
Combining ORAM with PIR to Minimize Bandwidth Costs

Jonathan Dautrich
Google, Inc.

Irvine, California
jjldj@google.com

Chinya Ravishankar
Computer Science and Engineering

University of California, Riverside
ravi@cs.ucr.edu

ABSTRACT

Cloud computing allows customers to outsource the burden
of data management and benefit from economy of scale, but
privacy concerns limit its reach. Even if the stored data
are encrypted, access patterns may leak valuable informa-
tion. Oblivious RAM (ORAM) protocols guarantee full ac-
cess pattern privacy, but even the most efficient ORAMs
proposed to date incur large bandwidth costs.

We combine Private Information Retrieval (PIR) tech-
niques with the most bandwidth-efficient existing ORAM
scheme known to date (ObliviStore), to create OS+PIR, a
new ORAM with bandwidth costs only half those of ObliviS-
tore. For data block counts ranging from 220 to 230, OS+PIR
achieves a total bandwidth cost of only 11X–13X blocks
transferred per client block read+write, down from Oblivi-
Store’s 18X-26X. OS+PIR introduces several enhancements
in addition to PIR in order to achieve its lower costs, includ-
ing mechanisms for eliminating unused dummy blocks.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion—security, integrity, and protection

Keywords

Data privacy; Oblivious RAM; private information retrieval

1. INTRODUCTION
Cloud computing allows customers to outsource the bur-

den of data management and benefit from economy of scale,
but privacy concerns limit its reach. Even if data blocks are
encrypted by the client before being stored on the server,
data access patterns may still leak valuable information [5,
11, 12]. Private Information Retrieval (PIR) [3] and Oblivi-
ous RAM (ORAM) [9] techniques both offer provable access
pattern privacy for outsourced data, each with their own ad-
vantages and disadvantages. In this work, we combine the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY’15, March 2–4, 2015, San Antonio, Texas, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3191-3/15/03 ...$15.00.

http://dx.doi.org/10.1145/2699026.2699117.

strengths of existing ORAM and PIR constructs to create a
new ORAM with reduced bandwidth costs.

In PIR, data on the server may be encrypted or unen-
crypted, and the client issues an encrypted query for a par-
ticular bit or block of B bits. The server evaluates each
query homomorphically (without decryption), returning the
desired block without learning which block was requested.
In order to achieve this degree of security, the server must
evaluate each query over all bits in the database, making
PIR computationally prohibitive for most applications [16].

In ORAM, blocks of data are always encrypted by the
client before being stored on the server. Informally, the
ORAM defines a protocol that dictates how the client should
fetch, permute (shuffle), re-encrypt, and store blocks from
and to the server in order to prevent the server from learn-
ing any information about the pattern of plaintext block
requests. The ORAM protocol guarantees that for any two
same-length sequences of plaintext block requests, the re-
sulting patterns of encrypted block accesses are computa-
tionally indistinguishable to all observers other than the
client. ORAM requires negligible computation, but may
incur substantial bandwidth or storage overheads.

Definition 1. The bandwidth cost W of an ORAM or PIR
technique is the number of blocks transferred for every block
requested. Equivalently, it is the total number of bits trans-
ferred in order to retrieve B bits, where B is the block size. If
we upload and download 3 blocks for each request, W = 6X.

Bandwidth cost is particularly important when applying
ORAM to mobile devices, where bandwidth costs are sub-
stantial. Existing ORAMs have bandwidth costs polyloga-
rithmic in the total number of blocks N [7, 9, 10, 13, 18, 20,
23]. The ObliviStore (OS) ORAM [18] has the lowest band-
width cost of any single-server ORAM proposed to date.
OS’s bandwidth cost is roughly (log2 N)X, with no hidden
constants, though it requires extensive client storage. Other
ORAMs require less storage [13, 14, 20] or reduce response
times [2, 6, 22], but all incur higher total bandwidth costs.

1.1 Our Proposal: OS+PIR
In this work, we show how to drastically reduce ObliviS-

tore’s bandwidth costs by combining it with PIR. The com-
bination yields a new ORAM that we call OS+PIR that
offers reduced bandwidth costs and permits tradeoffs be-
tween bandwidth cost, client/server storage, and computa-
tion. Combining ORAM and PIR was proposed in [14], but
their scheme uses a different ORAM [15] and emphasizes
constant client storage instead of low bandwidth costs.

289

OS+PIR treats its PIR component largely as a black box,
so any efficient PIR technique may be used. Section 4 dis-
cusses how we use the Trostle-Parrish PIR [21], also used in
[14], to reduce online bandwidth costs in OS+PIR. In OS,
for each request, the client retrieves and decrypts one block
from each of O(log N) levels. At most one of the decrypted
blocks is real and all others are dummies (Section 3.2) that
can be discarded. We use PIR to retrieve only the real block
without revealing which block was accessed. Since we use
PIR for only a small number (O(log N)) of blocks, it is com-
putationally feasible.

We divide OS+PIR’s total bandwidth cost W into an
ORAM component WO and a PIR component WP , where
W = WO + WP . WO depends on the ORAM’s behavior,
and WP depends on the specific PIR and parameters such
as block size. Applying PIR reduces WO by roughly 30%.

In Section 5 we show how to amplify this reduction by
altering the number and relative sizes of partition levels,
balancing the reduced bandwidth cost with the resulting
increases in PIR computation and server storage.

We present experimental results in Section 6. For systems
with 220 to 230 blocks of 2MiB each, OS+PIR reduces the
total bandwidth cost from OS’s 18X–26X to only 11X–13X.

