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ABSTRACT

We consider the challenge of providing privacy-preserving
access to data outsourced to an untrusted cloud provider.
Even if data blocks are encrypted, access patterns may leak
valuable information. Oblivious RAM (ORAM) protocols
guarantee full access pattern privacy, but even the most ef-
ficient ORAMs to date require roughly ℓ log2 N block trans-
fers to satisfy an ℓ-block query, for block store capacity N .

We propose a generalized form of ORAM called Tunably-
Oblivious Memory (λ-TOM) that allows a query’s public
access pattern to assume any of λ possible lengths. Increas-
ing λ yields improved efficiency at the cost of weaker privacy
guarantees. 1-TOM protocols are as secure as ORAM.

We also propose a novel, special-purpose TOM protocol
called Staggered-Bin TOM (SBT), which efficiently handles
large queries that are not cache-friendly. We also propose
a read-only SBT variant called Multi-SBT that can satisfy
such queries with only O(ℓ + logN) block transfers in the
best case, and only O(ℓ logN) transfers in the worst case,
while leaking only O(log log logN) bits of information per
query. Our experiments show that for N = 224 blocks,
Multi-SBT achieves practical bandwidth costs as low as 6X
those of an unprotected protocol for large queries, while leak-
ing at most 3 bits of information per query.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion—security, integrity, and protection
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Data privacy; Oblivious RAM; privacy tradeoff

1. INTRODUCTION
It has become common for resource-constrained clients to

outsource data storage and management to cloud servers
lying beyond their administrative control. Such outsourc-
ing, however, raises data privacy concerns. Unfortunately,
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merely encrypting data does not ensure privacy, since infor-
mation is leaked by access patterns on encrypted data [4,11].

Oblivious RAM (ORAM) protocols [9] can guarantee full
access pattern privacy in an outsourced block store. ORAM
protocols use dummy block reads and periodic oblivious data
block re-shufflings to guarantee that any two access patterns
of the same length are computationally indistinguishable to
any outside observer, including the server itself. The added
costs incurred when using ORAM for data outsourcing are
generally dominated by bandwidth cost, which we measure
as the number of actual block transfers needed to satisfy a
single block access (read or write).

ORAM bandwidth costs range from O(
√
N logN) [1] to

O(logN) [6, 10, 22, 23], where N is the ORAM block ca-
pacity. Recently, there has been a push to make ORAM
practically, as well as asymptotically, efficient [14,22,24,25].
The most bandwidth-efficient ORAM construction known
to date [22, 23] still incurs a bandwidth cost of roughly
log2 N . Other protocols [8,13,16,24,25] use less client space
than [22, 23], but incur higher bandwidth costs. Some such
protocols target use cases such as secure coprocessors [15],
where bandwidth efficiency is less critical than client space.

This log2 N cost is particularly disappointing for multi-
block read-only queries, where we might expect better per-
formance. To achieve full access pattern indistinguishability,
ORAMs must ensure that all queries generate public access
patterns of roughly the same length, regardless of access lo-
cality or ORAM state. As a result, all queries must incur
the same, worst-case cost.

To avoid this limitation, we build special-purpose ORAM-
like protocols that leak a strictly bounded amount of access
pattern information in order to obtain a bandwidth cost
under log2 N for large queries. Existing schemes that par-
tially protect access patterns (e.g. [7, 18]) start with unpro-
tected protocols and add obfuscation mechanisms to quan-
tifiably limit the adversary’s ability to make certain infer-
ences. However, they do not consider all possible inferences,
and thus cannot assess total information leakage. In con-
trast, we start with a fully protected protocol (ORAM) and
carefully relax its privacy requirements in order to tightly
bound the total access pattern information leaked.

1.1 Our Contributions
We propose Tunably-Oblivious Memory (TOM), a new

model that relaxes and generalizes the traditional ORAM
model, allowing controlled trade-offs between efficiency and
information leakage. TOM permits variable-length public
access patterns, allowing properties such as locality to be
exploited to improve efficiency. Queries are distinguishable
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by access pattern length, so for each query λ-TOM gener-
ates an access pattern with one of λ pre-determined lengths,
limiting information leaked per query to log2 λ bits. λ-TOM
protocols with large λ are more flexible and efficient, but
leak more information. Protocols with small λ are more
rigid, but offer better privacy. 1-TOM leaks no information,
and has security equivalent to a traditional ORAM.

TOM can directly improve efficiency for queries show-
ing locality by simply enhancing ORAM with a local block
cache. However, we address the more challenging problem of
building a TOM that efficiently handles workloads that are
not cache-friendly. To this end, we propose a novel, special-
purpose TOM called Staggered-Bin TOM (SBT). We prove
that SBT achieves bandwidth cost O(logN/ log logN) for
large queries with blocks chosen uniformly at random, but
has worst-case cost O(

√
N).

We also propose three read-only SBT variants, culminat-
ing in the Multi-SBT, which combines the SBT with a tra-
ditional ORAM, storing three copies of each block. The
Multi-SBT achieves bandwidth cost O(1) for large uniform
random block queries, and O(logN) in the worst case, while
leaking only O(log log logN) bits per query. Thus, Multi-
SBT can satisfy any ℓ-block uniform random block query
using only O(ℓ+ logN) block transfers.

We developed a simulator to evaluate SBT and its vari-
ants, and compare practical costs of the Multi-SBT with
the ORAM in [23]. We show that Multi-SBT maintains a

practical bandwidth cost of roughly 6X for queries of 4
√
N

blocks, while [23] has substantially larger costs ranging from
22X to 29X for similar parameterizations (see Table 1).

The rest of this paper is organized as follows. Section
2 covers related work in protecting access pattern privacy.
Section 3 presents the TOM model and its security defini-
tion. We describe the SBT in Section 4 and its variants
in Section 5, with detailed performance analyses in the Ap-
pendix. Section 6 gives experimental results from our simu-
lator comparing SBT and its variants.

2. RELATED WORK

2.1 ORAM and PIR Protocols
We focus on showing that the Multi-SBT outperforms the

Practical ORAM in [22, 23] because it remains the most
bandwidth-efficient single-server ORAM, and incurs a simi-
lar client space cost (O(N) with low constant). Both Practi-
cal ORAM [22,23] and the SBT logically partition blocks on
the server. In [22,23] each partition is itself an ORAM, so the
bandwidth cost remains logarithmic. In Multi-SBT, every
fetch retrieves a potentially-usable block, enabling constant
bandwidth cost in the best case.

ORAMs that emphasize reduced client space incur even
higher bandwidth costs. Assuming 64KB blocks, Practi-
cal ORAM [22, 23] requires log2 N bandwidth cost. Path
ORAM [24] requires closer to 8 log2 N , and more if client
space is reduced using recursion. The ORAMs in [13] and [8]
both have asymptotic bandwidth cost O(log2 N/ log logN),
and are outperformed in practice by Path ORAM [24]. Multi-
cloud oblivious storage [21] achieves very low bandwidth cost
(under 3X), but assumes multiple non-colluding servers.

Private Information Retrieval (PIR) techniques also sup-
port secure data outsourcing with full access pattern indis-
tinguishability. PIR alone is generally computationally im-
practical [20], but progress has been made mixing ORAM

with PIR to reduce bandwidth costs [5,16]. Due to the high
latencies and drastic computation costs of such schemes, we
do not compare the Multi-SBT with them here.

