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Abstract

Applications such as traffic management and resource
scheduling for location-based services commonly need to
identify regions with high concentrations of moving objects.
Such queries are called dense region queries in spatio-
temporal databases, and desire regions in which the den-
sity of moving objects exceeds a given threshold. Current
methods for addressing this important class of queries suf-
fer from several drawbacks. For example, they may fail to
find all dense regions, provide ambiguous answers, impose
restrictions on size, or lack a notion of local density.

We address these issues in this paper, starting with a new
definition of dense regions. We show that we are able to an-
swer dense region queries completely and uniquely using
this definition. Dense regions in our approach may have ar-
bitrary shape and size, as well as local density guarantees.
We present two methods, the first, an exact method, and the
second, an approximate method. We demonstrate through
extensive experiments that our exact method is efficient and
is superior to current approaches. Our approximate method
runs orders of magnitude faster than our exact method, at
the cost of a tolerable loss of accuracy.

1 Introduction

Continuing developments in computing, communica-
tions and positioning technologies have given rise to new
applications, including vehicle fleet tracking, watercraft and
aircraft navigation, and emergency E911 service for cellu-
lar phones. Such applications have triggered new research
towards supporting location-based services in mobile en-
vironments. Current work in this area focuses mainly on
the modeling and indexing of moving objects, aiming to
optimize spatio-temporal range and aggregation queries, k-
nearest neighbors queries, or selectivity estimation.

In this paper, we study dense region queries, which are
important, but have received attention only recently [4, 7].
A region is dense if it has a high concentration of moving

objects. Identifying dense regions is important for numer-
ous applications, including traffic control, resource schedul-
ing, and collision probability evaluation [4]. For example,
traffic congestion in large cities may be alleviated if traffic
databases were enhanced with the ability to predict dense
regions that might develop in the near future, so commuters
could choose their routes to avoid and avoid jams.

Hadjieleftherious et al. [4] introduced the problem of
dense-region queries, and presented several techniques to
evaluate such queries. Recently, Jensen et al. [7] have de-
fined effective density queries. In both cases, a dense region
is defined using the notion of region density. The density
of a region in a 2-dimensional space containing moving ob-
jects is defined as the ratio of the number of objects in this
region to its area. A dense-region query desires the regions
with density no lower than some user-specified threshold.

1.1 Problems with previous work

Unfortunately, these proposals suffer from one or more
of the following drawbacks, rendering them inappropriate
for many real world applications. The first of these is an-
swer loss. The authors argue in [4] that it is very difficult to
evaluate general dense-region queries, since they require the
computation of a count aggregate over every subregion in
the space, whose number is unfortunately infinite. Instead,
they have addressed the much simpler problem of dense cell
queries. They partition the space into disjoint cells and look
for cells with density beyond the threshold. This simplifica-
tion, however, leads to the problem of answer loss [7], since
it only reports dense cells, completely ignoring dense re-
gions which span several cells. For example, in Figure 1(a),
let each grid cell be a unit square and the density threshold
be 4. Clearly, none of the grid cells is dense, and the work
in [4] will not report dense regions. However, the dashed
square contains four objects, and is hence a dense region,
but is completely missed.

The second problem is ambiguity in query results.
Jensen et al. [7] propose the notion of effective density query
(EDQ), to address the problem of answer loss in [4]. Instead
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(a) Answer loss.
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(b) Lack of
unique answer.
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(c) Lack of local
density.

Fig. 1. Problems with current methods.

of looking for only dense grid cells, [7] also reports dense
regions which span several cells. For instance, the dashed
square in 1(a) would be included in the query results.

Nevertheless, as acknowledged in [7], there might be
multiple overlapping dense regions. Jensen et al. [7] sug-
gest reporting only a set of non-overlapping dense regions
to an EDQ. This strategy, however, could lead to completely
different query results under different reporting strategies,
even keeping the dataset and query parameters the same.
Consider Figure 1(b), where each of the dashed squares
contains 4 objects and is dense regions according to the cri-
terion. Under the the definition of EDQ, either one is a valid
answer; the other one is excluded from the query result.
This could be confusing to users. Further, even when both
dashed squares are equally important and useful, as argued
by Jensen et al. [7], it might be better to report all dense
regions, ignoring overlap, and to let users decide which are
appropriate, according to preference or need.

The third problem is that these methods restrict dense
regions to have either a fixed size or a fixed shape. Thus,
[4] was only able to identify dense grid cells with fixed
size, while [7] identified dense regions as squares of fixed
size. This restriction could diminish the value of these two
approaches in real world applications, where dense region
may have arbitrary shape and size.

The final problem with current approaches is the lack of
local density guarantees for points in the dense region. The
local density for a point, defined as the ratio between the
number of objects in the point’s neighborhood and the area
of the neighborhood, specifies how dense the objects are
around the point. In contrast, region density, as used in ear-
lier proposals is an aggregated and gross measurement, and
does not reflect the details of the density distribution. Since
the distributions of objects could be highly skewed, a dense
region may contain points with local density far lower than
the query threshold. For example, in Figure 1(c), the shad-
owed unit square contains 4 objects and is dense. However,
if we consider point p at the right corner of this square, we
find a 1.5-unit-square neighborhood centered on p entirely
devoid of objects.