In the full version of the paper, we present the previously
undiscovered OS issue of unused dummy blocks, which is
exacerbated in OS+PIR by the increased level sizes. Un-
used dummies occur because ObliviStore makes more evic-
tions than requests, which causes unnecessary block down-
loads. We show how to mitigate this issue by securely alter-
ing OS+PIR’s eviction pattern and creating fewer dummy
blocks. We also analyze two previously proposed techniques
that use available client space to reduce bandwidth cost, re-
ducing the eviction rate [18] and applying level caching [6],
and show how to strike a reasonable balance between them.

2. RELATED WORK
Oblivious RAM was first proposed in [9] and required a

bandwidth cost of O(log3 N)X blocks transferred per block
requested, where N is the number of data blocks in the
ORAM. Subsequent works have reduced the bandwidth cost
to O(log2 N/ log log N)X using constant client-side storage
[13]. While constant client storage is desirable, it is not
always necessary in practical settings. Recent works have
reduced bandwidth costs to O(log N)X by allowing addi-
tional client storage, specifically: O(BNv) client storage for
constant v > 0 in [10], O(B log N) for large B ∈ O(log2N)

in [20], and O(N log N + B
√

N) in [6, 18, 19].
Not all ORAMs that achieve O(log N)X bandwidth cost

are equally practical. For block sizes on the order of kilo-
bytes or larger, the ObliviStore (OS) family of ORAMs [6,
18, 19] has the lowest practical bandwidth cost of any single-
server ORAM proposed to date. OS’s bandwidth cost is
roughly (log2 N)X, with no hidden constants, though it re-
quires extensive client storage. In contrast, Path ORAM [20]
requires closer to (8 log2 N)X, and more if client space is re-
duced using recursion. The scheme in [10] requires roughly
log2 N round-trips per request, but each trip may include
several block transfers, making the total bandwidth cost at
least 3 to 4 times that of OS. Since OS has the lowest band-
width cost, we compare with it when evaluating OS+PIR.

Prior work [14] combined PIR with the tree-based ORAM
of [15]. While their construction achieves the desirable prop-
erty of constant client memory, it still requires O(log2 N)X

Table 1: Notation
N Total number of real (data) blocks in an ORAM
B Size of each data block (in bits)
b A specific plaintext data block
W Total bandwidth cost
WO ORAM component of total bandwidth cost W
WP PIR component of total bandwidth cost W
ǫ Eviction rate

p A partition used in ObliviStore or OS+PIR
pr Request partition
pa Assignment partition
pe Eviction partition

k Level size factor
K Level configuration consisting of level size factors
r Number of real blocks in a sub-level
LM Total number of main levels in a single partition
LS Total number of sub-levels in a single partition
Di Maximum number of dummies in main level i

s Number of noise bits in PIR

bandwidth cost. In contrast, OS+PIR combines PIR with
the partition-based OS [18] to achieve under (1/2)(log2 N)X
bandwidth cost in practice. Multi-cloud oblivious storage
[17] achieves very low bandwidth cost (under 3X), but makes
the strong assumption of multiple non-colluding servers.

3. PRELIMINARIES
Key notation used throughout the paper is in Table 1.

3.1 Private Information Retrieval (PIR)
Private Information Retrieval (PIR) was first proposed in

[3], and allows a client to retrieve specific bits from a server
without revealing any information to the server, or any other
observer, about which bits were accessed.

PIR comes in two flavors: computational and information
theoretic. Computational PIR schemes are based on a hard-
ness assumption, such that to retrieve information about a
query, the adversary would need to solve a problem that
is considered intractable. Information-theoretic PIR guar-
antees that query information remains secret, regardless of
the adversary’s computational resources, but generally re-
quires an assumption of non-colluding servers [3]. The non-
colluding server assumption is inconsistent with untrusted
servers, so we use computational PIR in our work.

Each PIR query is encrypted by the client, sent to the
server, and evaluated homomorphically (under encryption)
by the server. The server returns the requested bit/block of
bits but learns neither the plaintext contents of the query
nor which bits were returned. PIR must perform a computa-
tional operation over every bit in the PIR database for every
query in order to achieve its strong privacy guarantees.

Instead of using PIR for the entire database, we use it
to reduce the bandwidth cost required to retrieve one of a
small subset of a client’s encrypted blocks that would oth-
erwise all be returned as part of an ORAM protocol. In this
scenario, the PIR database is small and the block size is
relatively large, so the substantial bandwidth cost reduction
can outweigh the small increase in computation. We discuss
our use of PIR in more detail in Section 4.

290

3.2 Oblivious RAM (ORAM)
Oblivious RAM (ORAM) was first proposed in [9]. Like

PIR, ORAM may be used to retrieve encrypted data from a
server without revealing which data were accessed. ORAMs
generally allow writes, while standard PIR is read-only.

Instead of evaluating queries homomorphically, ORAM
defines a protocol for transferring and modifying encrypted
blocks such that the underlying plaintext blocks accessed
by different queries are unlinkable. ORAMs download en-
crypted blocks from the server to a trusted local client space,
decrypt the desired data, then re-encrypt the blocks using
a semantically secure encryption scheme to break correla-
tions with previous encrypted contents. The ORAM then
randomly permutes the blocks to break correlations with
the previous block position, a process referred to as oblivi-
ous shuffling. Some ORAMs also use dummy blocks, which
are indistinguishable from real blocks but contain irrelevant
data, and download extra blocks, to break correlations.