2.2 Partial Access Pattern Protection
Several efficient protocols have been proposed that par-

tially protect access patterns. One example is the Shuffle
Index [7], which uses an unchained B+ tree to store en-
crypted blocks. Cover searches provide access pattern pri-
vacy by making dummy block requests to obscure the true
request. The authors quantify the adversary’s ability to rec-
ognize that two given accesses correspond to the same block,
but ignore other information leaks. For example, the pro-
tocol may run indefinitely without retrieving certain blocks.
Since the adversary knows that such blocks are rarely re-
quested, he can use their eventual request pattern to make
additional inferences. In contrast, TOM’s bounds on total
information leakage hold for all inferences. Shuffle Index
bandwidth cost is 16X, but drops to 4X with enough client
space to store pointers to each block.

The protocol in [18] reads 2 blocks for every request, does
no oblivious shuffling, and achieves a bandwidth cost as low
as 4X even with limited client space. Like the Shuffle Index,
it bounds the adversary’s ability to correlate two accesses,
but leaks even more unquantified information, via access
patterns of rarely requested blocks, than the Shuffle Index.

Like TOM, the private computation protocol of [26] uses
an ORAM and allows a bounded amount of access pattern
information to leak in order to improve efficiency. However,
the notions are otherwise fundamentally different. The pro-
tocol in [26] accesses main memory from trusted hardware
via a black-box ORAM, using the additional space to en-
able more elaborate computations. Applications vary in the
number of required ORAM fetches per computation. Leak-
age comes through each application’s one-time maximum
fetch rate choice. In contrast, TOM allows fetch counts to
vary dynamically, letting the ORAM adjust fetch counts to
match workloads, leaking information per query instead of
per application setup. Thus, TOMs see efficiency improve-
ments when the average number of fetches is small, even if
the worst-case number is large.

3. TUNABLY-OBLIVIOUS MEMORY

3.1 ORAM Review
Oblivious RAM (ORAM) techniques [9] provide a mecha-

nism for outsourcing encrypted data while ensuring that all
possible access patterns are computationally indistinguish-
able to all observers other than the client, including the
server itself. In an ORAM protocol, the client arranges his
data in N fixed-size blocks of B bits each. Each block has a
unique address a ∈ {0, 1, . . . , N − 1}. Each of the N blocks
is encrypted using a semantically secure encryption scheme
and then stored on the server. Every time a block a is writ-
ten to the server, it is re-encrypted using a different nonce,
and assigned a new server-side ID, preventing it from being
directly linked to previous encrypted versions of a.

The goal of ORAM is to define an efficient protocol that
re-shuffles and re-encrypts blocks to ensure that no informa-
tion is leaked about the address or contents of each block,
how frequently a given block is accessed, and whether the ac-
cess is a read or write. The protocol may incorporate dummy
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Table 1: Comparison of [23] with results based on proposed Multi-SBT using the ORAM component from [23],
with the parameterizations and costs given below and in [23], with 64 KB block size. Multi-SBT average cost

is for uniform random queries of length ℓ = 4
√
N,λ = 8. Max. cost is three times ceiling of ORAM cost.

ORAM [23] Multi-SBT using ORAM from [23]

N

ORAM
Capac-
ity

Client
Storage

Server
Storage Cost

Client
Storage

Server
Storage

Avg.
Cost

Cost
Upper-
Bound

Leaked
Bits /
Access

220 64 GB 204 MB 205 GB 22.5X 604 MB 333 GB 5.4X 69X 3 · 2−12

222 256 GB 415 MB 819 GB 24.1X 1.2 GB 1.3 TB 6.0X 75X 3 · 2−13

224 1 TB 858 MB 3.2 TB 25.9X 2.6 GB 5.2 TB 6.3X 78X 3 · 2−14

228 16 TB 4.2 GB 51 TB 29.5X 13.6 GB 83 TB 5.8X 90X 3 · 2−16

Trusted (Client-Side) 

Client 

TOM (ORAM) 

Protocol 

Read / 

Write 

Server 
Fetch / Store 

Un-trusted (Server-Side) 

Known to Adversary 

Query 

Length 

Step 

Count 

Grouped by Step 

Grouped 

by Query 

Figure 1: Client issues secret accesses (read/write)
to ORAM/TOM protocol, which translates to a se-
quence of public accesses (store/fetch) to the server.
Adversary knows query length (# requests in query)
and step count (# steps needed to satisfy query).

blocks, which contain no data but are indistinguishable from
encrypted data blocks.

A client interacts with the ORAM protocol as with a
trusted block store (Figure 1), issuing a secret access pat-

tern ~S = (s1, . . . , s|~S|) of block requests. Each secret access

s is a triple (type, a, data), where type is the access type
(read or write), a is the local address of the block to access,
and data is the plaintext data written to block a, if any.

The ORAM translates ~S into a public access pattern P (~S) =

(p1, . . . , p|P (~S)|) that is generally much longer than ~S. Each

public access p is also a triple (type, id, edata), where type
denotes the access type (store or fetch), id denotes the server-
side ID of the accessed block, and edata denotes the en-
crypted block data to be stored, if any. A fetch optionally
removes the block from the server.

The term access pattern has been used in the literature
ambiguously to refer to either ~S or P (~S). We disambiguate

by calling ~S the secret access pattern and P (~S) the public
access pattern. We now give the standard ORAM security
definition of [23] in terms of our notation:

Definition 1. A protocol satisfies ORAM security if for
every pair of secret access patterns ~S1 and ~S2 of the same
length (| ~S1| = | ~S2|), P ( ~S1) and P ( ~S2) are computationally
indistinguishable (to every observer other than the client).

If the ORAM block size B is reasonably large (B ≫
log2 N), the communication cost is dominated by block trans-

fers. The ORAM makes |P (~S)| block transfers to satisfy ~S,

while an unprotected protocol needs only |~S| transfers. Thus
the bandwidth cost of using ORAM to obscure an access pat-

tern is given by |P (~S)|

|~S|
. The more efficient an ORAM, the

lower its bandwidth cost.

3.2 Trading Obliviousness for Efficiency
We introduce the term step to refer to a discrete unit

of work performed by an ORAM or TOM. Informally, each
step retrieves a single encrypted target block from the server.
Each step may also fetch and store other blocks in order
to obscure the target block’s identity or prepare for future
requests (e.g. shuffling).

In a traditional ORAM, each secret access yields exactly
one such step, and the target block is simply the block asso-
ciated with the secret access. Each ORAM step is powerful
in that it can obliviously retrieve any given target block
from the server, but this power also makes each step expen-
sive. Informally, the step count is the total number of steps
needed to satisfy a given secret access pattern. The step
count must match the number of secret accesses in order to
satisfy ORAM’s perfect privacy guarantee, so such powerful,
expensive steps are mandatory.