2 Our Approach: Pointwise-Dense Regions

We argue that these difficulties arise since [4, 7] do not
use an appropriate definition of dense regions. We propose
the use of Pointwise-Dense Regions (PDRs), a new defini-
tion of density, that helps avoid all the aforementioned prob-
lems. Under this definition, we are able to answer dense-
region queries uniquely, reporting all dense regions, regard-
less of shape and size. Further, PDR queries represent a
more general class of dense region queries than the dense-
cell queries of [4], and the effective dense region queries
in [7], since under reasonable conditions, the answer to a
PDR query includes the answer to those queries.

l
p

l

Fig. 2. Point
density.

We will define point density as
a unique attribute associated with
each point p in the region, repre-
senting the density of moving ob-
jects around p. In contrast, un-
der the definition of region density,
point p could belong to an infinite
number of regions, so p could it-
self not be associated with a unique
density, making it hard to decide
whether p should belong to a dense
region or not. It is, in fact, the lack
of a unique notion of density for a point p that causes the
difficulties in the proposals of [4, 7].

Definition 1. The l-square neighborhood Sl
p of a point p

is the square centered at p with edge length l, including the
right and top edges, but excluding the left and bottom edges.

l could be an arbitrary user-specified parameter. We as-
sume l ≥ lmin, where lmin is some predetermined value.

Definition 2. The point density dt(p) at time t of point p is
the value nt(S

l
p)/l2, where nt(S

l
p) is the number of moving

objects located within Sl
p at time t.

In Figure 2, point p’s l-square neighborhood contains 3
moving objects at timestamp t. Therefore, dt(p) = 3

l2
.

It is now natural to define dense regions as sets of points
whose point densities are all no lower than the query thresh-
old. The problem of finding dense regions is now reduced
to the problem of finding all dense points.

Definition 3. Given ρ ≥ 0, point p is ρ-dense with respect
to an l-square neighborhood at time t, if dt(p) ≥ ρ. A
region is ρ-dense with respect to l-square neighborhoods at
time t if every point inside the region is ρ-dense at time t.

We will consider the following query types.

Definition 4. Given a set of moving objects, an edge length
l, a density threshold ρ, and a timestamp qt, the snapshot
PDR query (ρ, l, qt) requests all regions that are ρ-dense
with respect to l-square neighborhoods at time qt.
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Fig. 3. Solution using PDRs

Definition 5. Given a set of moving objects, the interval
PDR query (ρ, l, [qt1, qt2]) requests the union of the re-
sponses to the snapshot PDR queries (ρ, l, qt) across all
timestamps qt ∈ [qt1, qt2].

2.1 Answering PDR Queries

We describe two methods to efficiently evaluate PDR
queries. Our first method uses a filtering-refinement strat-
egy, and finds exact answers to PDR queries. The filtering
step uses a histogram, and the refinement step finds dense
regions using plane-sweeping.

Our second method uses a completely different ap-
proach. It approximates the density distribution using a
polynomial function, and uses the approximation to identify
dense regions. While this method provides approximate an-
swers, it runs much faster than our first method. We demon-
strate the accuracy and efficiency of both methods through
extensive experiments.

To see the superiority of the PDR approach, consider
an l-square neighborhood of the same size as the grid cell
in [4], and the square used in [7]. In Figure 3(a), Figure 3(b)
and Figure 3(c), the filled rectangles are dense under PDR.
We note the following under PDR.
No answer loss: Unlike [4], which only reports dense grid
cells, dense regions under PDR include the centers of all
squares containing at least ρl2 objects. Therefore, it does
not miss any dense region. Figure 3(a) shows the dense
regions under PDR.
No ambiguity: Unlike [7] which chooses one of the dashed
squares in Figure 1(b), PDR reports all the points whose l-
square neighborhoods have at least ρl2 objects. Hence, both
dashed squares are returned in the query response, as shown
in Figure 3(b).
Regions with arbitrary shape or size: Figures 3(a), 3(b)
and 3(c) clearly demonstrate that regions dense under PDR
may have arbitrary rectangular shape and size. We will give
algorithms to evaluate PDR queries for arbitrary l.
Local density guarantees: Under PDR, all points in a
dense region must have at least ρl2 objects in its l-square
neighborhood. Hence, point p in Figure 1(c) is excluded in
the query result, as shown in Figure 3(c).

2.1.1 Generality of PDR

We note that PDR query results are actually a superset of the
results under the methods of [4, 7]. The centers of the dense
regions of [4, 7] are ρ-dense under PDR, and are hence
included in the PDR query results, as shown in Figures 1
and 3. From the PDR perspective, [4, 7] results are equiva-
lent to a subset of discretized ρ-dense points (the center of
the dense region in their definition). PDR queries are re-
quired to report all ρ-dense points, and are therefore a more
general and challenging form of dense region query. To the
best of our knowledge, this is the first work which address
how to efficiently find a complete and unique answer to the
dense region query.

3 Related Work

Previous work has been in a number of related areas. The
work in [3] models moving objects. The TPR-tree [16],
TPR*-tree [18], STRIPE [14], and the Bx-tree [6] fo-
cus on indexing of predicted trajectories of moving ob-
jects. Work on indexing of historical trajectory includes
TB-tree [15], MVR-tree [5], SEB-tree [17], SETI [2] and
PA-tree [11]. Index structures are proposed in such work to
support range queries, nearest neighbor or reverse nearest
neighbor queries.

