. It is noted that

for certain configurations if the number of processors

allocated to stage i by ~11 is na, the allocation to stage

z by ~rrr can be very different from either ln~] or [nil.

It is thus necessary to develop the procedure for the

optimal allocation ~I1r.

From Constraints II and III, it follows that stage i

must be allocated with at least r-l processors, where.,-
m.i = $#. If we allocate ~m.il processors to each stage

i, there will be L = N —~vj [mjl remaining processors.

To achieve ~rIr, we must allocate these L processors to

appropriate stages. Clearly, the number of additional

processors allocatable to a given stage, say stage i, is

between O and L, and the total number of processors



allocated to that stage can thus range from [nil to

[wI + L.

After each stage has got [ml processors to satisfy

its memory constraint, we consider the issue on how

to allocate the remaining L processors, The subtlety

of the allocation comes from the fact that the optimal

allocation of p processors cannot be obtained directly

from a given optimal allocation of p – 1 processors

by greedily allocating the additional processor to the

bottleneck stage. For example, consider a 3 stage

pipeline with workload (WBi) = (1,1,2) and (WPi) =

(10, 10, 2). Assume that each stage needs one processor

to hold its hash table. Clearly, if there are 4

processors, the optimal allocation is (1, 1, 2), since

allocating the extra processor to either stage 1 or stage

2 will not change the pipeline building and probing

times. However, if there are 5 processors, the optimal

allocation is (2, 2, 1), meaning that the optimal

allocation of 5 processors cannot simply be obtained

based on the optimal allocation of 4 processors.

We therefore need to devise an efficient mechanism to

determine the optimal allocation. Let TBf and TP~ be,

respectively, the table-building and tuple-probing times

of stage i, where z is the total number of processors

allocated to this stage. For each allocation of w proces-

sors to stage i, we then have a corresponding allocation

descriptor, (i, z, TB~, TP~ ). We shall maintain certain

data structures on the allocation descriptors to facilitate

the allocation of the L additional processors.

First, we order the possible allocation descriptors

into two allocation queues, QB and QP, each of which

consists of all k (L + 1) descriptors. Elements in QB

and QP are sorted in decreasing order of TB~ and

TP~, respectively. Note that each allocation descriptor

will appear in both QB and QP, but the positions

in which it appears in QB and QP may be different.

Marking an allocation descriptor can be thought of as

allocating one additional processor to the stage specified

in that descriptor. Allocating L additional processors

to the pipeline stages then corresponds to ma~king L

distinct allocation descriptors. Our method of marking

allocation descriptors is to follow the descriptor orders

in either QB or QP. Thus a legitimate marking

of L descriptors would be a marking on the first j

descriptors of QB and the first k descriptors of QP,

if there are exactly L distinct descriptors among these

(j + k) descriptors. (Note one descriptor may fall

into both the first j elements in QB and the first

k elements in QP.) In each stage, the marking can

only occur in increasing order of a values for that

stage. The allocation descriptors for a stage i start

f~.1, ~PJ~*l ). When (i, Z,with (i, [ml, TBi TB; , TP:)

is marked, it means that at least z + 1 — [ml descriptors

of stage i must have been marked, and at least z + 1

processors must have been allocated to stage i. If the

last allocation descriptor marked for stage i is labeled

with z processors, the total number processors assigned

to that stage is z + 1, and the corresponding stage

building and probing times will be TB~+l and TP~+l,

respectively. Consequently, we have the following

lemma.

Lemma 7: The table-building time of the first

unmarked element in QB is the table-building time of

the pipeline} and the tuple-probing time of the first

unmarked element in QP is the tuple-probing time of

the pipeline.

Denote the i-th element in QB as bi, and the

associated building time as TB<a,s. pj in QP and

TP<P, > are defined similarly. The procedure PA1lI

for Arrr can be summarized as follows.

Procedure for allocation kIr (PAIII)

1.

2.

3.

4.

5.

For each stage i, O < i < k – 1, first allocate (~]

processors to that stage.

For each stage i, O s i ~ k – 1, determine the L + 1

allocation descriptors, (i, z, TB~, TP~ ), ~mjl < z <

~mjl + L, for the possible allocations of additional

processors, where L = N – ~vj (mj 1.