In contrast, the TOM generalization allows the step count
to vary, creating the possibility for more efficient but less
powerful steps, and thus for more efficient protocols. For
example, the Staggered Bin TOM (Section 4) partitions the
blocks on the server into k bins (Figure 2). Each step may
only retrieve a target block from a single, pre-determined
bin. Each such step is thus less powerful than an ORAM
step, but it is also more efficient. In the worst case, k steps
are needed to satisfy a single secret access, but by carefully
scheduling secret accesses from the same multi-block query,
we can obtain lower overall bandwidth cost than a compara-
ble ORAM. Allowing the step count to vary inevitably leaks
some access pattern information. We show how to tightly
bound such information in Sections 3.4 and 3.5.

We now define the TOM model more precisely. For each
secret access pattern ~S, a TOM generates a public access
pattern P (~S) divided into a sequence σ(~S) of discrete steps.

We use |σ(~S)| to denote the step count of P (~S).

Definition 2. Each step is a series of stores and fetches
used by the TOM protocol to retrieve a single target block
from a subset of the blocks on the server. A step is complete
when the TOM is ready to retrieve another target block.

Traditional ORAMs are special cases of TOM in which
each secret access generates exactly one step (|σ(~S)| = |~S|).
Thus ORAM does not distinguish between secret access and
step, necessitating our new terminology for TOM. In ORAM,
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the block subset accessible during a step includes all blocks
on the server, while in Staggered Bin TOM (Section 4) it
only includes blocks from one bin.

We say ~S is satisfied once all the steps in σ(~S) are com-
plete. As in ORAM, if the TOM is stateful, some blocks
updated by ~S may not be stored to the server immediately.
Instead, even after the step completes, they are held locally
as dirty blocks until they are written back to the server dur-
ing a subsequent step.

Definition 3. A query is a secret access pattern ~S com-
posed of a batch of secret accesses that may be satisfied in
any order.

A TOM receives multi-block queries from the client. Queries
are handled sequentially relative to each other, but accesses
within a query may be processed in any order. For security,
query and secret access pattern are interchangeable.

TOM decouples steps from secret accesses, allowing query
length |~S| to differ from step count |σ(~S)|. This approach
offers better efficiency than ORAM for two reasons. First,
TOM need not generate steps for accesses to cached blocks.
In ORAM, a repeat access to a recently cached block must
still incur the overhead of a step, else the reduced step count
would reveal the repeated access. Second, TOM need not
require that each step be capable of accessing any block. By
reducing the power of each step, TOM makes steps more ef-
ficient, potentially reducing a query’s total bandwidth cost,
even though the step count may increase. The SBT and its
variants (Sections 4 and 5) exploit this second advantage.

3.3 TOM Security Definition
As in ORAM, we assume that query length |~S| is public.

We also make the worst-case assumption that the adversary
can observe precisely when each query starts and ends, and
thus knows the exact step count |σ(~S)| of each query.

In ORAM, |σ(~S)| = |~S|, so |σ(~S)| reveals nothing new

to the adversary. In TOM, |~S| and |σ(~S)| may differ, so

|σ(~S)| may leak information. For example, if |σ(~S)| < |~S|,
the adversary may infer that ~S contains repeated accesses.
We limit such leakage by forcing |σ(~S)| to assume one of λ
milestone values taken from a predefined set M|~S|. More

milestones improve flexibility in generating σ(~S) and thus

improve efficiency, but also leak more information about ~S.
M|~S| is defined up-front for each value of |~S|, so the mile-

stones themselves do not leak information. Since the adver-
sary knows |~S|, he already knows that |σ(~S)| will be one of
the λ milestones. Thus, he only learns information through
the specific choice of milestone used for |σ(~S)|. Equivalently,
he learns which of λ equivalence classes ~S belongs to, limit-
ing information leakage by the size of λ.

We now define security for λ-TOM, which translates a
secret access pattern ~S into a public access pattern with one
of λ milestone step counts.

Definition 4. A protocol satisfies λ-TOM security if both
of the following conditions hold for every possible pair of
secret access patterns ~S1 and ~S2:

1. Let ℓ = | ~S1|. If | ~S1| = | ~S2| then |σ( ~S1)|, |σ( ~S2)| ∈ Mℓ,
where Mℓ is a set of milestones of cardinality ≤ λ.

2. If |σ( ~S1)| = |σ( ~S2)|, then P ( ~S1) and P ( ~S2) are com-
putationally indistinguishable (outside the client).

By ensuring that any two public access patterns with the
same step count are indistinguishable, we guarantee that
information about ~S only leaks through the observation of
the step count |σ(~S)|, which is in turn limited to one of λ
milestones. We can bound the information leakage Iλ of a
λ-TOM protocol by assuming the worst case, in which all
milestones are equi-probable, giving:

Lemma 1. A λ-TOM protocol leaks at most Iλ ≤ log2 λ
bits per query in expectation.

Proof. Let R be a random variable representing the choice
of milestone. The expected information leaked by revealing
the outcome of R is given by the entropy H(R). H(R) is
maximized when each of the λ milestones is equi-probable,
giving H(R) = log2 λ bits. Thus we have that Iλ ≤ log2 λ.

When λ = 1, the leakage is Iλ = 0, which indicates that
1-TOM is as strong as ORAM. In fact, for λ = 1, we have by
Condition 1 of Definition 4 that | ~S1| = | ~S2| implies |σ( ~S1)| =
|σ( ~S2)|, and thus by Condition 2 that | ~S1| = | ~S2| implies

P ( ~S1) and P ( ~S2) are indistinguishable. Therefore any 1-
TOM protocol satisfies ORAM security (Definition 1). The
reverse is also true for any ORAM with a notion of steps.
In any case, we make no claim that 1-TOM is substantively
more secure than ORAM, so we treat 1-TOM and ORAM
as equivalent.

Since each query leaks at most Iλ bits, larger queries leak
less information per access. Combining small, independent
queries would reduce leakage, but may also increase latency.
It is critical that no query results be released to the client
until the entire query is satisfied. If the client used partial
results, the partial completion time might leak, revealing
additional information. Thus, query size is limited by the
size of the results cache allocated to the TOM, and exces-
sively large queries may need to be broken up. In standard
ORAM, Iλ = 0, so there is no motivation to make queries
larger than a single block access.

What the adversary gains from leaked access pattern in-
formation depends heavily on what other information the
adversary holds. Other schemes that obscure access pat-
terns (e.g. [7]) focus on quantifying the adversary’s inability
to make particular inferences, but do not assess holistic in-
formation loss. In contrast, we upper-bound the total access
pattern information leakage, and leave it to the client to de-
cide how much leakage is acceptable given the application.

3.4 Paddable TOM Protocols
We now show how to construct a λ-TOM for any given

λ from a paddable TOM. Intuitively, we start by choosing
λ milestones, then delay each query’s completion by silently
padding it with dummy steps until its step count reaches a
milestone. We use SMax to denote the worst-case per-access
step count.

Definition 5. A protocol is a Paddable TOM if it satisfies:

1. Condition 2 of Definition 4 (indistinguishable patterns)

2. It has finite upper bound ℓ · SMax on step count |σ(~S)|
generated by a secret access pattern of length ℓ = |~S|.

3. Any P (~S) may be padded by adding any number of

dummy steps, increasing |σ(~S)| by any amount.
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We can coerce any paddable TOM into satisfying λ-TOM
for any given λ. We first define appropriate milestones for
Mℓ, then instruct the protocol to pad every public access
pattern with dummy steps, increasing |σ(~S)| to the smallest
milestone in Mℓ greater than or equal to the original step
count. If we trivially set Mℓ = {ℓ · SMax}, and translate
every secret access pattern of length ℓ, with padding, into
a public access pattern with step count ℓ · SMax, we satisfy
1-TOM and thus ORAM security.

