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ABSTRACT

E ciently querying large trajectory datasets is a challenge of grow-

ing importance. Abstracting trajectory segments with minimum

bounding boxes and indexing them in R-Trees results in a high false

positive rate due to high dead space. Space !lling curves (SFCs),

which have excellent locality preserving and dimensionality reduc-

tion properties, have been shown to be e"ective for indexing points

in space. However, they can yield a high false positive count and

slow query times if used to index trajectory segments. Our work

shows how to use SFCs to index trajectory polylines. In our ex-

periments, the proposed method runs 2–15 times faster than other

state-of-the-art approaches.
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1 INTRODUCTION

The problem of e ciently querying large trajectory datasets has

grown in importance in recent years. Large trajectory repositories

are now common, thanks to the widespread use of mobile technolo-

gies, the ubiquity of cellular networks, and the increased accuracy

of GPS devices. Location-based services o"er applications that need

fast query support over such datasets. Given the data volumes,

e cient indexing methods are required. While this problem has

already received considerable attention, in this paper we describe a

new approach for indexing spatiotemporal data using traditional

technologies such as R-trees and Hilbert curves. Our experiments

show that the proposed method signi!cantly outperform existing

approaches.

Trajectory Model: For simplicity, we assume that trajectories cor-

respond to objects moving in a 2-dimensional space. For our pur-

poses, a trajectory consists of a unique identi!er for the object, and

a polyline whose endpoints are tuples of the form (x ,y, t), denoting

the spatial coordinates of the object at time t . Such tuples may

come from sensor readings, GPS updates, social network check-ins,
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and so on. We assume that objects travel in straight lines between

consecutive observations (xi ,yi , ti ) and (xi+1,yi+1, ti+1), as long

as ti+1 − ti < δ , for some threshold δ . Whenever ti+1 − ti ≥ δ , we

assume that the object has started a new trip or trajectory. This al-

lows us to create meaningful application-speci!c trajectories, using

di"erent δ thresholds. Multiple trajectories may exist for the same

object, representing di"erent trips during di"erent non-overlapping

time intervals. Modeling an object’s movement as a sequence of

line segments rather than as a collection of endpoints allows us to

answer queries about the object’s intermediate positions.

Space !lling curves (SFCs) such as the Hilbert curve (HC) and

the Z-curve reduce the dimensionality of the native space, and

have been shown to be e"ective for indexing spatial objects. SFCs

have hitherto been mainly used to index multidimensional points

[1–3] or order arbitrary objects [4, 5]. Orenstein [6, 7] provided a

general approach by which any spatial object can be represented

as a collection of ranges, where a range starts when the SFC enters

the spatial object’s area and ends when the SFC exits it. Each such

range corresponds to a continuous SFC range that overlaps the

spatial object. A spatial range query is translated into a collection

of range queries in the SFC space.

An important property of an SFC is how well it preserves clus-

tering or proximity, so that points that are close to each other in

the original space remain close to each other in the transformed

space. This important property reduces the disk I/O for hierarchi-

cal indexing methods. Another important property is the average

number of SFC ranges per object. Better proximity preservation

and a lower number of ranges result in better performance. Among

the SFCs that have been studied, the Hilbert curve has been shown

to have better proximity preservation [8–10], and lower average

number of ranges per object [11].

The contributions of this paper are as follows:

• We show how to address some problems of representing

trajectories using Hilbert curves. We separate the temporal

and spatial dimensions because of their inherent semantic

di"erences, and index spatio-temporal information with a

new index structure (the HT-index) based on 2D R-Trees.

• Through an extensive experimentationwe validate themodel

and show that our proposed method outperforms current

state of the art approaches. It is usable in any database system

supporting R-Trees.

The rest of the paper is organized as follows: Section 2 describes

related workwhile Section 3 provides background onHilbert curves.

Section 4 presents the proposed HT-Index. Section 5 presents the

experimental results and Section 6 concludes the paper.