Spatio-temporal aggregations [12, 13] and selectivity es-
timation range queries [19] are related to dense region
queries, since both must compute an aggregated value
within some range. However, aggregation and selectiv-
ity estimation queries require a user-specified spatial range.
In contrast, no spatial query predicates are specified for a
dense region query, and the dense region query must iden-
tify the ranges that satisfy the density threshold. One naive
approach to the dense region query is to use the selectivity
estimator for all possible ranges. However, this approach is
unrealistic, since the number of regions over which we have
to execute an aggregation query is prohibitively high.

The problem of clustering moving objects is also related
to dense region queries. Clustering algorithms [20, 9, 8]
typically operate based on some optimization criteria, so
each cluster represents a group of objects located within
some ranges. However, these techniques are not directly
useful to us, since clusters do not guarantee densities over
the desired threshold.

The work most closely related is the on-line discovery of
dense regions by Hadjieleftheriou et. al [4] and the Effective
Density Query by Jensen et. al [7]. However, as discussed
in Section 1, these two proposals suffer from the problems
of answer loss, query answer ambiguity, size or shape re-
strictions on dense regions, and the lack of local density
guarantees.



4 Problem Statement and Assumptions

We assume a set of n objects moving in a L×L region in
the XY-plane. Each object is modeled as a point, and reports
its current location (x, y) and velocity (vx, vy) to a central
server. We adopt a linear motion model for simplicity and
for consistency with previous work, including [4, 7]. The
position (xt, yt) of a moving object at timestamp t ≥ tnow

is hence xt = x+(t− tnow)vx, and yt = y +(t− tnow)vy .
Several indexing methods have been proposed for linear
movement, which we can adopt in our framework.

As suggested by Jensen et al. [7], finding dense regions
for a period of time appears to be less useful than finding
dense regions at some timestamp. Therefore, as in [7], in
this paper, we focus on snapshot version of PDR queries.

We assume that a moving object reports its new location
to the server within a time period of length U , called the
maximum update time [7]. Further, as in [4, 7], a PDR query
is a predictive query which asks for the dense regions no
more than W time instants into the future. W is called the
length of prediction window. Finally, we define the time
horizon H = U + W as the maximum duration of time
between which a PDR query will be targeted at [7].

We assume all object data are maintained and updated
in an index structure. Without loss of generality, we use a
TPR-tree [16] to index the moving objects. As in [7], we
do not count the overhead of maintaining and updating the
index when we evaluate the efficiency of the proposed meth-
ods, since this index may be maintained for other queries,
such as spatio-temporal range or nearest-neighbor queries.

5 A Filtering-Refinement Approach

Our filtering-refinement approach to PDR queries main-
tains a data structure called a density histogram (DH) [7],
for each timestamp t ∈ [tnow, tnow + H ]. The region is di-
vided into an m × m grid, and a density histogram at time
t maintains a counter of the number of moving objects in
each grid cell. We denote the cell at row i and column j by
ci,j .

We choose a grid size m such that the cell edge length
lc = L/m ≤ lmin

2 for a suitable lmin. This strategy allows
us to evaluate PDR queries with respect to any l-square with
l ≥ lmin. Query processing consists of two steps:

1. Filtering step: We use density histograms to identify
cells that are guaranteed dense (accepts), the cells that
are guaranteed not dense (rejects), and the candidate
cells for the refinement step.

2. Refinement step: For each candidate cell, we execute
a spatio-temporal range query over the TPR-tree, and
propose an efficient plane-sweep algorithm to deter-
mine the dense regions within each candidate cell.
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(b) Expansive.

Fig. 4. Neighborhoods. (ηl = 2, ηh = 3).

5.1 Maintaining Density Histograms

All counters in a density histogram are initialized to be 0.
The histogram is updated as objects send location updates in
the form of insertions or deletions at each timestamp tnow.

The insertion update (tnow, x1, y1, v
x
1 , vy

1 ) inserts an
object which starts moving from location (x1, y1) with
velocity (vx

1 , vy
1 ), starting tnow. The deletion update

(t2, tnow, x2, y2, v
x
2 , vy

2 ) deletes a previous movement at
tnow, which started moving from position (x2, y2) at times-
tamp t2 with velocity (vx

2 , vy
2 ).

Insertion and deletions are handled differently. For an
object insertion (tnow, x1, y1, v

x
1 , vy

1 ), we compute the new
trajectory of the object during [tnow, tnow+H ] using the ve-
locity (vx

1 , vy
1 ). We increment by 1 the counter for each cell

that intersects the object’s trajectory. For an object deletion
(t2, tnow, x2, y2, v

x
2 , vy

2 ), we compute the old trajectory of
the object during [tnow, t2 +H ] using the velocity (vx

2 , vy
2 ).

We decrement by 1 the counter for each cell that intersects
with the object’s old trajectory.

The storage overhead for the histograms is Hm2.

5.2 Query Processing: Filtering Step

Let l × l be the size of the neighborhood and lc × lc be
the size of grid cells. Let ηl = b l

2lc
c and ηh = d l

2lc
e. Let

|R| denote the number of objects in region R.

Definition 6. (See Figure 4(a).) The conservative neigh-
borhood Ci,j for grid cell ci,j is the union of grid cells cu,v

for which i − ηl < u < i + ηl and j − ηl < v < j + ηl.