Efficient paddable protocols will generate step counts much
smaller than ℓ·SMax, so the padding required to reach ℓ·SMax

may incur substantial bandwidth cost. Increasing λ (adding
milestones) can reduce cost, but also reduces privacy. To
make the best possible tradeoffs, our strategy for choosing
milestones should minimize cost due to padding for any λ.

3.5 Log-Spacing for Paddable Protocols
Let m = |σ(~S)| be the original step count generated from

query ~S of length ℓ = |~S|. We may have m < ℓ if most
queried blocks are cached, but such cases are too rare to
merit dedicated milestones, so we assume ℓ ≤ m ≤ ℓ · SMax.

Let m′ be the smallest milestone inMℓ such that m′ ≥ m.
In a paddable TOM, the fractional increase in step count,
and thus bandwidth cost, is given by the padding factor
m′/m. Let δ be the maximum padding factor (maximum
possible value of m′/m). Given λ, we propose to minimize δ
by log-spacing milestones as multiples of ℓ over [ℓ, ℓ · SMax]:

Mℓ =
{⌈

ℓ (SMax)
i/λ

⌉

| i ∈ Z, 1 ≤ i ≤ λ
}

. (1)

This spacing strategy minimizes the maximum padding fac-
tor δ, ensuring:

δ ≤
⌈

(SMax)
1/λ

⌉

. (2)

To minimize λ for given δ, we solve (SMax)
1/λ≤ δ for λ:

λ ≥ logSMax

log δ
= logδ SMax. (3)

These expressions reveal a clear tradeoff between privacy
(λ) and efficiency (δ). Smaller SMax can improve privacy and
efficiency, which is unsurprising since ORAMs fix privacy at
λ = 1 and seek to reduce the worst-case per-access cost.

3.6 Assessing TOM Information Leakage
Since each query in a λ-TOM protocol leaks at most a

fixed Iλ bits of information, smaller queries leak more infor-
mation per access. Thus TOM is best applied in scenarios
where queries are large or can be easily batched.

Consider a TOM with worst-case per-access step count
SMax ∈ O(polylog(N)). The log-spacing strategy with δ = 2
gives λ ∈ O(log logN), and thus a leakage per query of
only Iλ ∈ O(log log logN) bits per ℓ-block query. Even a

less efficient TOM with SMax ∈ O(
√
N) leaks only Iλ ∈

O(log logN) bits, which is still far better than the O(ℓ logN)
bits leaked by an unprotected protocol.

What the adversary actually gains from the leaked ac-
cess pattern information depends heavily on when each step
count was observed and what other information the adver-
sary holds. Other schemes that obscure access patterns
(e.g. [7]) focus on quantifying the adversary’s inability to
make particular types of inferences, but do not address all
possible inferences, and thus do not assess holistic informa-
tion loss. In contrast, we upper-bound the total access pat-

Table 2: SBT and TOM Notation
δ Max. padding factor (padding cost increase)
H Max. fetch queue length, before padding

All queries, strict upper bound:
SMax Worst-case per-access step count, before padding
CMax Worst-case bandwidth cost, after padding

Large uniform rand. block queries, high-prob. bound:
CHP High-prob. bandwidth cost, after padding

tern information leakage, and leave it to the client to decide
how much leakage is acceptable given the application.

4. STAGGERED-BIN TOM
Here we present a novel λ-TOM protocol, called Staggered-

Bin TOM (SBT), that reduces costs even for large queries
that are not cache-friendly. In Section 5 we propose three
read-only variants of SBT that store multiple copies of each
block and reduce costs by choosing the most convenient copy
to fetch. Table 2 gives some key notation, and Table 3 com-
pares performance of SBT variants.

As noted in Section 3.3, an ORAM is simply a 1-TOM.
TOM allows us to decouple steps from secret accesses, so we
could improve on ORAM performance by simply increasing
λ and adding a local block cache. We could then satisfy most
cached block accesses without stepping the λ-TOM (without
block transfers), while leaking only log2 λ bits per multi-
block query. However, caching only improves performance
when secret access patterns exhibit temporal locality.

4.1 SBT Architecture
An SBT contains N blocks of B bits each placed in n+ 1

logical bins, each with a maximum capacity of n blocks. We
initialize the SBT by filling the bins with n, n − 1, . . . , 1, 0
blocks, respectively, and storing them on the server. The
SBT always keeps n more blocks locally, for N = n(n+3)/2
blocks total (Figure 2).

We choose n to be the smallest integer such that N ≤
n(n + 3)/2, and add up to n extra data blocks to increase
SBT capacity N to exactly n(n+3)/2. No unusable dummy
blocks of any kind are added, keeping server storage overhead
low. Bins are purely logical structures, so the server is free
to use any physical configuration for storing blocks.

The SBT needs local (client-side) storage space for three
purposes. First, it requires Bn bits for the n blocks always
stored locally. Second, it needs Bℓ bits to cache the results of
an ℓ-block query, so that all ℓ blocks can be simultaneously
released to the client. Finally, as in [23], the SBT needs a
small amount of space for each of the N blocks to record
its server ID, containing bin’s index, and a list of block ad-
dresses in each bin, for a total of roughly 2 log2 N bits per
block.

In all, approximately B(n + ℓ) + 2N log2 N bits of client
storage are required. Though these storage requirements
may seem high, [23] and [22] note that B is large enough in

practice that the space needed to store n ≈
√
2N blocks is

comparable to the space needed for the meta-data of all N
blocks. For example, with N = 230 blocks, and block size
B = 64KB, we need under 8GB for the meta-data, and up
to 8GB local block storage for queries of ℓ = 3

√
N blocks.
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Table 3: Comparison of our λ-TOM protocols, block size B. Numbers approximate; estimated average costs
taken from Figures 5–7. Smaller CMax improves privacy/efficiency tradeoff. λ← SMax for constant δ. lg ≡ log2

Protocol
Worst-
Case
CMax

Uniform Rand.
Block CHP for
ℓ ≈ 4

√
N

Bits Leaked
Per ℓ-Block
Query

Effi-
cient
Write

Server
Storage
(Bits)

Client Storage (Bits)

Unprotected 1 1 ℓ lgN Yes NB O(1)
ORAM [23] lgN lgN 0 Yes ≤ 4NB 3B

√
N + 1.25N lgN

SBT 2
√
2N O

(

log N

log log N

)

lg lg(
√
2N) Yes NB (ℓ+

√
2N)B + 2N lgN

2-Choice SBT 4
√
N O(1), ≈ (3–5) lg lg(2

√
N) No 2NB (ℓ+ 2

√
N)B + 4N lgN

SBT+ORAM 3 lgN O(log logN) lg lg(3 lgN) No ≤ 5NB
(ℓ +

√
2N + 3

√
N)B +

3.25N lgN

Multi-SBT 3 lgN O(1), ≈ (4–7) lg lg(3 lgN) No ≤ 6NB (ℓ + 5
√
N)B + 5.25N lgN
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Figure 2: SBT in its initial state, with n = 5 blocks
on the client, and n(n+1)/2 on the server. The empty
server-side incoming bin will be filled in, one block
at a time, by the n blocks from the client.
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Figure 3: SBT after 3 steps. Server bins are accessed
in a round-robin fashion. Blocks L,F,D have been
fetched to the client-side incoming bin, and blocks
R,Q, P stored to server-side incoming bin.