Construct QB and QP (each with k(L + 1) descrip-

tors), where the allocation descriptors are sorted in

descending order of TB~ and TP~, respectively,

For each j, O ~ j ~ L, determine k(j)(z (L –

j)) such that the number of distinct elements in

the set Dj = {b1jb2,..., bj} U {pi, P2,..., Ph(j)} k

L. (This can be achieved by marking the first j

elements in QB first and then the first (L – j)

unmarked elements in QP. Thus Dj is the set

of marked allocation descriptors and corresponds

to an allocation of L processors.) For each j,

calculate the time T13<b,+l > + Tp<phtj)+l > ) which

is the processing time of the pipeline under the

corresponding allocation.

Choose the j, O s j s L, with the shortest

processing time. The corresponding allocation is

AIII.

Consider the example in Table 2. Since (w) =

(~)= (5.0, 2.5, 2.5, 5.0, 1,7) from AII in Section 3.2,

we get ([ml) = (5, 3, 3, 5, 2), meaning that there

are L = 2 processors left that will be added to the

appropriate stages by AIII. QB and QP can then be
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determined, each of which consists of (2 + 1) * 5 =

15 elements in the form of (i, x, TB~, TP~ ). We

then have, tq = (O, 5,1.2, 0.8), b2 = (3,5, 1.2, 0.6),

bs = (4,2, 1.0,2.5), bq = (1,3,1.0, 1.33), etc., for Q13,

and pl = (4,2, 1.0, 2.5), PZ = (4,3, 0.66, 1.66), P3 =

(1,3, 1.0, 1.33), IM = (4,4,0.5, 1.25), etc., for QP.

From Step 4 in PAIII, we obtain

for (j, k) = (0,2), TS = TB<5,> + TP<P,> = 1.2 +

1.33 = 2.53,

for (j, k) = (2,0), TS = TB<5,>+TP<PI> = 1.0+2.5 =

3.5,

for (j)k) = (1, l), TS = TB<5,> + TP<P,> = 1.2 +

1.66 = 2.86, etc.

It follows that the 2 additional processors should be

added to stage 4 to achieve an optimal allocation AIII =

(5, 3,3, 5,4) with TS~l,l = 2.53.

It can be verified that the complexity of PAIII is

O(Nk o log(~k)) because of the sorting in QB and

QP. Also, from the way QB and Q1’ are constructed
it follows that the allocation achieved by AIII is the

one with shortest processing time among all possible

allocations.

Theorem 3: Considering all three constraints, PAIII

gives the optimal processor allocation to the stages in a

pipeline.

4 Simulation

We have formulated the processor allocation as a deter-

ministic optimization problem and developed optimal

solution procedures. In the simulation, each individual

tuple actually runs through the stages in a pipeline of

hash joins, so that the burst effects and the actions for

pipeline fill-up and depletion are captured. The sim-

ulation verifies that our formulation of the two-phase

mini-max optimization problem well approximates the

original pipelined hash join problem and provides it with

an effective solution procedure.

4.1 The Simulation Model

To focus on the effect of processor allocation on

pipelined hash joins, we simulate pipeline segments

of hash joins, with and without using the optimal

processor allocation scheme. The simulator takes

hardware parameters, a pipeline segment of hash joins

and a processor allocation for the pipeline as inputs. It

outputs the query processing time of the pipeline. The

number of stages in the pipeline is predetermined in the

simulation. The cardinalities of the relations in pipeline

stages are randomly chosen from fixed ranges. In order

to simulate the behavior of each tuple accurately, we

scaled down the average relation size and reduced the

memory size of each processor accordingly, so that

parameters mu-see

tTead 14

t Teceiue 20

tha.h 12

t c Omp 12

thu,ld 8

tpa,t 12

t,.nd 20

t znsevt 2

tw,ite 14

Table 3: Architectural parameters employed in simula-

tion.

the ratio of average relation size to memory size is

nonetheless realistic.

The hash table for each pipeline stage is built in the

table-building phase by partitioning its inner relation

into subtables, one for each processor allocated to the

stage. In the probing phase, each incoming tuple is

routed to one of these subtables at random. A random

number generator, coded based on the join selectivities,

is then used to generate the resulting tuples. The time

spent on various actions such as partitioning, hashing,

matching, or building resulting tuples, are highly

dependent on the architecture, OS (or equivalent system

software) and the actual implementation. However, to

better reflect reality, we have determined the relative

CPU times for the various actions by actually taking

measurements for sample code on a SUN spare station.