We note that any point p ∈ ci,j is at most distance l/2
away from the edges of Ci,j , so that p’s l-square neighbor-
hood completely contains Ci,j . Therefore, if |Ci,j | ≥ ρl2,
cell ci,j is surely dense, and is accepted.

Definition 7. (See Figure 4(b).) The expansive neighbor-
hood Ei,j for grid cell ci,j is the union of grid cells cu,v for
which i − ηh ≤ u ≤ i + ηh and j − ηh ≤ v ≤ j + ηh.

We note again that any point p ∈ ci,j is at least dis-
tance l/2 away from the edges of Ei,j , so that p’s l-square
neighborhood is completely contained in Ei,j . Therefore, if
|Ei,j | < ρl2, cell ci,j can not be dense, and is rejected.
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(b) Lx =
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(c) Lx =

{2, 3, 4}.
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{2, 3, 4}.

Fig. 5. l-band sweep along X-dimension.
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Fig. 6. l-square sweep along Y-dimension.

We can now use these criteria to identify accepts, rejects
and refinement candidates during the filter step, using Al-
gorithm 1.

Algorithm 1 FilterQuery(qt, ρ, l)
Require: lc ≤ l/2

for each grid cell ci,j do
Nc =

∑ |cu,v | at qt, where cu,v ∈ Ci,j .
Ne =

∑ |cu,v | at qt, where cu,v ∈ Ei,j .
if Nc ≥ ρl2 then

Mark cell ci,j as dense.
else if Ne < ρl2 then

Mark cell ci,j as not dense.
else

Mark cell ci,j as a candidate.
end if

end for

5.3 Query Processing: Refinement Step

The filtering step outputs a set of candidate cells. To
identify the dense region inside a candidate cell ci,j , we
must first count all objects which appear in the l-square
neighborhood of some point p ∈ ci,j .

Let candidate cell ci,j have left-bottom corner (xl, yb)
and right-top corner (xr, yt). Let S be a square whose left-
bottom corner is (xl − l/2, yb − l/2), and right-top corner
is (xl + l/2, yb + l/2). Clearly, S contains all objects that
appear in the l-square neighborhood of some point p ∈ ci,j .

We now execute a spatio-temporal range query over the
TPR-tree, using spatial range S and temporal range qt, and
retrieve all the objects located within S at timestamp qt.

Algorithm 2 RefineQuery((ρ, qt, l), cell ci,j).
Ω = {xl, xr}
for Each object at location (x, y) ∈ S do

Insert x − l/2 into Ω, if x − l/2 ∈ [xl, xr ]
Insert x + l/2 into Ω, if x + l/2 ∈ [xl, xr ]

end for
Sort Ω into increasing order.
Lx = {objects inside the l-band at xl }.
while Ω 6= ∅ do

xi = ExtractMin(Ω). {Find & remove min from Ω}.
xi+1 = Min(Ω). {Find min in Ω}
Delete object whose x-coordinate is xi − l/2 from Lx.
Insert object whose x-coordinate is xi + l/2 into Lx.
if |Lx| ≥ ρl2 then

SweepY(Lx, (ρ, qt, l)).
for Each dense segment [yj , jj+1) returned from
SweepY. do

Output [xi, xi+1) × [yj , jj+1) as dense region.
end for

end if
end while

5.3.1 l-bands and Plane-sweeping

We will use a plane-sweeping algorithm to identify the
dense regions within cell ci,j . The algorithm sweeps an
l-band with width l and height l + yt − yb along the X-
dimension (see Figure 5). The l-band is identified by its
vertical center line, which sweeps right, from xl to xr. Let
Lx denote the set of objects inside the l-band. Lx is initial-
ized with the objects in the l-band when at xl.

Let a stopping event be the moment when the l-band’s
left edge or right edge touches some object within S. Let
xl < x1 < x2 < · · · < xr be the X-coordinates
of the l-band’s center line for the stopping events. Fig-
ure 5(a), 5(b), 5(c) and 5(d) show the l-band for four stop-
ping events. When the left edge touches some objects, we
remove them from Lx. When the right edge touches some
objects, we insert them into Lx.

Plane sweeping along the Y-dimension proceeds exactly
as for the X-dimension, with the X and Y axes inter-
changed. Figures 6(a), 6(b), 6(c) and 6(d) show the l-square
for all the four stopping events along the Y -axis. As the
bottom edge touches objects, we remove them from Ly. As
the top edge touches objects, we insert them into Ly.

Algorithms 2 and 3 illustrate the plane-sweep method.

Lemma 1. The density of point (x, y), where x ∈
[xi, xi+1), is equal to the density of point (xi, y).

Proof. When the center line of the l-band is between
[xi, xi+1), no objects join or leave the l-band. Therefore,
density for point p(x, y), where x ∈ [xi, xi+1) is same as
that of point (xi, y).