4.2 SBT Operation
Each step in the SBT fetches one block from and stores

one block to the server. SBT operation is best described
in terms of passes of n steps each. A pass fetches and re-
moves one block from each of the n non-empty bins in or-
der, and stores n blocks to the previously empty bin. After
each pass, the bin load pattern rotates by 1 bin, and fetches
continue round-robin (Figure 3). After each pass, the SBT
re-encrypts the n fetched blocks, randomly permutes them,
assigns them to the empty bin, and generates new server-side
IDs to prevent linking to old copies.

Each query consists of ℓ secret accesses for distinct block
addresses. A query may begin or end at any point during a
pass. The SBT cannot change the one-per-bin round-robin
fetch pattern, but may choose which block to fetch from
each bin. Thus, a single-block query can always be satisfied
in n steps, since we fetch at least one block from every non-
empty bin. Similarly, any ℓ-block query takes at most ℓn

steps (SMax = n), since we always retrieve at least one target
block per pass, even if all ℓ blocks are in one bin.
The SBT maintains a fetch queue for each bin. To start

a query, we identify the bin containing each block to be
accessed, and add an appropriate fetch to that bin’s fetch
queue. When the SBT is ready to issue a fetch for bin i, it
first checks i’s fetch queue. If the queue is non-empty, the
next fetch is dequeued and dispatched to the server. Oth-
erwise, a dummy fetch is generated for a randomly chosen
block from the bin. Once all fetch queues are empty and all
outstanding fetches finish, the query is satisfied and results
are released to the client.

All fetches must proceed in order, as must all stores. Fur-
ther, to maintain n blocks on the client, a given step’s store
cannot begin until its fetch completes. However, stores may
trail their corresponding fetches as much as necessary to en-
sure full network bandwidth utilization. That is, we may
initially let fetches get several steps ahead of stores, so that
many stores and fetches run concurrently.

4.3 SBT Security
We now show that SBT meets the Paddable TOM criteria

in Definition 5. We have shown that SBT has a finite step
count upper bound ℓn, so it remains to show that public
access patterns with the same step count are indistinguish-
able (Condition 2 of Definition 4), and that public access
patterns may be padded.

Theorem 1. In the SBT, for any two public access patterns
P ( ~S1), P ( ~S2), if |σ( ~S1)| = |σ( ~S2)|, then P ( ~S1) and P ( ~S2)
are computationally indistinguishable.

Proof. First, the order in which the SBT fetches from and
stores to bins is fixed. Hence, any two public access patterns
with the same step count must make fetches and stores to
and from exactly the same sequence of bins.

Store Patterns: After each pass, the locally-stored bin of
blocks to be sent to the server is randomly permuted and
re-encrypted using a semantically secure encryption scheme
and a fresh nonce. Blocks are then stored to the server in
their permuted order. Re-encryption ensures that the server
cannot distinguish the blocks. Random permutation ensures
that blocks are always stored in a uniformly random order,
independent of fetch order. Thus any two store patterns of
the same length are computationally indistinguishable.

Fetch Patterns: Since the blocks within each bin were
randomly permuted, each block’s location in the bin is in-
dependent of its data and any prior accesses. Thus each
fetch is indistinguishable from a uniformly random choice
from the bin’s remaining blocks, and any two fetches from
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one bin are indistinguishable. Thus any two fetch patterns
of the same length are indistinguishable.

Thus, since P ( ~S1) and P ( ~S2) have the same step count,
and there is exactly one fetch and store per step, their fetch
and store patterns each have the same length and are indis-
tinguishable. Since both fetches and stores are indistinguish-
able, and the pattern of when to issue fetches and stores is
predetermined, P ( ~S1) and P ( ~S2) are themselves computa-
tionally indistinguishable.

Theorem 2. Any public access pattern generated by SBT
may be padded by adding any number of dummy steps.

Proof. We can pad any public access pattern in SBT with
any number d of additional steps by issuing d dummy fetches
for randomly chosen blocks from each of the next d bins,
along with their corresponding stores.

Theorems 1 and 2 establish that SBT is a Paddable TOM,
as per Definition 5. Thus we can coerce SBT into satisfying
λ-TOM for any λ. In particular, we apply the log-spacing
strategy of Section 3.5 to choose the λ milestones in Mℓ.
The smaller our choice of λ, the greater our privacy but the
poorer our performance. By Equation 2, for a given λ, we
have a maximum padding factor:

δ ≤
⌈

(SMax)
1/λ

⌉

=
⌈

n1/λ
⌉

≤ (2N)1/2λ. (4)

Similarly, by Equation 3, for a δ, we get a minimum mile-
stone count λ given by:

λ ≥ logδ SMax = logδ n. (5)

4.4 SBT Performance
The upper-bound on the SBT’s per-access step count is

given by SMax = n, so the upper-bound bandwidth cost is
given by CMax = 2n ≤ 2

√
2N . We now determine the band-

width cost CHP that holds with high probability for large,
uniform random block queries, which are queries composed
of ℓ block addresses chosen uniformly at random, without
replacement.

The size of each fetch queue decreases by at most one
during a given pass, so the number of passes needed to satisfy
a query depends on the initial length of the longest fetch
queue. We use H to denote the maximum length of the
longest fetch queue. The query generates step count roughly
nH without padding. In the best case, each fetch queue is
nearly the same length, and in the worst case all fetches are
in the same queue, so we know that ⌈ℓ/n⌉ ≤ H ≤ ℓ.

Theorem 3. Let ℓ ≥ n (large queries). With high probabil-
ity for the SBT with uniform random block queries:

H ∈ O

(

ℓ

n

log n

log log n

)

.

We prove this theorem in Appendix A, using the observa-
tion that we can bound H by bounding the maximum urn
height in the well-known balls and urns problem [12, 19],
where balls are thrown into urns uniformly at random, with
replacement. Thus, for uniform random block queries with
ℓ ≥ n, the bandwidth cost, with high probability, is:

CHP ∈ O

(

δ
n

ℓ

ℓ

n

log n

log logn

)

⊆ O

(

δ logN

log logN

)

, (6)

with constant δ for at least λ ∈ Ω(logN) milestones. Thus
SBT is able to satisfy large queries that are not cache-
friendly with a lower asymptotic cost than the best ex-
isting ORAM protocols (cost O(logN)) while leaking only
Iλ ∈ O(log logN) bits per ℓ-block query.

5. SBT VARIANTS
We now propose three read-only SBT variants: 2-Choice

SBT, SBT+ORAM, and Multi-SBT (a combination of 2-
Choice SBT and SBT+ORAM). These variants store multi-
ple copies of each block and fetch the most convenient copy
available, reducing bandwidth cost to as little as CMax =
3 log2 N in the worst case, and CHP ∈ O(1) for large uni-
form random block queries (see Table 3).

Read-only means that the client cannot update the con-
tents of any of his blocks. However, blocks must still be
re-encrypted and stored back to the server to preserve pri-
vacy. Writes can be supported, but would require all copies
of a block to be updated, making writes substantially more
expensive than reads.