ORAM security is defined as follows: For any two se-
quences of block requests of the same length, the resulting
patterns of encrypted block accesses must be computation-
ally indistinguishable to all observers other than the client
[19]. Equivalently, the output of a simulator that has no
access to any of the secret information (block contents and
requested block addresses) should be able to produce a se-
quence of encrypted block transfers that is indistinguishable
from that of the actual ORAM [13].

3.3 ObliviStore (OS)
OS+PIR builds on the ObliviStore (OS) ORAM [18]. A

full description of OS and its underlying ORAM [19] is too
extensive to include here, but we review the aspects most
relevant to OS+PIR. For N blocks of B bits each, OS uses a
relatively large amount of client storage, O(B

√
N +N log N)

bits with small constants, in order to achieve a low band-
width cost of (log2 N)X.

3.3.1 Partition and Level Structure

In OS, blocks stored on the server are arranged logically
into O(

√
N) partitions, each of which contains O(

√
N) blocks.

Each partition is a simplified hierarchical ORAM, similar to
those of [9], with roughly log2

√
N levels. The lowest level

in each partition (level 0) holds 1 real and 1 dummy block.
Successive levels double in size, so level i has real-block ca-
pacity ri = 2i and starts with 2i dummy blocks. At any
given time, each level may be occupied or empty, and only
half the levels are occupied on average.

3.3.2 Requests and Evictions

Each block request involves three steps:
1) Partition Request When the client issues a request

for block b, OS directs the request to the partition pr con-
taining b. The choice of pr is deterministic, but appears
random to an observer since b was previously assigned to a
randomly chosen partition. OS then downloads exactly one
block from every non-empty level in p. OS fetches b from
whichever level contains it, and fetches a dummy block from
every other level. Since levels were previously randomized,
each fetched block appears randomly chosen from its level.
After downloading the blocks, OS discards all dummies, re-
turns b to the client then assigns b to a new partition.

2) Assignment: After reading and optionally updating
b, OS encrypts it and assigns it to a partition pa chosen

uniformly at random. Each pa maintains a local, hidden
eviction queue of blocks assigned to pa but not yet evicted
to the server. OS assigns b to pa by adding it to the end of
pa’s eviction queue, but does not immediately evict it.

3) Eviction: After assigning b to pa, OS independently
chooses at least one partition pe and evicts either the next
block from pe’s eviction queue, or a dummy block if the
queue is empty. We perform ǫ evictions after each request,
where ǫ is the real-valued eviction rate.1 If ǫ exceeds 1.0,
OS adds the fractional component ǫ − 1.0 into a global ac-
cumulator. When the accumulator reaches 1.0, OS makes
another eviction and decrements the accumulator. Eviction
partitions (pe) may be chosen deterministically or randomly,
as long as the choice is independent of pa [19].

Choosing pa randomly guarantees that future requests for
b will appear to access a random partition. Choosing pe

independently of pa prevents an observer from learning pe

and thus from tracking b between partitions. Thus, the in-
dependence of pa and pe is critical to OS’s security.

Since pa and pe are chosen independently, blocks may ac-
cumulate in eviction queues. OS calls the space used by
these assigned but not yet evicted blocks the eviction cache.
Revealing the eviction cache size may leak information about
prior choices of pa, so a fixed amount of space sufficient for
the eviction cache is reserved up-front. Statistically, the
higher ǫ, the less space is required for the eviction cache.

3.3.3 Shuffling

Let level i in partition p initially contain ri real and ri

dummy blocks. Once ri evictions have been made to p since
i was created, i is scheduled to be re-shuffled. Shuffling i
consists of:

1. Downloading all blocks left in level i

2. Removing remaining dummies

3. Inserting any evicted blocks

4. Generating any additional dummies

5. Randomly permuting and re-encrypting all blocks

6. Uploading all blocks to a new level with 2ri real and
2ri dummy blocks

When two levels i and i−1 are both ready to be re-shuffled,
the shuffle cascades upward. Level sizes increase by factors
of 2, so every time level i is ready to be re-shuffled, all lower
levels are also necessarily ready. When shuffling all levels up
to i, we download all remaining blocks from levels 0–i and
upload blocks to level i+1 with 2ri real blocks, leaving levels
0–i empty to accommodate future evictions (see Figure 1).

3.3.4 Early Shuffle Reads

If level i has more than half its original 2ri blocks remain-
ing, then there is at least one dummy block in i to return. If
instead i has at most ri blocks remaining, it is possible that
all the blocks are real, so to maintain obliviousness OS must
treat such blocks as real. We call such blocks early shuffle
reads, since they would eventually be downloaded as part
of the upcoming shuffle. OS refers to such blocks as either
early cache-ins or real cache-ins depending on the context.

Early shuffle reads are relatively rare, and are caused by
delayed shuffles in OS. Since OS performs a constant amount
of work per request, some levels to shuffle may have not yet
been downloaded when a later request arrives, causing the

1OS uses slightly different notation, where v is the back-
ground eviction rate, equivalent to 1 − ǫ.

291

Half-empty

Levels 0-2

shuffled together

into level 3

Server

Client
Eviction

Block

Figure 1: When shuffles cascade upward in OS, all
levels to be re-shuffled are downloaded, shuffled with
eviction blocks, and uploaded to a higher level.

early shuffle read. Other than early shuffle reads, all but one
of the downloaded blocks are guaranteed to be dummies.
Early shuffle reads are downloaded separately and stored.