Algorithm 3 SweepY(Lx, (ρ, qt, l)).
Ω = {yb, yt}
for Each object with location (x, y) in Lx do

Insert y − l/2 into Ω, if y − l/2 ∈ [yb, yt]
Insert y + l/2 into Ω, if y + l/2 ∈ [yb, yt]

end for
Sort Ω into increasing order.
Ly = {objects inside the l-square at yb }.
while Ω 6= ∅ do

yj = ExtractMin(Ω). {Find & remove min from Ω}.
yj+1 = Min(Ω). {Find min in Ω}
Delete object whose y-coordinate is yj − l/2 from Ly .
Insert object whose y-coordinate is yj + l/2 into Ly.
if |Ly| ≥ ρl2 then

Mark [yj , yj+1) as dense segment.
end if

end while

Lemma 1 implies that instead of computing the density
for all x ∈ [xl, xr ], we only need to compute the density at
a finite number of X-coordinates. This significantly reduces
the complexity of our problem.

Lemma 2. The density of point (x, y), where y ∈ [yi, yi+1),
is equal to the density of point (x, yi).

During the sweeping process along Y-dimension, we
compute the size of Ly at each stopping event, and ob-
tain the density of point (xi, yj), where yj is one of
yb, y1, yt, · · · , yr. If the density of point p(xi, yj) is at least
ρl2, we know from Lemma 2 that the vertical segment with
X-coordinate xi and y-coordinate between [yj , yj+1) is a
dense segment. Using Lemma 1, we derive from this dense
segment a dense rectangle [xi, xi+1) × [yj , yj+1).

5.3.2 An Example

Assume ρl2 = 3. Consider Figure 5, where we sweep the
l-band along X-dimension for candidate cell ci,j . For the l-
band at xl, we sweep an l-square, as shown in Figure 6. We
compute the density at each stopping event and find only at
y1, the cardinality of Ly is 3 and hence segment [y1, y2) is
the only dense segment. Therefore, we identify the rectan-
gel [xl, x1) × [y1, y2) as one dense region.

6 An Approximation-based PDR Method

The algorithm presented in Section 5 returns exact an-
swers to PDR queries, but incurs overhead proportional to
the number of objects. As suggested in [4], we are often
interested in finding dense regions very quickly, tolerating
some loss of accuracy.

We now present a method which returns approximate an-
swers to PDR queries, but runs much faster. This method
models the point density distribution over the XY-plane
as a function dt(x, y) of (x, y). We can evaluate a PDR
query by first computing the density function dt(x, y) for
t ∈ [tnow, tnow + H ]. We can then identify the regions in
R2 where dt(x, y) is beyond the threshold ρ.

We approximate the density function dt(x, y) with a 2-
dimensional Chebyshev polynomial d̂t(x, y). Chebyshev
polynomials are widely used, and have a rich theory. They
also make it easy to compute the ρ-dense regions, which are
the regions where d̂t(x, y) is no less than the threshold. We
can also compute contour lines for the approximated dis-
tribution in explicit form, which provide a clear overview
of the distribution of moving objects. Finally, a Cheby-
shev polynomial approximation is very accurate, and incurs
low storage overhead due to its nice min-max property [10],
which has proven very useful for similarity search in time
series databases [1], or spatio-temporal range queries [11].

Unlike the filtering-refinement algorithm which allows
that the l-square neighborhood have varied size, the approx-
imated method assumes that l is predetermined. This lim-
itation may be justified by the fact that the approximated
method runs much faster and is able to compute the contour
line of distribution.

6.1 Chebyshev Approximations

We start with a brief review of Chebyshev polynomials.
Definition 8. The k-degree Chebyshev polynomial Tk(x) is
Tk(x) = cos(kθ), where θ = cos−1(x), for x ∈ [−1, 1],
and satisfies the recurrence

T0(x) = 1, T1(x) = x,

Tk(x) = 2xTk−1(x) − Tk−2(x), k > 1.

We can use Chebyshev Polynomials as the basis func-
tions to approximate a function f(x, y), x ∈ [−1, 1], y ∈
[−1, 1], as a degree-k polynomial f̂(x, y) as follows

f̂(x, y) =

0≤i+j≤k
∑

i=0,j=0

ai,jTi(x)Tj(y)

where ai,j are the Chebyshev coefficients. The coefficients
ai,j are computed using the following Theorem [10].
Theorem 1.

ai,j =
c

π2

∫ 1

−1

∫ 1

−1

f(x, y)Ti(x)Tj(y)√
1 − x2

√

1 − y2
dx dy, (1)

where

c =











4, if i 6= 0, j 6= 0,

2, if i = 0, j 6= 0, or if i 6= 0, j = 0

1, if i = 0, j = 0



6.2 Approximating Density On-line

Without loss of generality, we normalize the XY-plane
into a square with low-left corner (−1,−1) and top-right
corner (1, 1). We maintain the approximated density func-
tion d̂t(x, y) for each timestamp t ∈ [tnow, tnow + H ]. All
coefficients for the density functions d̂t(x, y) are initialized
to zero. We update the coefficients upon object insertion or
deletion, to reflect the density changes.

We denote a rectangle with low-left corner (x⊥, y⊥), and
top-right corner (x>, y>) by [x⊥, x>] × [y⊥, y>].

6.2.1 Object Insertion
Given an object insertion (tnow, v1, x1, y1), we first com-
pute the predicted trajectory (xt, yt) at t ∈ [tnow, tnow+H ],
where xt = x1 +(t− tnow)vx

1 , and yt = y1 +(t− tnow)vy
1 .