SIGSPATIAL ’18, November 6–9, Sea�le, WA, USA Reaz et al.

2 RELATEDWORK

Spatial Range Queries: In [1–3] the Hilbert curve is used to rep-

resent locations of moving objects. The Bx -Tree [1] indexes current

and future moving object positions. It partitions the time axis into

!xed intervals according to the maximum duration between two

updates from a moving object. The value indexed for each object

update is the concatenation of the index partition and the Hilbert

representation of the object’s position at that time. As time passes

the earliest interval (and its index) expires and a new interval is

added. The ST2B-Tree [2] also considers predictive queries and uses

a similar approach to the Bx -Tree but allows for di"erent HC resolu-

tion based on the moving object density. In contrast, the BBx -Tree

[3] keeps one B+-Tree for each time interval and thus preserves the

past positions of the moving objects; it can thus answer ‘historical’

queries as well. One key property of these B-tree based methods

is that moving object updates need to occur within a maximum

interval; that is, a moving object has to report its position within

that interval. The methods we propose in this paper, do not have

this limitation.

[4, 5] use Hilbert numbers not to represent but instead to sort

spatial objects. The Hilbert R-tree [4] uses a HC to decide object

insertion order. The idea is to improve R-tree performance by in-

serting objects together that are close to each other in the actual

space. [5] focuses on indexing trajectories of objects moving on

some constrained network (road network, etc.) Edges of the road

network are sorted according to the Hilbert number representing

their midpoint. Then edges are assigned 1D non-overlapping adja-

cent intervals of length proportional to the length of the edge. The

spatial coordinates of trajectory segments are mapped to 1D inter-

vals by corresponding them to network edges. Network edges and

trajectories are indexed separately and evaluating a range query

requires searching both indices.

The trajectory indexing methods that do not use SFCs can be

categorized by the index they use (an R-tree [12] or cell-based

partitioning). Among the R-tree methods, the STR-Tree and TB-

Tree [13] focus on clustering segments of the same trajectory close

by in the index leaves, while the TPR-Tree [14] is for predictive

queries; as all these approaches use MBRs to index segments, they

have the ‘dead’ space disadvantage. TrajStore [15], facilitates a quad

tree to store cells that are created by partitioning the spatial domain

based on the trajectory density. The time dimension is not used

explicitly in the index (conceptually, all trajectories are projected on

their spatial coordinates) but as an interval that is assigned to each

data page within a cell. At query time, cells are picked based on the

query spatial range; out of the pages that a cell contains, the method

considers only those pages with appropriate time interval. Having

a good estimate of a cell’s density is important for the method’s

e ciency. However, the cell density is estimated by using all the

endpoints of the trajectories crossing the cell, which implies that

the location update frequency should be high (so that that there is

an endpoint in the cell for a fast object that passes through the cell)

and the same for all moving objects (so that fast and slow objects

contribute the same in the density estimation). Such requirements

may be limiting for many location-based applications.

All the above methods consider time as a separate dimension

that is explicitly or implicitly added to the index. Work on indexing

temporal data [16] has proposed yet another approach for index-

ing time, that of partial persistence [17]. Consider an object that

was at spatial position e1 at time t1 and moved to e2 at time t2.

This move can be approximated as a segment (e1, e2) that !rst ap-

peared at time t1 and ‘lived’ until time t2. As time proceeds, new

segments are created and ‘live’ until they expire. The problem is

then translated into maintaining a data structure that can maintain

such segment evolution. This is achieved by taking an ‘ephemeral’

data structure that can solve the problem for a single time instant

and making it partially-persistent [17] so as to also maintain the

temporal evolution. This is the approach taken by the multi-version

R-tree (MVR-tree) [18] and the MV3R-tree [19] for storing spatial

objects that change over time. The multi-version approach typi-

cally provides very fast query times for single time instant (or short

time interval) queries. Nevertheless, it introduces additional space

through a controlled duplication (so as objects are temporally clus-

tered). Moreover, this approach still uses some ‘dead space’, since

in the above example the whole segment (e1, e2) is approximated

from time t1 even though the object was only at e1 at that instant.