3.3.5 Level Compression

OS’s level compression algorithm [19] lets the client send
k real and k dummy blocks to the server using only kB
bits. The technique uses a pre-shared Vandermonde matrix
M2k×k to encode the k real blocks and their positions into a
“compressed” kB-bit stream. The server decompresses the
stream to get 2k blocks: k real and k dummies containing
random data derived from the decompression. The dummy
and real blocks are indistinguishable and intermixed.

We can alter the number of dummies generated by chang-
ing the number of rows in M from 2k to the desired total
block count. This flexibility becomes important in Section
5 where we use it to reduce OS+PIR’s bandwidth cost.

3.3.6 Bandwidth Costs

In OS, the client has enough space to store all
√

N blocks
from any given partition, and to store the location of all
N blocks. Since every partition fits entirely in client mem-
ory, re-shuffling requires that each block be downloaded and
uploaded only once. (Less client space we necessitate an ex-
pensive oblivious shuffling algorithm.) Thus, to shuffle r real
blocks, we need only transfer 3r blocks: r real downloads, r
dummy downloads, and r uploads for level compression.

The total bandwidth cost W of OS is determined by the
number of times each block must be re-shuffled per request.
Each partition has roughly (log2

√
N)/2 = (log2 N)/4 oc-

cupied levels at any time. Each of the
√

N real blocks is
shuffled once per occupied level per

√
N evictions, for a to-

tal (3/4) log2 N block transfers per eviction. Since ǫ is the
number of evictions per request, we get an expected OS cost:

W ≈ 3ǫ

4
log2 N (1)

OS reports an actual cost W ≈ log2 N for ǫ = 1.3 [18]. The
slight discrepancy with Equation 1 can be accounted for by
the problem of unused dummies, addressed in [4].

D

D

D D R

D

D R

D D

D R

D R D D R R R D

D R D D R R R D

D

D

DD R

D

DR

DD

D R

D R DD RRR D

D RD D RRR D

R

R R

D R R

D

R D

D R D R R R D

D R D R R D

D R D R R R

D R D R R D

R

D

Remove 1 block

from each non-

empty (sub-) level

Request

PIR gives

near-constant

response size

PIR

Client

Shuffle

Upload using level

compression (pay

to transfer reals)

Server

Download

remaining blocks

(mostly real)

R

R R D D

R

R

D

D

Figure 2: In OS+PIR, PIR reduces the response
cost for each request to near-constant. During shuf-
fling, only blocks remaining in each level (largely
real) need be downloaded. With level compression,
we need only transfer data of size equal to the up-
loaded reals. In all, dummy transfers are “free” —
we effectively pay only to transfer real blocks.

4. INTEGRATING PIR
In ObliviStore (OS), each request fetches one block from

each level in a partition. At most one fetched block is real
and all others are dummies, except in the case of early shuf-
fle reads, which are returned individually. Since returned
dummies are discarded, they are only transferred to mask
the real block’s identity. We want to retrieve the real block
and hide its identity without paying to transfer dummies.

The recently-proposed Burst ORAM [6] combines these
fetched blocks using XOR and returns a single block. The
client reconstructs dummy blocks locally and subtracts them
out of the combined block to recover the real. The XOR op-
timization is incompatible with OS’s level compression, since
level compression constructs dummies from reals during de-
compression, but XOR requires that dummies be generated
by the client [6]. Thus, Burst ORAM avoids paying to down-
load dummies, but overall savings are negated by the lack of
level compression, which avoids paying to upload dummies.

In OS+PIR, we instead use PIR to retrieve the real block.
Since PIR makes no stipulations on dummy block content, it
can be used with level compression. PIR itself incurs a band-
width cost WP determined by block size B, number of blocks
(levels) over which it queries, and the PIR scheme’s proper-
ties. Other than WP , dummy block transfers are essentially
free (Figure 2), reducing WO by roughly 30% up-front, and
enabling additional cost-saving modifications (Section 5).

Given that the PIR’s computational hardness assumption
holds, the PIR operation leaks no information about which
level’s block was fetched. From a security standpoint, using
PIR is therefore equivalent to OS’s approach of download-
ing each level’s block and discarding the dummies. Thus,
OS+PIR’s security guarantees are precisely those of OS ex-
cept for the added PIR hardness assumption.

4.1 Choosing a PIR Technique
In OS+PIR, we execute the PIR protocol once per block

request. Each PIR instance operates over a PIR database

292

of LS ∈ O(log N) blocks, one per level, and returns a single
block. Since we query over O(log N) blocks, PIR is far more
computationally feasible than when used over all N blocks.

PIR schemes often measure bandwidth in terms of the cost
of returning the full PIR database. To remain consistent
with Definition 1, we instead measure PIR bandwidth cost
as WP : the total amount of data transferred during each
PIR operation, divided by B. We want a PIR scheme with
low WP (near the optimal 1X). Since OS’s bandwidth cost is
already low, even a WP of 10X could negate any advantages
of using PIR. Ideally, WP should be constant: independent
of LS and B. In practice, we can use any PIR that offers
low, nearly-constant WP for small LS and large B.

One candidate is the Gentry-Ramzan PIR [8], which offers
a constant WP with a theoretic 2X minimum (closer to 4X
in practice), but incurs substantial computation costs. An-
other option is the more computationally-efficient Trostle-
Parrish PIR [21], which offers low, but not constant, WP

when B ≫ LS . OS+PIR treats its PIR as a black box,
so any PIR that meets our criteria can be used. For now,
we use the Trostle-Parrish PIR [21] used in [14], due to its
simplicity and low bandwidth and computation complexity.