Let dt(x, y) and d′
t(x, y) be the density functions before

and after the object insertion, and let

d̂t(x, y) =

0≤i+j≤k
∑

i=0,j=0

a
[t]
i,jTi(x)Tj(y),

d̂′t(x, y) =

0≤i+j≤k
∑

i=0,j=0

a
′[t]
i,j Ti(x)Tj(y).

To simplify notation, we will omit t from the coefficient
superscripts, and simply write ai,j and a′

i,j .
For each point (xt, yt) on an object’s trajectory, let

Sl(xt, yt) = [x⊥
t , x>

t ] × [y⊥
t , y>

t ] be the square with edge
length l centered at (xt, yt). Clearly, this object belongs to
the l-square neighborhood for any point in Sl(xt, yt), and
increases the density for points in Sl(xt, yt) by 1/l2.

Let dt(x, y) = d′t(x, y) + δt(x, y), where

δt(x, y) =

{

1/l2, if (x, y) ∈ Sl(xt, yt),

0. otherwise.
(2)

Let the approximated polynomial for δt(x, y) be

δ̂t(x, y) =

0≤i+j≤k
∑

i=0,j=0

a
[δ]
i,jTi(x)Tj(y).

Lemma 3. Let f(x, y) and g(x, y) have Chebyshev approx-
imations f̂(x, y) and ĝ(x, y) with coefficients a

[f ]
i,j and a

[g]
i,j ,

respectively. Let h(x, y) = f(x, y) + g(x, y) have Cheby-
shev approximation ĥ(x, y) with coefficients a

[h]
i,j . Then,

a
[h]
i,j = a

[f ]
i,j + a

[g]
i,j .

Proof. The result follows from Equation 1.

We can use Lemma 3 to update coefficients upon object
insertion, by computing the a

[δ]
i,j using the following result.

Algorithm 4 ObjectionInsert((tnow, v1, x1, y1))
for t ∈ [tnow, tnow + H ] do

Let the function d̂t(x, y) have coefficients ai,j .
xt = x1 + (t − tnow)vx

1 , yt = y1 + (t − tnow)vy
1 .

Compute coefficients a
[δ]
i,j using Equation 3.

ai,j = ai,j + a
[δ]
i,j

end for

Lemma 4.
a
[δ]
i,j =

1

π2l2
a
[x]
i a

[y]
j (3)

where

a
[x]
i =

{

arccos(x⊥
t ) − arccos(x>

t ) if i = 0,
2
i
(sin(i arccos(x⊥

t )) − sin(i arccos(x>
t ))) if i > 0.

and

a
[y]
j =

{

arccos(y⊥
t ) − arccos(y>

t ) if j = 0,
2
j
(sin(j arccos(y⊥

t )) − sin(j arccos(y>
t ))) if j > 0.

Proof. We can compute a
[δ]
i,j by replacing f(x, y) in Equa-

tion 1 with the value δt(x, y) from Equation 2. This yields

a
[δ]
i,j =

c

π2

∫ x>

t

x⊥

t

∫ y>

t

y⊥

t

1
l2

Ti(x)Tj(y)√
1 − x2

√

1 − y2
dx dy

=
c

π2l2

∫ x>

t

x⊥
t

Ti(x)√
1 − x2

dx

∫ y>

t

y⊥
t

Tj(y)
√

1 − y2
dy

Equation 3 follows from the indefinite integral
∫

Ti(x)√
1 − x2

=

{

− sin(i arccos(x))
i

if i > 0,

− arccos(x) if i = 0

Algorithm 4 shows how inserts are handled.

6.2.2 Object Deletion
The object deletion (t2, tnow, v2, x2, y2) is handled simi-
larly. We compute the trajectory (xt, yt) of the object at
timestamp t ∈ [tnow, t2 + H ], where xt = x2 + (t − t2)v

x
2

and yt = y2 + (t − t2)v
y
2 . Then we compute a

[δ]
i,j using

Equation 3. Finally, we subtract a
[δ]
i,j from the original coef-

ficients ai,j . Algorithm 5 shows how deletes are handled.

6.3 Evaluating PDR Queries

A trivial approach would be to discretize the XY-plane
into md × md grid, classifying a cell as dense if its center



Algorithm 5 ObjectionDelete(t2, tnow, v2, x2, y2)
for t ∈ [tnow, t2 + H ] do

Let the function d̂t(x, y) have coefficients ai,j .
xt = x2 + (t − t2)v

x
2 , yt = y2 + (t − t2)v

y
2 .

Compute coefficients a
[δ]
i,j using Equation 3.

ai,j = ai,j − a
[δ]
i,j

end for

point is dense, using d̂t(x, y). This method, however, in-
curs high computation overhead if we use a finer grid for
improved accuracy.

Instead, we present the following method to efficiently
identify dense regions, exploiting the ease of computing
lower- and upper-bounds for Chebyshev polynomials. We
first compute the lower-bound d⊥ and upper-bound d> of
d̂t(x, y) for the entire XY-plane, which we have normalized
to [−1 : 1] × [−1 : 1]. If d⊥ ≥ ρ, the entire plane is
dense. If d> < ρ, the plane is nowhere dense. Otherwise,
we divide plane into 4 subregions, and we repeat the proce-
dure for each subregion. We continue recursively until the
subregion is smaller than 1/md on edge, at which stage we
compute the density d at its center. If d ≥ ρ, we take this
subregion as dense. We obtain bounds as follows.