These parameters are reported in Table 3.

4.2 Simulation Results

Two processor allocation schemes are used for each

query in the simulation: the optimal processor alloca-

tion algorithm PAIII and a heuristic HT. Heuristic HT

allocates processors to the stages in proportion to their

hash table sizes. The numbers of processors so allocated

are real numbers, which are then converted to integers

subject to the constraint that the number of processors

allocated to each stage is large enough to hold its hash

table.

The pipelines employed in the simulation are chosen

to be of five stages (i.e. six relations). Results from

four experiments are presented here, although more

experiments on sensitivity analysis have been conducted

and indicated similar trends. In each experiment, three

hardware configurations, with 16, 32 and 64 processors,

respectively, are used. Sixty pipelines are simulated

for each hardware configuration. Each combination of

pipeline and hardware configuration is simulated three

times to capture the randomness on the tuple generation
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Figure 3: Comparison of the optimal scheme and

heuristic HT when max card./min card. =4.
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Figure 4: Comparison of the optimal scheme and

heuristic HT when max card./min card. =6.

and matching in a join during the simulation.

In the first experiment, the cardinalities of all

inner relations and intermediate relations are randomly

selected from a range between 800 and 3200, with the

ratio of maximal to minimal cardinality equal to 4. The

second experiment deals with relations with a larger

variance, and has relation cardinalities generated from

600 to 3600, with the ratio of maximal to minimal

cardinality equal to 6. In the third experiment, we

randomly set a stage to be the bottleneck of the table-

building phase by assigning that stage with an inner

relation ten times as the average size of other inner

relations. The ratio of maximal to minimal cardinality

of the non-bottleneck stages is set to 4. In the fourth

experiment, we set one stage to be the bottleneck of

the t uple-probing phase by adjusting its tuple-probing

phase workload to be ten times as the average of other

stages. (This is achieved by making the intermediate

❑ HT ❑ Opt Allocaticm

16 32 64

Number of Processors
tablelwld,ng bottiened(
633ppsl,ne segments

Figure 5: Comparison of the optimal scheme and

heuristic HT for table-building phase bottleneck.

16 32 64

Number of Processors
tuplewcbtng phas+sbottienee%
W ppdme segments

Figure 6: Comparison of the optimal scheme and

heuristic HT for tuple-probing phase bottleneck.

relation from the previous stage ten times as large as

the average.) Without loss of generality, we set the

bottleneck stage to be the last stage in a pipeline. The

ratio of maximal to minimal cardinality of the non-

bottleneck stages is also set to 4.

The performance data for the first two experiments

are shown in Figures 3 and 4. In can be seen

that in the first experiment, the optimal processor

allocation scheme shows 28~0 to 3 l~o improvement

over the simple heuristic. When the ratio of the

maximal to minimal cardinality increase to 6 in the

second experiment, the performance improvement of

the proposed scheme increases to the range between

36% and 38%, meaning that when the cardinalities of

relations and join attributes become more widely varied,

PAIIZ offers even better performance improvement.

As shown in Figures 5 and 6, it is observed that

in the case of a tuple-probing phase bottleneck, the
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optimal processor allocation provides 39’XO to 4370

improvement in execution time. In the case of a

table-building phase bottleneck, the optimal processor

allocation shows 45?Z0 to 5 l% improvement, an even

better result. It can be seen that the more skewed the

input is, the more improvement can be achieved by a

better processor allocation scheme. As a matter of fact,

skewed inputs are usually those creating performance

bottleneck, and the very ones we would like to tackle

for better overall performance. In general, it is observed

from simulation results that the proposed scheme

performs very consistently, and can lead to significant

performance improvement over simple heuristics.

5 Conclusions

This paper presents a method for achieving optimal

processor allocation for pipelined hash joins. We

formulated the processor allocation problem as a two-

phase mini-max optimization problem and developed

both exact and approximate solution procedures. We

also demonstrated through simulation that our problem

formulation, though not explicitly incorporating all

dynamic effects of pipelining, can lead to solutions with

substantial performance improvement over previous

approaches. The results are useful for dealing with both

right-deep trees and segmented right-deep trees.
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