Due to space constraints, we defer a detailed discussion of
the Trostle-Parrish PIR to the full version of our paper [4].

5. ALTERING LEVEL SIZE FACTORS
Combining PIR with OS’s level compression technique ef-

fectively gives OS+PIR free dummy block downloads and
uploads, aside from PIR computation and bandwidth (WP)
costs. As noted in Section 3.3.5, we can modify level com-
pression to produce additional dummy blocks at no extra
cost. Similarly, given near-constant WP , we can query over
any number of additional levels at no extra bandwidth cost.
We now show how to use these properties to reduce the
bandwidth cost of OS+PIR’s by altering level sizes.

In OS, successive levels increase in size by a factor of 2,
yielding log2

√
N levels per partition. In OS+PIR, we allow

successive levels to increase by any integer factor. Let ki

be the level size factor of main level i, which defines the
sub-level real-block capacity ratio ri/ri−1. We must allow
up to ki − 1 instances or sub-levels of main level i, which
when shuffled together with all lower levels become a single
sub-level of main level i + 1. The real-block capacity of a

sub-level in level i is given by ri =
∏i−1

j=0
kj .

To simplify the presentation of ideas throughout this Sec-
tion, we assume that OS+PIR uses ǫ = 1.0 (exactly one
eviction per request). We address larger eviction rates in
the full version of the paper [4].

5.1 Effects of Increasing Level Size Factors
We simplify our discussion of the high-level effects of in-

creasing level size factors (ki values), by assuming ki = k
for all i, where k = 2 in OS. Figure 3 shows two level con-
figurations (k = 2 and k = 4) for a partition with 15 real
blocks. We discuss non-uniform level size factors and special
handling of the top level later in this Section. Increasing k
has the following effects:

It increases the total number of sub-levels LS. For a
partition of

√
N blocks we need LM = logk

√
N main levels.

With k − 1 sub-levels per main level, the total number of
sub-levels is given by LS = (k − 1) logk

√
N , which increases

almost linearly with k. To maintain obliviousness, we must

D R

R D R

D R D D R R

D

R D

D R D D R R R D

D R D D R R R D

D R D D R D

D D D R R D

D R

D R D

D D R D

D D

D D

D R D R

D

D

D R R D

D

D

D R D R

D R R D

k = 2 k = 4

Main

Levels
4 2

Sub-

Levels
4 6

Dummies

per

Real
1 1-3

Figure 3: Level configurations with size factors k = 2
and k = 4, both with 15 real-block capacity. When
shuffling, all sub-levels in a main level combine to
form one new sub-level in next largest main level.
k = 4 configuration has fewer main levels, thus lower
shuffling costs. k = 2 has fewer dummies and sub-
levels, thus lower disk and PIR costs.

fetch one block from every sub-level during each request.
Thus, without PIR, the bandwidth cost W would increase
almost linearly with k, which is why ObliviStore uses only
k = 2. With near-constant WP , the effect on W is negligible.
Even with PIR, the number of blocks that must be read from
disk to satisfy a request increases with k.

It increases level and sub-level lifetimes. The ith
main level holds k − 1 sub-levels containing ki real blocks
each, and is re-shuffled after every ki+1 requests. Once the
ith level is shuffled into a higher level, it stays empty for ki

requests before its first new sub-level is created. The first
sub-level must live through (k − 1)ki requests and still have
ki blocks left over to avoid early cache-ins. Thus we need
(k − 1)ki dummies in addition to the ki reals, for a total of
ki+1 blocks. The second sub-level lives for ki fewer requests,
so it needs only (k−2)ki dummies, and so on. The increased
number of dummies also increases server storage to a factor
of roughly k, which we address in Section 5.2.

It decreases the ORAM component bandwidth cost
WO. Between every shuffle (ki+1 requests), the ith level re-
ceives ki+1(k −1)/2 dummy blocks and (k −1)ki real blocks
in all. The number of shuffle downloads per request is only
((k − 1)/k) logk

√
N , since we only pay to download the re-

maining (k − 1)ki blocks from each sub-level. With level
compression, the number of shuffle uploads per request is
the same, giving:

WO ≈ 2
k − 1

k
(logk

√
N)X (2)

Thus, for OS+PIR with N = 232 real blocks and ǫ = 1.0,
increasing k from 2 to either 4, 16, or 64 should reduce WO

from roughly 16X to either 12X, 7.5X, or 5.25X, resp.

5.2 Non-Uniform Level Size Factors
A major limitation of using a large fixed level size factor

k is that it increases server storage cost. The ith level stores
a total of ki+1 blocks, only ki of which are real, for a server
storage factor of roughly k. However, the bulk of the extra
dummy blocks, at least k − 1 of each k, are stored in the
largest level. With varying ki, level i ≥ 1 stores Di dummy

293

blocks in the worst case, given by:

Di ≈
(

ki

2

)2

·
i−1
∏

j=0

kj (3)

By allowing level size factors to differ, specifically using
smaller ki for larger levels and vice-versa, we can mitigate
the storage cost increase but keep the number of levels small.

For example, consider the two configurations K1 : (k0 =
25, k1 = 25, k2 = 25) and K2 : (k0 = 27, k1 = 25, k2 = 23).

For both, the real-block capacity is roughly
∏2

j=0
kj = 215.