First, Ti(x) = cos(i arccos(x)) is a cosine function, so
its lower and upper bound for z ∈ [z1, z2] are

T⊥
i [z] =

{

−1 if cos
(

kπ
i

)

∈ [z1, z2] for some odd k,
min{Ti(z1), Ti(z2)}, otherwise, and

T>
i [z] =

{

1 if cos
(

kπ
i

)

∈ [z1, z2] for some even k,
max{Ti(z1), Ti(z2)}, otherwise.

We now bound d̂t(x, y) =
∑i+j≤k

i=0,j=0 ai,jTi(x)Tj(y), for
x ∈ [x⊥ : x>] ⊆ [−1 : 1] and y ∈ [y⊥ : y>] ⊆ [−1 : 1].
The lower bound for (ai,jTi(x)Tj(y)) is simply the lowest
of ai,jT

⊥
i [x]T⊥

j [y], ai,jT
⊥
i [x]T>

j [y], ai,jT
>
i [x]T⊥

j [y], and
ai,jT

>
i [x]T>

j [y]. Finally, the lower bound of d̂t(x, y) is the
sum of the lower bounds for the terms ai,jTi(x)Tj(y). An
upper bound for d̂t(x, y) is computed similarly.

6.4 Multiple Polynomials for Accuracy

Using a single global polynomial d̂t(x, y) to approxi-
mate density over the entire XY-plane may not be accurate
enough when the density distribution is very skewed. We
can instead divide the space into g × g grid cells, using a
different polynomial to approximate density in each cell.

It is straightforward to modify Algorithms 4 and 5 to ac-
commodate multiple polynomials. If an object is at location
(xt, yt) on its trajectory and Sl(xt, yt) is the square with
edge length l centered at (xt, yt), we know that only the

Parameter Value
Page size 4K

Buffer size 10% of dataset size
Random disk access time 10 ms

Maximum update interval(U) 20
Predication window length (W) 10

Edge length of l-square(l) 40, 60
Number of objects 10K, 100K, 500K

Relative density threshold % 1, 2, 3, 4, 5
Num. of polynomials (g × g) 400, 1600

Degree of polynomial (k) 3, 4, 5
Num. of cells in Density Histogram (m × m) 10000, 40000, 62500

Grid for polynomial evaluation (md × md) 500 × 500

Table 1. Experimental setup
points within Sl(xt, yt) will have their density increased (or
decreased) by 1/l2. First, we determine the cells that over-
lap with square Sl(xt, yt). The polynomial coefficients for
these overlapping cells must be updated. Next, we compute
the overlap rectangle between these cells and Sl(xt, yt).
The lower and upper bounds of the rectangle in the X- and
Y-dimensions are used as x⊥

t , x>
t , y⊥

t , y>
t , when we com-

pute the Chebyshev a
[δ]
i,j using Equation 3.

Given g × g degree-k polynomials are used, the storage
overhead for the coefficients is Hg2(k + 1)(k + 2)/2.

7 Experimental Evaluation

Our experiments were run on a 2.8Ghz Pentium IV CPU
with 1Gb of main memory. We used the method of [4] to
generate synthetic data sets, but also simulated real world
applications more closely by using the Chicago metropoli-
tan road network in our experiments.

The XY-plane was a square, 1,000 miles on edge. We
generated three datasets CH10K, CH100K, and CH500K,
with 10K, 100K and 500K moving objects, respectively. At
least 1% of the objects issued updates at each timestamp.
Object velocities were between 15 and 100 miles per hour,
and were drawn from a skewed distribution. The maximum
update interval U was set to 20 timestamps, and the predic-
tion window length W to 10, giving a time horizon H = 30.

For each configuration, we ran a query workload and re-
ported the average performance per query. Each query has
three parameters: the density threshold ρ, the edge length l
of the square neighborhood, and the query time qt. We ac-
tually used a relative density threshold %. Given N objects
in the region of area 106 square miles, we choose ρ = N%

106 .
The parameter % is varied from 1 to 5, leading to ρ varying
between 0.5 to 2.5 for dataset CH500k. Query time qt is
randomly distributed in [tnow, tnow + H ] when the query is
issued at tnow. The edge length l is set to be 40 or 60.

We used a main memory buffer to store all den-
sity histograms, and the polynomial coefficients for t ∈
[tnow, tnow + H ]. The buffer size depended on the time
horizon H , and the granularity of density histograms for
the filtering step, or the number and the degree of polyno-
mials for the approximation method. However, this buffer



(a) Objects. (b) Dense regions
(FR).

(c) Dense regions
(PA).

Fig. 7. An example (CH10k).

size is independent of dataset size. The number of counters
in a density histogram was set to 10000, 40000 and 62500,
with 10000 being the default. The number of polynomials
was set to 400 and 1600, with 400 being the default value.
The polynomial degree was set to 3,4 or 5, with 5 being the
default value. In the default setting, the density histograms
require a buffer of size 1.2Mb, while the polynomial ap-
proximation method requires 1.0Mb. This memory over-
head remains the same as we increase the dataset size, so
our method scales well. The TPR-tree index for the refine-
ment step in filtering-refinement processing was assigned a
buffer 10% of dataset size. Table 1 shows the experimental
setup, with values in bold denoting the default values.