5.1 The 2-Choice SBT Variant
We construct the 2-Choice SBT by creating two copies

of each of the N data blocks, and adding them all to a
single SBT with capacity 2N , which treats both copies as
independent blocks. The key difference from SBT is that
when the 2-Choice SBT needs to read block a, it may choose
to fetch the block from either of 2 bins. It is possible that
both copies of a will be in the same bin, but this state is rare
and transient, persisting only until either copy is fetched.

For a given query, each of the ℓ secret block accesses yields
a fetch that is assigned to one of two bins’ fetch queues.
We want to optimize the assignment of fetches to bins, re-
ducing the maximum queue length H. Since we know the
entire query and the block-bin mapping, the optimization
resembles the optimal multi-choice allocation [2], and offline
Cuckoo hashing [17] problems.

5.1.1 Random Round Robin Algorithm

We optimize fetch assignments using the iterative Random
Round Robin (RRR) algorithm proposed in [2]. We describe
RRR briefly, replacing balls with block fetches and bins with
fetch queues.

We first guess a target maximum queue lengthH ′, starting
with the minimum H ′ = ⌈ℓ/n⌉. We then run RRR to try to
find an assignment of fetches to queues with actual H ≤ H ′.
If the attempt fails, we incrementH ′ and repeat. In practice,
we rarely expect more than two iterations [2], so we fix a
maximum iteration count r = 5, after which we return the
best available result. The iterative RRR runs efficiently,
requiring time and space in O(r(n+ ℓ)).

For each RRR iteration, each fetch starts out uncommit-
ted : assigned to the queues of both bins containing its block.
When we commit a fetch to a queue, we irreversibly remove
it from its other queue. We identify any queue q with length
at most H ′, and commit to q all its uncommitted fetches.
The intuition is that since q’s length is at most H ′ and can-
not increase, it should accept its current assignment, freeing
as many fetches as possible from other queues. Any time we
remove a fetch from a queue, we repeat this check.

We continue by stepping through all remaining queues
with uncommitted fetches, for each queue randomly choos-
ing one uncommitted fetch to commit to the queue, followed
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by the length check. We continue stepping through queues
until all fetches are committed. If any queues still have more
than H ′ fetches, the RRR iteration is declared a failure.

5.1.2 2-Choice SBT Security

To an observer, the 2-Choice SBT behaves just like the
SBT, except for its higher capacity. Thus, 2-Choice SBT’s
security follows from the arguments for SBT security in Sec-
tion 4.3. In particular, 2-Choice SBT meets the criteria
of Definition 5 for a Paddable TOM Protocol with worst-
case per-access step count SMax = n ≤ 2

√
N . Thus, it

can be coerced to λ-TOM using the log-spacing strategy.
By Equation 2, the maximum padding factor δ is given by

δ ≤
⌈

n1/λ
⌉

≤ (4N)1/(2λ). For a given δ, Equation 3 gives

λ ≥ logδ n.

5.1.3 2-Choice SBT Performance

Since SMax ≤ 2
√
N , we have CMax ≤ 4

√
N .

Conjecture 1. With high probability, the 2-Choice SBT
with uniform random block queries gives H ∈ O(ℓ/n+ 1).

For a related balls and urns problem, the authors in [2]
show empirically that RRR yields maximum urn height in
O(ℓ/n+1), with performance nearly indistinguishable from
the more complex Selfless Algorithm, which is proven to have
maximum height O(ℓ/n + 1) with high probability. While
we cannot provide a formal proof of Conjecture 1, we give a
detailed argument supporting it in Appendix A, and show
in Section 6 that it is borne out by our experiments.

Assuming Conjecture 1, the bandwidth cost of the 2-Choice
SBT used on uniform random block queries with ℓ ≥ n is,
with high probability:

CHP ∈ O

(

δ
n

ℓ

(

ℓ

n
+ 1

))

⊆ O(δ), (7)

with constant δ for λ ∈ Ω(logN). Thus, for large uniform
random block queries, the 2-Choice SBT is highly efficient,
and leaks only Iλ ∈ O(log logN) bits/query.

Relative to SBT, the 2-Choice SBT doubles the storage
space required for the server (2N), and increases required

client block storage from
√
2N to 2

√
N blocks and client

index space from about 2N log2 N to nearly 4N log2 N bits.

5.2 The SBT+ORAM Variant
We construct the SBT+ORAM by merging a SBT with

any efficient ORAM. We store one copy of each block in the
SBT and in the ORAM, and run both protocols in parallel.
To read a block, we either fetch it using the SBT, or read
it using a single ORAM step. For now we use the practical
ORAM of [23] due to its low bandwidth cost of roughly
log2 N block transfers per secret access.

For each query, we first assign all fetches to the SBT com-
ponent’s fetch queues and let it run normally. After every
log2 N SBT steps, we remove one fetch from the current
longest fetch queue and re-assign it to the ORAM.

5.2.1 SBT+ORAM Security

The ORAM component advances one step for every log2 N
SBT steps. Thus, in the worst case where we rely strictly
on the ORAM, we need ℓ(1 + log2 N) total steps to satisfy
a query of length ℓ, so the per-access step count is bounded
by SMax = 1 + log2 N . We now show that SBT+ORAM

satisfies the indistinguishability and paddability conditions
of a Paddable TOM.

Theorem 4. In SBT+ORAM, for any public access pat-
terns P ( ~S1), P ( ~S2), if |σ( ~S1)| = |σ( ~S2)|, then P ( ~S1) and

P ( ~S2) are computationally indistinguishable.

Proof. Since ORAM uses exactly one step per secret ac-
cess, two public access patterns with the same step count
have the same secret access pattern length. Thus, by Defi-
nition 1, any two public access patterns with the same step
count generated by the ORAM are indistinguishable. By
Theorem 2, any two public access patterns with the same
step count generated by the SBT are also indistinguishable.
Since the public access patterns generated by both proto-
cols are indistinguishable, and the pattern of when to issue
fetches from the SBT and the ORAM is predetermined, the
SBT+ORAM’s combined public access patterns P ( ~S1) and

P ( ~S2) are indistinguishable.

Using the log-spacing strategy gives δ ≤ ⌈(SMax)
1/λ⌉ =

⌈(1 + log2 N)1/λ⌉ and λ ≥ logδ SMax = logδ(1 + log2 N)
(Equations 2, 3). Since SMax is smaller for SBT+ORAM
than SBT, the privacy/efficiency tradeoff is more favorable.
In particular, to limit padding to δ = 2, we need only λ ≈
log2 log2 N milestones.

5.2.2 SBT+ORAM Performance

We incur log2 N block transfers for each ORAM step and
2 transfers for each SBT step. In the worst-case, we make
ℓ ORAM steps and ℓ log2 N SBT steps for an ℓ-block query,
giving CMax ≤ 3 log2 N .

We know from Theorem 3 that for large uniform random
block queries, the SBT has maximum fetch queue length in
O(ℓ logN/n log logN). However, the expected queue length
is only ℓ/n, so we rightly expect that relatively few queues
have such large lengths. Though the ORAM runs slowly,
focusing it on the largest queues first asymptotically reduces
the final maximum queue length H.