However, for K1 we get D0 +D1 +D2 = 28 +213 +218 ≈ 218

dummy blocks total, while K2 gives D0 + D1 + D2 = 212 +
215 + 216 ≈ 216 dummies total, reducing the server storage
factor from 8X to 2X.

By increasing level factors doubly-exponentially for a par-
tition with

√
N blocks, we can asymptotically reduce the

main level count to LM ≈ log2 log2

√
N , incurring only a

LM server storage cost factor. Consider the configuration:

K : (k0 = 2(log
2

√
N)/2, k1 = 2(log

2

√
N)/4,

k3 = 2(log
2

√
N)/8, . . . , kLM −3 = 28

kLM −2 = 24, kLM −1 = 22, kLM
= 21).

Since the level factor exponents in K grow exponentially
from 1 to (log2

√
N)/2, we have LM ≈ log2 log2

√
N , and

thus WO ≈ (2 log2 log2

√
N)X. Applying Equation 3, we see

that Di ≈
√

N for all i. Since the real-block capacity is
√

N ,
the server storage overhead is just (log2 log2

√
N)X.

5.2.1 Practical Limits on Level Size Factor Growth

Unfortunately, increasing or skewing level size factors also
increases the maximum total sub-level count LS given by:

LS ≤
∑

i

(ki − 1). (4)

For every request, we must fetch LS blocks from disk and
perform PIR over LS blocks. Thus, disk read and PIR com-
putation costs are at least proportional to the largest ki,
limiting growth in practice.

In the simple example above, K2 suffers from LS ≈ 165,
while K1 has only LS ≈ 93. For such small skews, the
difference is not dramatic, but in a comparable configuration
with all ki = 2, we have only LS ≈ 15. In the double-

exponential growth example, k0 = 2(log
2

√
N/2) = N1/4. For

large databases with N ≥ 232, we end up with LS ≥ k0 ≥ 28.
Such large LS values could easily make disk and PIR costs
outweigh any benefit of reduced bandwidth cost in practice.

A more practical approach is to follow double-exponential
growth only up to a maximum level factor determined by a
fixed acceptable value of LS that can be accommodated by
the disk array and PIR computation hardware. In Section
6.2 we empirically evaluate the impact of different level size
configurations on LS .

6. EXPERIMENTS
We ran simulations to compare OS+PIR with OS [18].

OS+PIR is equipped with the additional bandwidth-saving
enhancements discussed in the full version of the paper [4]:
eliminating unused dummies, evicting to request partition,
caching smallest levels, and shuffling largest jobs first. For

Table 2: Effects of changing the level configuration
K for N = 228 block count, 512TiB capacity, 512GiB
total client storage. Product of all level size factors
for each K is 216.

K

Server
Stor-
age
Factor

WO
Avg
LS

Max
LS

WP

(2, . . . , 2) 2.9 16.1X 6.7 14 2.7X
(4, . . . , 4, 2, 2) 3.1 13.1X 9.5 20 2.8X
(4, 8, 8, 8, 8, 2, 2) 3.5 11.2X 14.5 30 3.0X
(4, 16, 8, 8, 4, 2, 2) 3.2 11.3X 16.5 34 3.0X
(4, 16, 16, 16, 2, 2) 4.3 9.9X 23.0 47 3.2X
(4, 32, 16, 16, 2) 5.8 9.1X 30.5 62 3.4X
(4, 128, 16, 4, 2) 4.3 9.1X 72.5 146 4.1X
(4, 128, 64, 2) 15.7 7.6X 95.0 191 4.4X

fairness, we also compare with a modified OS equipped with
these same enhancements (but not PIR).

In all our experiments, we assume a 2MiB block size (B =
224 bits). The large B is needed primarily to keep PIR
bandwidth cost WP low when using the Trostle-Parrish PIR.
Changing B has little effect on the ORAM component band-
width cost WO. For the unmodified OS, we use ǫ = 1.3 as in
[18], and use ǫ = 1.1 for the modified OS and for OS+PIR.

The full version [4] includes additional experiments evalu-
ating the individual effects of each bandwidth enhancement
and exploring the effects of changing eviction rates.

6.1 ORAM Simulator
We evaluated bandwidth costs for OS+PIR and ObliviS-

tore using a simulator written in Java. Since ORAM behav-
ior is oblivious, performance is independent of the specific
sequence of blocks requested. Thus, for efficiency, the sim-
ulator uses counters to represent the number of remaining
blocks in each level of each partition, and avoids storing
block IDs and contents explicitly. Since we are primarily in-
terested in bandwidth and computation costs, the simulator
does not explicitly measure costs of permuting blocks, look-
ing up IDs, or performing disk reads. Block encryption costs
are also not logged, as they are dominated by PIR costs.

Each experiment includes a run-up and evaluation phase
of 4N requests each. We count the total number of blocks
transferred (uploads plus downloads) during the evaluation
phase, and divide by 4N to get WO. For OS+PIR we also
record the number of sub-levels LS accessed during each
request. LS varies across requests depending on the number
of empty sub-levels in each partition.

6.2 Varying Level Size Configuration K

Table 2 shows the results of running OS+P IR for various
K given a fixed N = 228 and 512GiB of client storage. We
use the same maximum real-block partition capacity for all
K, so the product of all level factors in each K is fixed (216).
As predicted in Section 5.2.1, using larger level factors, and
thus fewer main levels LM = |K|, greatly reduces ORAM
bandwidth cost WO, but also increases LS , which in turn
increases PIR and disk access costs. Server storage costs in-
crease substantially when level factors for the highest levels
are increased, even when bandwidth costs remain the same
(see K = (4, 32, 16, 16, 2) and K = (4, 128, 16, 4, 2)).