We compared three methods by accuracy and overhead.
FR is the filter-refinement method (Section 5) to find ex-
act answers to dense region queries. PA is the polynomial
approximation method (Section 6), which returns approxi-
mate answers. We also compared PA with DH, the density
histogram method used in the filtering step.

7.1 An Example

Figure 7(a) depicts a snapshot of the dataset CH10K.
Figures 7(b) and 7(c) show the dense regions identified us-
ing the FR algorithm and the PA method, respectively. The
dense regions found using both methods clearly have arbi-
trary shape and size, demonstrating their flexibility. Earlier
methods only identified fixed-size square dense regions [7].
Further, the dense regions found by the PA method matches
those found by the FR method very well.

7.2 Accuracy

We measure the accuracy of an approximated method us-
ing two metrics, the ratio of false positives rfp and false
negatives rfn . Let D1 be the union of all the regions
dense under the query criteria, and let D2 be the union of
the dense regions actually identified by the method. Now,
rfp = area(D2−D1)

area(D1) , and rfn = area(D1−D2)
area(D1) . We note that

rfp may exceed 100%, while rfn never does.
We first compare the accuracies of PA and DH. The DH

filtering step method divides cells into three categories: re-
jects, accepts, and candidate cells. We can either add all
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Fig. 8. Accuracy (dataset CH100K).

the candidate cells into the answer set, which we call opti-
mistic DH, or reject all the candidate cells, which we call
pessimistic DH. Optimistic DH has rfn = 0 and rfp ≥ 0,
while pessimistic DH has rfp = 0 and rfn ≥ 0.

Figures 8(a) and 8(b) compare the error ratios with re-
spect to l and the relative density threshold %, using 1.0
Mb memory for PA and 1.2Mb memory for DH, in the de-
fault setting. The PA method has error ratio less than 10%,
while the DH method may have false positive ratios rfp up
to 200% and false negative ratio rfn up to 100%.

An interesting feature in Figure 8(a) and 8(b) is that in-
creasing the relative density threshold reduces the union D1

of dense regions, leading to higher error ratios.
We examine the memory to error ratio trade-offs for PA

and DH. The memory overhead is varied by varying the
number and/or degree of polynomials for PA, or by vary-
ing the number of cells for DH. Figure 8(c) compares the
false positive ratio of PA and optimistic DH, with l = 40
and % = 3. Figure 8(d) compares the false negative ra-
tio of PA and pessimistic DH. As expected, the error ratios
for both two methods drop with increased memory over-
head, because the approximation quality is improved. we
see again that PA has a smaller error ratio than DH, even
when DH is given 2–7 more memory than PA.

It seems clear that DH is not suitable for use by itself to
evaluate PDR queries, and must be combined with plane-
sweep in the refinement step. In contrast, the PA method
provides very accurate answers to PDR queries, with a rel-
atively small memory overhead.

Figure 9(a) shows the CPU costs for query evaluation
for PA and DH. The CPU cost for DH remains almost un-
changed as % varies, since we must check the candidacy for
each cell, regardless of the threshold. In contrast, the CPU
cost for PA drops as % increases from 1 to 5. As % increases,
the branch-and-bound technique becomes more effective in
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pruning out non-dense regions (See Section 6.3). PA incurs
lower CPU cost than DH when % > 4.

Figure 9(b) shows the CPU costs to maintain the density
histogram and the polynomials per location update. As ex-
pected, PA incurs an order of magnitude higher CPU cost
than DH does, since PA requires computing the arccos()
and sin() functions. However, DH has very poor accuracy,
and must always be used with the far more expensive refine-
ment step, which adds greatly to its true cost.

7.3 Query Costs

We now compare FR and PA in terms of the CPU and I/O
costs of query evaluation. PA incurs no I/O at all, since we
can hold all the polynomial coefficients in memory. FR in-
curs I/O costs, since it must evaluate spatio-temporal range
queries over the TPR-tree during the refinement step. We
measure the total query costs for FR as the sum of CPU and
I/O cost, with each random I/O being charged 10ms.

Figure 10(a) compares the total query cost for PA and
FR, with respect to %, for the dataset CH100K. As in the
default setting, PA used 400 degree-5 polynomials, while
FR used 10,000 counters per density histogram. Clearly,
PA has an order of magnitude lower query cost than FR,
which must issue a large number of spatio-temporal range
queries during refinement. Further, the plane-sweep algo-
rithm during its refinement step is also more expensive than
polynomial evaluation.

Figure 10(b) demonstrates the scalability of our meth-
ods, by showing how the query cost varies with respect to
the number of moving objects, when l = 40 and % = 3.
We observe that the cost of FR is proportional to the dataset
size. In contrast, the cost of PA remains almost the same
as we increase the dataset size, since polynomial evaluation
depends on the number of coefficients, not on the the num-
ber of moving objects. PA is likely to be appropriate when
we need quick responses, and the dataset size is large.

8 Conclusion

In this paper, we propose a new definition of dense re-
gion queries. Under our definition, we are able to answer
dense region queries completely and uniquely using this
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definition. Dense regions in our approach may have arbi-
trary shape and size, as well as local density guarantees.
We present two methods, the first, an exact method, and the
second, an approximate method. We demonstrate through
extensive experiments that our exact method is efficient and
is superior to current approaches. Our approximate method
runs orders of magnitude faster than our exact method, at
the cost of a tolerable loss of accuracy.
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