Theorem 5. Let ℓ ≥ n and N ≥ 32. With high probability
for the SBT+ORAM with uniform random block queries we
have:

H ∈ O

(

ℓ

n
log logN

)

.

In the full version of the paper [3] we present a proof for
Theorem 5 based on a novel balls and urns analysis. By
Theorem 5, the bandwidth cost of the SBT+ORAM used
on uniform random block queries with ℓ ≥ n,N ≥ 32 is,
with high probability:

CHP ∈ O

(

δ
n

ℓ

ℓ

n
log logN

)

⊆ O (δ log logN) , (8)

with constant δ for only λ ∈ Ω(log logN) milestones. Thus,
for large uniform random block queries, the SBT+ORAM is
more efficient than the SBT. At the same time, it leaks only
Iλ ∈ O(log log logN) bits per query, yielding better privacy
than 2-Choice SBT, but slightly higher CHP.

The server storage costs of [23] are reported at roughly
4BN bits, and we estimate that client storage is 1.25 log2 N+

3B
√
N bits, based on results in Table 2 of [23]. Thus, the

SBT+ORAM has a total server storage cost of roughly 5BN ,
and client storage (ℓ+

√
2N + 3

√
N)B + 3.25N log2 N bits.
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Figure 4: Analysis confirmation. Max. observed H asymptotically dominated by analytic predictions. µ = ℓ/n

5.3 The Multi-SBT Variant
The Multi-SBT replaces the SBT in a SBT+ORAM with

a 2-Choice SBT. Thus, the Multi-SBT stores a total of three
copies of each block. Its security follows directly from the
security of 2-Choice SBT and SBT+ORAM.

The Multi-SBT inherits SBT+ORAM’s excellent worst-
case per-access step count SMax = 1+log2 N and bandwidth
cost CMax = 3 log2 N . For large random block queries, it also
inherits 2-Choice SBT’s high-probability bandwidth cost:

CHP ∈ O(δ), (9)

while requiring only λ ∈ Ω(log logN) milestones for con-
stant δ, and leaking only Iλ ∈ O(log log logN) bits per
query. Thus, for uniform random block queries of any size,
the Multi-SBT requires only O(ℓ+ log2 N) block transfers!

Multi-SBT combines the best performance and privacy
characteristics of 2-Choice SBT and SBT+ORAM, and can
easily outperform both. Even in worst cases, the Multi-SBT
incurs at most 3 times the bandwidth cost of SBT+ORAM,
or 1.5 times the cost of SBT. Multi-SBT requires total server
storage of roughly 6BN , and client storage roughlyB

√
N(3+√

2) + 5.25N log2 N bits.

6. EVALUATION
We implemented prototypes for SBT and its variants to es-

timate actual bandwidth costs for various query types. The
prototypes simulate secure transfers of blocks between the
client and server, tracking each block’s location at all times.

6.1 Maximum Queue Length Measurements
Theorems 3, 5 and Conjecture 1 give high-probability

asymptotic bounds on H for large, uniform random block
queries. We validated these bounds by running simulations
for the corresponding SBT variants without padding, and
measuring the highest observed H over 4N/ℓ queries for var-
ious ℓ. Our results are shown in Figure 4 along with plots
of concrete functions consistent with our bounds.

6.2 Simulator Details
We implemented our simulator in Java, fully modeling

SBT behavior. The simulator accommodates padding, wait-
ing to release query results until the step count reaches one
of the milestones. Our simulator is synchronous, since asyn-
chronous behavior is not needed to measure bandwidth cost.

On a single thread, the simulator requires 0.5 to 1.5µs per
simulated block transfer, depending on the specific protocol
and number of blocks. For the sake of speed, we do not

manipulate actual block contents. Thus, we’re able to effi-
ciently evaluate SBT bandwidth costs for larger block counts
and longer runs without the expense of actually performing
network transfers, disk IO, and encryption.

We assume a fully de-amortized black-box ORAM with
log2 N bandwidth cost per step, based on the ORAM in [23].
When simulating the protocols with ORAM components, we
step the SBT component log2 N times, then step the ORAM
once, retrieving the previous step’s result.

6.3 Bandwidth Cost Experiments
Figures 5–13 give our experimental results measuring band-

width cost for three types of queries and varying three pa-
rameters (N, ℓ, λ). Recall that bandwidth cost is given by
the total number of block transfers (fetches and stores counted
individually), divided by the number of secret accesses (reads
or writes) ℓ.

All the experiments used a 64KB block size and allow
8GB of client space, which includes the SBT’s block-ID map,
space for recently fetched blocks, and space for the ORAM
component, if any. Any leftover client space is used as a local
block cache. Different block sizes alter storage capacity and
client space, but leave bandwidth costs largely unchanged.
During a trial, we run 4N/ℓ queries of fixed length ℓ, re-
questing each stored block four times on average.

Each experiment varies one of: block count N (Figures 5,
8, 11), query length ℓ (Figures 6, 9, 12), or milestone count λ
(Figures 7, 10, 13). Our default block count N = 224 yields
a 1TB TOM storage capacity. Our default query length
ℓ = 4

√
N represents a 214 block (1GB) query for the default

N . Our default milestone count λ = 8 leaks at most Iλ = 3
bits per ℓ-block query.

6.3.1 Uniform Random Block Queries (Figures 5–7)

The Uniform Random Block queries are the best suited
to the SBT protocols. For each query, we choose ℓ distinct
blocks uniformly at random from all N blocks. We used the
same type of query to derive our analytic bandwidth cost
predictions. All SBT variants outperform ORAM for large
uniform random block queries, with costs as low as 5X for
the Multi-SBT (Figure 6).

6.3.2 Fixed Sequence Queries (Figures 8–13)

For fixed sequence queries, we divide the N blocks into
s = N/ℓ non-overlapping fixed sequences of ℓ distinct blocks
each before permuting the blocks and storing them on the
server. Each query consists of exactly one of these fixed
sequences, simulating a file system in which each query re-
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Figure 13: Zipf fixed sequence
queries, varying λ

quests an entire file. Uniform fixed sequence experiments
choose sequences uniformly at random, while Zipf exper-
iments choose sequences from a power law distribution in
which the ith most common sequence is chosen with proba-
bility Hs/i, where Hs is the sth harmonic number.

There are relatively few (N/ℓ) possible distinct fixed se-
quence queries, compared to the many (N choose ℓ) uniform
random block queries. As a result, fixed sequence queries are
far more likely to repeat, leading to poor SBT performance
(Section 4.4). Zipf fixed sequence queries repeat frequently,
so that ORAM nearly always outperforms the SBT variants
(Figures 11–13). Uniform fixed sequence queries repeated
less often, so several variants still outperform ORAM (Fig-

ures 8–10). We reiterate that SBT is a special-purpose TOM
protocol. The more varied the query block distribution, the
better SBT performs.