294

0X

1X

2X

3X

4X

5X

6X

7X

8X

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

P
IR

 B
a

n
d

w
id

th
 C

o
st

P
IR

 C
o

m
p

u
ta

ti
o

n
 (

S
e

co
n

d
s)

Sub-Levels LS (# PIR Blocks)

PIR Cost Evaluation

Server Time Client Time Bandwidth Cost

Figure 4: Timing and bandwidth costs of Trostle-
Parrish PIR implementation for varying numbers of
blocks in PIR database, using s = 512 bits noise and
2MiB block size.

6.3 PIR Implementation
We implemented the Trostle-Parrish PIR [21], as described

in Section 4, using Java. Our implementation caches partial
sums to avoid redundant computations, but is otherwise un-
optimized. For all our experiments, we used s = 29 bits of
extra noise in the PIR as discussed in the full version [4].

We measure wall-clock times running PIR on a single
thread of a third generation Amazon Web Services (AWS)
Elastic Compute Cloud [1] instance (half of a c3.large in-
stance), equivalent to 3.5 AWS ECUs. As of May 2014, the
cost for running the full c3.large instance was $0.105/hour,
giving an approximate PIR cost of $1.46×10−5/second on a
single thread. Figure 4 gives PIR time and bandwidth costs
for LS up to 28, with a maximum server time under 160s,
equivalent to $0.0023 per 2MiB block request.

We report times for a single thread to simplify cost analy-
sis. However, server computation within each PIR operation
can be trivially parallelized to at least

√
BLS threads. Since

clients likely have less available parallelism, we expect the
small reported client times, not the large server times, to
correspond to real-world latencies.

6.4 Evaluating OS+PIR for Mobile Devices
We start by evaluating OS+PIR on parameters suitable

to current mobile devices. We consider an OS+PIR with
N = 222 of our 2MiB blocks, giving a server storage capacity
of 8TiB. We allocate 64GiB total client storage, such that
the ORAM increases effective storage capacity by a factor of
128. We can alter this factor by changing N (Section 6.5).

Table 3 shows our results. Comparing the modified and
unmodified versions of OS, we see that our enhancements of-
fer a slight improvement on their own, reducing total band-
width cost W from 21.4X to 18.2X. Adding PIR offers an-
other improvement, bringing W down to 16.2X. Finally, in-
creasing the level factors reduces W to as little as 11.2X,
but increases server storage and PIR computation costs.

We also give per-request costs in US cents (¢) for each
scheme for two benchmark bandwidth costs. On one ex-
treme we have the AWS [1] bandwidth cost of $0.12 per GB
for the first 10TiB per month, for a cost of 0.025¢ per 2MiB
block. On the other we have cellular data, which may cost
as much as $10 per GB, for a cost of 2.10¢ per 2MiB block.
At $0.12/GB, OS+PIR roughly breaks even, with its added

PIR computation cost canceling out the reduced bandwidth
costs. At $10/GB, OS+PIR is a clear win, as the band-
width cost savings far outweigh the PIR cost, cutting total
cost down to nearly half that of OS. OS+PIR is clearly most
cost-effective when bandwidth costs dominate, as would be
the case for mobile devices.

6.5 Varying Block Count N

Table 4 shows client/server space consumption and total
bandwidth cost W as N increases. We show results for the
unmodified ObliviStore, OS+PIR with K = (2, . . . , 2), and
a custom K chosen to minimize LM while keeping server
storage costs low. Required client storage scales with

√
N ,

and for each N it is nearly the same for all three schemes.
As N grows, the capacity/client space ratio grows as well,
from 68 for N = 220 to 2189 for N = 230. For a large
2PiB database, the client needs 1TiB storage, and OS+PIR
reduces W from 26.4X to 13.0X.

The bandwidth savings of OS+PIR depend on reducing
the number of main levels LM = |K|. However, to keep
server storage costs low, we must use small level factors
for the highest levels, limiting savings for small N . As N
grows, our advantage increases, as LM grows more slowly in
OS+PIR than in OS due to OS+PIR’s larger level factors.

7. CONCLUSION
We have presented OS+PIR, a new ORAM that com-

bines the bandwidth-efficient ObliviStore (OS) ORAM [18]
with PIR techniques to minimize total bandwidth costs. We
have shown how to re-engineer OS to accommodate levels of
varying relative sizes in order to fully exploit PIR, exposing
a tradeoff between bandwidth cost, server computation, and
server storage. OS+PIR also includes several enhancements
that further reduce costs, including mechanisms for elimi-
nating the unnecessary dummy blocks introduced in OS.

In all, OS+PIR achieves bandwidth costs at least 2 times
lower than those of the already-efficient OS, making it es-
pecially advantageous for mobile devices, where bandwidth
costs dominate. In other settings, OS+PIR’s effectiveness is
currently limited by its high PIR computation cost. How-
ever, since we can easily swap out the PIR protocol, OS+PIR
can also be gainfully applied to less bandwidth-constrained
settings as more efficient PIR schemes emerge.

8. ACKNOWLEDGEMENTS
This work was completed while the first author was a

student at UC Riverside, and was supported by the National
Physical Science Consortium Graduate Fellowship and by
grant N00014-07-C-0311 from the Office of Naval Research.

9. REFERENCES

[1] Amazon web services. http://aws.amazon.com, May
2014.