3 BACKGROUND

A trajectory is a polyline with endpoints T = (x0,y0, t0), . . . ,

(xn ,yn , tn ), ti < ti+1 for i = 0, 1, . . . , n − 1. A trajectory seg-

ment is a straight line between two consecutive location updates

(xi ,yi , ti ), (xi+1,yi+1, ti+1) of the same moving object, where i ∈

N0. A subtrajectory of length m of the trajectory T , is a subse-

quence T ′ = (xi ,yi , ti ), . . . , (xm+i ,ym+i , tm+i ), of m contiguous

trajectory segments, where i ≥ 0,m < n.

A Hilbert curve [20] is a self avoiding, continuous curve that

goes through every point of a discretized multidimensional space

exactly once. We thus assume that the spatial domain is represented

by a N ×N -grid where N = 2
l , l = 0, 1, 2, . . .. Each cell in this grid

corresponds to a point; i.e., there are a total of N 2 possible locations

(points) in the spatial domain all of which are visited once by the

HC. Clearly, the higher the l (also called the order of the Hilbert

Curve) the higher the space resolution.

4 THE HT-INDEX, A HYBRID STRUCTURE

The key to our method is a hybrid strategy. We assign Hilbert

numbers to the spatial coordinates, and use them as one of the

dimensions in a 2D R-Tree, making time the second dimension. A

trajectory segment (whether an original segment or one resulting

from a split) with endpoints (xi ,yi , ti ), (xk ,yk , tk ) is represented

by the MBR with corners (hi , ti ), (hk , tk ), where hi and hk are the

Hilbert number assigned to points (xi ,yi ) and (xk ,yk ). Such MBRs

are then indexed using a 2D R-tree.We call this approach the Hilbert

Trajectory Index or HT-Index.

Consider a Hilbert curveH and a spatial object S , which may

either be a query rectangle or a line segment. Let hSmin and h
S
max

be the minimum and the maximum Hilbert number on the sections

of H that overlap S . The range of Hilbert numbers [hSmin ,h
S
max ]

is called a run. This run will cover the points of S as well as many

points not overlapping S , since the Hilbert curve may leave and

enter S many times during the course of this run. Each continuous

part of the run [hSmin ,h
S
max ] lying outside the object S is called a

jump.
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Figure 1: Runs of a range query.

For example, Figure 1(a) shows a 3rd-order Hilbert curve used

to cover the space, and a spatial object, which is a query range

rectangle R. As in Orenstein’s approach [7], to avoid all points in

the run [hRmin ,h
R
max ] that are not in the rectangle, the run is split

into smaller runs, namely, [a,b], [c,d], [e, f ], [д,д] and [h,h]. We

now have the following jumps: [b ′, c ′], [d ′, e ′], [f ′,д′] and [д′′,h′],

as seen in Figure 1(b). The number of cells in a jump is the length

of the jump. For instance, the length of [d ′, e ′] is e ′ − d ′ + 1.

We observe that most of the jump lengths are very small, except

a few that are quite high. Merging two runs with a small jump

between them will add a few redundant points, possibly resulting

in a few false positives. However, merging runs with big jumps

between them will result in many false positives and increase the

query time. It may be more e cient to run another range query

instead.

4.1 Range Query Evaluation

We consider spatiotemporal range queries that include a spatial

range and a time interval (3D queries, in e"ect). The query’s spatial

range is !rst mapped to the overlapping cells of the underlying grid,

enlarging the query rectangle, as needed, to align with the nearest

cell boundaries. We call this query enlargement. The spatial range

is then split into a number of query runs as already described. Runs

with small jumps are now merged to form merged runs. Finally, the

query temporal interval is combined with each of them to obtain

the ht-MBRs.