6.3.3 Other Observations

For small queries, SBTs with ORAMs converge to a worst-
case cost 3 log2 N , while others converge to a much larger
cost of n (Figures 6, 9, 12). Figures 7, 10, 13 show that we
can improve performance by leaking more information (in-
creasing λ) up to λ ≈ 32 (Iλ = 5 bits). At this point padding
costs become negligible, leaving the raw cost of the proto-
col. Since protocols with ORAM components have smaller
worst-case costs, the milestones are packed more tightly, so
padding effects become negligible sooner (λ ≈ 8).
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7. CONCLUSION
We presented a novel ORAM generalization called Tunably-

Oblivious Memory (λ-TOM), which permits a privacy/efficiency
tradeoff controlled via milestone count λ. We introduced
the log-spacing strategy for choosing milestones to mini-
mize padding costs, and strictly bounded the information
leaked by each λ-TOM query. We also developed the special-
purpose Staggered-Bin TOM protocol, and several read-only
variants, including the Multi-SBT. We showed analytically
and empirically that the Multi-SBT is highly efficient for
large queries that are not cache-friendly, achieving band-
width costs as low as 6X compared to the 22X-29X costs of
the best existing ORAM protocols, while leaking at most 3
bits per query. We believe that the TOM model can be used
in future work to build other highly secure special-purpose
protocols, like SBT, that outperform current ORAM tech-
niques on a variety of workloads.
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APPENDIX

A. PERFORMANCE ANALYSES / PROOFS
Here we prove Theorem 3 and argue for Conjecture 1. The

proof of Theorem 5 is deferred to the extended version of
the paper [3]. In each case, our goal is to upper-bound the
maximum fetch queue length H — the maximum number
of blocks that must be fetched from any one bin by the
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SBT component to satisfy a query. Equivalently, H is the
maximum number of SBT passes needed to satisfy a query.

For simplicity, we assume the SBT is at the start of a pass,
so we are given n bins filled with 1, 2, . . . , n blocks each.1

Each query requests ℓ distinct blocks chosen uniformly at
random, without replacement, from the set of all N blocks.
We call such queries uniform random block queries. Every
block has a unique location. Of the N = n(n+ 3)/2 blocks,
n are located somewhere in the local cache, and the remain-
ing n(n + 1)/2 are located somewhere in one of the n bins.
Requests for cached blocks are satisfied instantly.

We assign each queried block a unique index i between 1
and ℓ. Let PrB(i, j) be the maximum probability that block
i will be in bin j, given any possible arrangement of the
remaining queried blocks. The maximum PrB(i, j) occurs
when j is the n-block bin, and the other ℓ − 1 blocks are
located in bins other than j. In this case, i has N − ℓ + 1
possible locations, n of which are in bin j, giving:

PrB(i, j) ≤
n

N − ℓ+ 1
≤ n

N − ℓ
. (10)

A great deal of work has been done on the closely-related
balls and urns problem (e.g. [12, 19]), in which balls are
thrown independently into one of several urns chosen uni-
formly at random (with replacement).2 There are well-
known bounds on the resulting maximum urn occupancy.
To use these bounds, we first reduce our blocks and bins
problem to a larger balls and urns problem.

A.1 Problem Transformation
Consider the balls and urns problem with 3ℓ balls, where

3 distinct balls are given each index 1 ≤ i ≤ ℓ. We throw
these 3ℓ balls independently and uniformly at random into
n urns. Let PrU (i, j) be the probability that at least one
ball with label i will appear in urn j, which is given by:

PrU (i, j) = 1−
(

n− 1

n

)3

=
3n2 − 3n+ 1

n3
(11)

Intuitively, if PrB(i, j) ≤ PrU (i, j), then a ball labeled i
is at least as likely to be placed in urn j as block i is to
be located in bin j, and so the number of blocks found in
bin j should be no larger than the number of balls in urn
j. If we can show that PrB(i, j) ≤ PrU (i, j) for every i, j,
then any upper-bound on the maximum urn occupancy in
the balls and bins problem should hold for the maximum
queue length H in the blocks and bins problem.

Lemma 2. PrB(i, j) ≤ PrU (i, j) holds for all ℓ ≤ n2/6.

Proof. Substituting N = n(n+ 3)/2, we get:

PrB(i, j) ≤
n

N − ℓ
=

2

n+ 3− 2ℓ/n
.

Thus we have

PrB(i, j) ≤ PrU (i, j) ⇐=
2

n+ 3− 2ℓ/n
≤ 3n2 − 3n+ 1

n3

⇐⇒ 2n3 ≤ 3n3 + 6n2 − 8n+ 3− ℓ(6n− 6 + 2/n)
1We can force the SBT to the start of a pass for each query,
which increases H by at most 1 and thus does not affect our
asymptotic analysis.
2Such problems are commonly referred to as balls and bins
problems, but since we use bin in our SBT construction, we
use urn here for clarity.

⇐⇒ ℓ (6n− 6 + 2/n) ≤ n3 + 6n2 − 4n+ 3

⇐= ℓ ≤ n2/6

A.2 SBT Analysis
We are now ready to prove Theorem 3.

Theorem 3. Let ℓ ≥ n (large queries). With high prob-
ability for the SBT with uniform random block queries, we
have:

H ∈ O

(

ℓ

n

log n

log log n

)

.

Proof. It is well known (e.g. [19]) that if we throw n balls
independently and uniformly at random into n urns, we get
a maximum urn occupancy in O(logn/ log logn) with high
probability. Thus, if we throw m ≥ n balls, we get a max-
imum height O((m log n)/n log logn). By Lemma 2, when
ℓ ≤ n2/6, an upper-bound on the maximum urn occupancy
for m = 3ℓ balls and n urns applies to H, giving:

H ∈ O

(

3ℓ log n

n log log n

)

⊆ O

(

ℓ

n

log n

log logn

)

, for
n

3
≤ ℓ ≤ n2

6

Further, since H ≤ n, for ℓ > n2/6 we also have, trivially,

that: H ∈ O
(

ℓ
n

)

⊆ O
(

ℓ
n

logn
log logn

)

.

A.3 2-Choice SBT Analysis

Conjecture 1. With high probability for the 2-Choice SBT
with uniform random block queries, we have:

H ∈ O (ℓ/n+ 1) .

Authors in [2] analyze the Selfless Algorithm for allocat-
ing m balls to n urns, where each ball may be placed in
either of two urns chosen uniformly at random. They show,
analytically, that the Selfless Algorithm yields a maximum
final urn occupancy U ′ ∈ O(⌈m/n⌉) ⊆ O(m/n + 1) with
high probability. They also show empirically that the sim-
pler Random Round Robin algorithm, which we use for the
2-Choice SBT, has nearly equivalent performance.

As we did for SBT, we can think of the 2-Choice SBT’s
blocks and bins problem as a balls and urns problem where
we throw m = 3ℓ balls into n urns. However, since each
block now belongs to two bins, and can thus be added to
either of two fetch queues, the corresponding ball may be
placed in either of two urns, but need not be placed in both.
Though Lemma 2 no longer holds, we appeal to the intuition
that a bound on the maximum urn occupancy H ′ is likely
to hold for the maximum fetch queue height H as well.
We therefore contend that H ≈ U ′ ∈ O(m/n + 1) ⊆

O(ℓ/n+1). Clearly, this argument is far from a proof, both
because Random Round Robin has not been fully analyzed,
and because of the different models used for the two-choice
blocks and bins and two-choice balls and urns problems.
However, we observe empirically that 2-Choice SBT does
in fact appear to follow H ∈ O(ℓ/n + 1), as evidenced by
Figure 4 in Section 6.

324