[2] D. Boneh, D. Mazieres, and R. A. Popa. Remote
oblivious storage: Making oblivious RAM practical.
Manuscript, http://dspace.mit.edu/bitstream/

handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf,
2011.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.
Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

295

Table 3: Comparison of different bandwidth-efficient protocols given parameters tuned for current mobile
devices with at least 64GiB storage. Common parameters: N = 222 data blocks, 2MiB block size, 64GiB total
client storage. In practice, server latency will be much lower than reported single-thread times (Section 6.3).

PIR Comp./Req. Bandwidth Cost/Req. Total Cost/Req.

Protocol ǫ Level Factors
Server
Storage
Factor

Server
Time
(s)

Server
Cost
(¢)

Client
Time
(s)

PIR
(WP)

ORAM
(WO)

Total
(W)

In ¢

at 12¢

/ GB

In ¢

at $10
/ GB

ObliviStore 1.3 (2, . . . , 2) 3.2 — — — — 21.4X 21.4X 0.054 44.88
ObliviStore Mod. 1.1 (2, . . . , 2) 2.9 — — — — 18.2X 18.2X 0.046 38.17
OS+PIR 1.1 (2, . . . , 2) 2.9 6.04s 0.009 0.78s 2.6X 13.6X 16.2X 0.050 33.98
OS+PIR 1.1 (4, 32, 16, 2, 2) 4.5 20.55s 0.030 0.92s 3.2X 8.5X 11.7X 0.059 24.56
OS+PIR 1.1 (4, 64, 16, 2) 6.4 31.62s 0.046 0.99s 3.6X 7.6X 11.2X 0.074 23.53

Table 4: Effect of increasing N on client/server storage and bandwidth cost, with ǫ = 1.1 for OS+PIR, ǫ = 1.3
for ObliviStore.

ObliviStore OS+PIR K = (2, . . . , 2) OS+PIR Custom K

N
Capacity

(TiB)
Client
(GiB)

Server
(TiB)

W
(X)

Client
(GiB)

Server
(TiB)

W
(X)

K
Client
(GiB)

Server
(TiB)

W
(X)

220 2 30 6.2 18.2 30 5.9 14.3 (4, 64, 8, 2) 31 11.2 10.9

222 8 60 24.8 19.8 61 23.4 15.3 (4, 16, 16, 4, 2) 62 31.6 11.4

224 32 119 99.2 21.4 122 93.3 16.5 (4, 32, 16, 4, 2) 123 127.6 12.0

226 128 239 396.2 23.1 244 373.0 17.6 (4, 64, 16, 4, 2) 245 522.4 12.5

228 512 478 1584.6 24.7 488 1491.4 18.7 (4, 64, 32, 4, 2) 491 2452.4 12.7

230 2048 958 6335.8 26.4 980 5962.9 19.8 (4, 64, 32, 8, 2) 990 9756.0 13.0

[4] J. Dautrich. Achieving Practical Access Pattern
Privacy in Data Outsourcing. PhD thesis, University
of California, Riverside, 2014.

[5] J. Dautrich and C. Ravishankar. Compromising
privacy in precise query protocols. In Proc. EDBT,
2013.

[6] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM:
Minimizing ORAM response times for bursty access
patterns. In Proc. USENIX Security, 2014.

[7] C. Gentry, K. Goldman, S. Halevi, C. Julta,
M. Raykova, and D. Wichs. Optimizing ORAM and
using it efficiently for secure computation. In Proc.
PETS, 2013.

[8] C. Gentry and Z. Ramzan. Single-database private
information retrieval with constant communication
rate. In Automata, Languages and Programming,
pages 803–815. Springer, 2005.

[9] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. Journal of the
ACM (JACM), 43(3):431–473, 1996.

[10] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Privacy-preserving group data access
via stateless oblivious RAM simulation. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 157–167. SIAM, 2012.

[11] M. Islam, M. Kuzu, and M. Kantarcioglu. Access
pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Proc. NDSS,
2012.

[12] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference
attack against encrypted range queries on outsourced
databases. In Proceedings of the 4th ACM conference
on data and application security and privacy, pages
235–246. ACM, 2014.

[13] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in)security of hash-based oblivious RAM and a new
balancing scheme. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 143–156. SIAM, 2012.

[14] T. Mayberry, E.-O. Blass, and A. H. Chan. Efficient
private file retrieval by combining ORAM and PIR. In
Proc. NDSS, 2014.

[15] E. Shi, H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((log N)3) worst-case cost. In Proc.
ASIACRYPT, 2011.

[16] R. Sion. On the computational practicality of private
information retrieval. In Proc. NDSS, 2007.

[17] E. Stefanov and E. Shi. Multi-Cloud Oblivious
Storage. In Proc. ACM CCS, 2013.

[18] E. Stefanov and E. Shi. ObliviStore: High
performance oblivious cloud storage. In Proc. IEEE
Symposium on Security and Privacy, 2013.

[19] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious RAM. Proc. NDSS, 2012.

[20] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: An extremely
simple oblivious RAM protocol. In Proc. ACM CCS,
2013.

[21] J. Trostle and A. Parrish. Efficient computationally
private information retrieval from anonymity or
trapdoor groups. In Information Security, pages
114–128. Springer, 2011.

[22] P. Williams and R. Sion. Sr-oram: Single round-trip
oblivious ram. Proc. ACNS, industrial track, pages
19–33, 2012.

[23] P. Williams, R. Sion, and A. Tomescu. PrivateFS: A
parallel oblivious file system. In Proc. ACM CCS,
2012.

296