E"ectively, the original query is divided into many smaller range

queries, resulting in a set of ht-MBRs. The HT-index is queried

for these ht-MBRs, obtaining a set of ht-MBRs representing spatio-

temporal trajectory segments. However, we need to validate these

results, since they may contain false positives. A direct way to

detect false positives would be to take the result runs in the search

result from the ht-MBRs, recover their spatial (x ,y) coordinates and

check if they are within the spatial range speci!ed by the query.

Instead, we use the query runs and result runs to avoid con-

verting Hilbert numbers to spatial coordinates. False positives may

occur because of (1) query enlargement, or (2) merging of query

runs, resulting in jumps. Let Rq be the query rectangle. We ver-

ify the query result as follows. Let Rout be the smallest rectangle

aligned with the grid boundaries, with Rq ⊆ Rout . Similarly, let
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Figure 2: (a) False negatives when using Hilbert range. (b)

Distance between a query point and a sub-grid.

Rin be the largest rectangle aligned with grid cell boundaries, with

Rin ⊆ Rq . Let Rmid be the region between Rout and Rin .

If a result run rh does not overlap with any of the original query

runs (before merging) then the corresponding trajectory segment

is outside Rout and resulted from merging query runs. Then we

check if rh overlaps with the runs for Rin . If yes, then it belongs to

the query result. We only need to convert the Hilbert numbers of

rh and the cells in Rmid to spatial coordinates when rh is neither

inside Rin nor outside Rout . Thus by using Rout and Rin we can

verify most of the results e ciently.

5 EXPERIMENTAL EVALUATION

Our experiments were all run on an Intel Xeon 3.0GHz processor

running Linux 2.6.18 with 8GB of main memory. C++ was used

for implementation. We use the GeoLife dataset [21], which con-

tains public activity data (shopping, dining, sightseeing, hiking, and

cycling) in Beijing, China.

5.1 Parameters In uencing Performance

In our !rst set of experiments, we evaluated query performance for

queries with spatial extent of 0.1%, 1% and 10% of the total area. For

temporal extent we use random one second (timestamp), 12 hours

and 24 hours of time interval. We also experimented with di"erent

threshold values for merging the runs of a range query. To evaluate

query performance for various cell sizes we vary Hilbert order from

6 to 16. Our region of interest is a 4◦ latitude by 4◦ longitude area.

An order-16 Hilbert curve in this region yields grid cells that are

approximately 7m by 7m.

5.2 Comparisons with Competing Methods

In our second series of experiments, we compared our method with

3D R-tree for range queries. We ran 100K , 10K , and 1K instances

of queries with spatial ranges covering 0.1%, 1%, 10% of the whole

region, respectively.

We compared the speedup obtained by using our method, de-

!ned as the ratio of the running time for the 3D R-tree to that of

our method. Figure 3 shows the speedup factor. For each spatial

extent we use three temporal extents, of 1 sec, 12 hrs and 24 hrs,

respectively. A higher speedup of up to 14 times is obtained for
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Figure 3: Speedup Factor compared to 3D R-Tree.

timestamp queries, as the R-tree performs poorly for timestamp

queries. As we increase the order of the Hilbert curve, the speedup

factor increases and then it starts to decrease, because with lower-

order Hilbert curves, the bigger grid cells result in greater query

enlargements. Besides, merging runs with bigger cell size result

in more false positives and higher search time. The performance

deterioration at higher order will be explained with the cost model

later in this section.

6 CONCLUSION

In this paper we propose techniques to improve query performance

on trajectory data by utilizing the Hilbert curve to represent trajec-

tory polylines. Our proposed method outperforms the traditional

3D R-tree and can be easily integrated with any RDBMS that sup-

ports R-Trees. As future work we will devise an accurate cost model

that will enable the user to identify the appropriate Hilbert order

that optimizes performance for a given dataset.
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