Relational Database Compression Using Augmented
Vector Quantization*

WEE K. NG

CHINYA V. RAVISHANKAR

Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109-2122
E-mail: {wkn,ravi}@eecs.umich.edu

Abstract

Data compression is one way to alleviate the I/0 bot-
tleneck problem faced by I/O-intensive applications
such as databases. However, this approach s not
widely used because of the lack of suitable database
compression techniques. In this paper, we design
and implement a novel database compression technique
based on vector quantization (VQ). VQ is a data com-
pression technique with wide applicability in speech
and image coding [3, 5], but it is not directly suit-
able for databases because it is lossy. We show how
one may use a lossless version of vector quantization
to reduce database space storage requirements and im-
prove disk I/0 bandwidth.

1 Introduction

Processor speed, memory speed, and memory size
have grown exponentially over the past few years.
However, disk speeds have improved at a far slower
rate. As a result, many applications such as database
systems are now limited by the speed of their disks
rather than the power of their CPUs [1]. As improve-
ments in processor and memory speeds continue to
outpace improvements in disk speeds, the severity of
the I/O limitation will only increase.

One way to alleviate this problem is through
database compression [2, 10], which will not only re-
duce the space requirements, but also increase the ef-
fective I/O bandwidth since more data is transferred
in compressed form. However, this approach has not
been widely adopted. One reason is the lack of suitable
database compression techniques. Database compres-

*This work was supported in part by the Consortium for
International Earth Science Information Networking.

tThe material contained in this paper may be covered by a
pending patent application [11].

1063-6382/95 $4.00 © 1995 IEEE

540

sion differs from data compression in general. Conven-
tional data compression is usually performed at the
granularity of entire data objects. Access to random
portions of the compressed data objects is impossible
without decompressing the entire object. Clearly, this
is not practical for database systems. What is required
is a technique that not only compresses data well, but
also supports standard database operations.

In this paper, we design a novel database compres-
sion technique that has the following characteristics:
(1) it is lossless, (2) it compresses/decompresses lo-
cally, thus permitting localized access to compressed
data, and (3) it supports standard database operations
as described above. The technique is based on the
concept of Vector Quantization (VQ). Conventional
VQ is a lossy data compression technique with wide
applicability in speech and image coding [3, 5]. We
propose a lossless version called Augmented Vector
Quantization (AVQ) that is appropriate for database
compression. We have also restricted our attention to
relational databases as they are very widely used.

This paper is organized as follows. Section 2 pro-
vides background material for conventional lossy vec-
tor quantization. We also discuss how VQ may be
adapted for database compression. In Section 3,
we describe issues in the practical implementation of
AVQ. Section 4 illustrates how AVQ supports stan-
dard database operations. We evaluate the perfor-
mance of AVQ in Section 5. Finally, the last section
concludes the paper.

2 Augmented Vector Quantiza-
tion
2.1 Conventional vector quantization

Multidimensional vector quantization (or VQ) is a
technique for lossy encoding of n-dimensional vectors.


http://wkn,ravi}Oeecs.umich.edu

input

Coder Decoder
vector (Docision codeword (Table output
rule) Lookup)
XX XX XXXX
XXX X XX XX
XX XX XX XX
XXXX XX XX
Codebook Codebook

Figure 2.1: Block diagram of a vector quantizer.

Conventional VQ operates as follows. Let X be an
(possibly infinite) input set of n-dimensional vectors.
First, a fixed and finite set Y of n-dimensional out-
put vectors is selected, with |X| > |Y|. Each z; € X
is mapped into a y; € Y which approximates it ac-
cording to some suitable criterion, and y; is output
in place of z;. Since the set Y of output vectors is
finite, a codeword j can be used to identify each out-
put vector y; representing an original input vector =;.
Compression is achieved because the size of each code-
word j is smaller than that of the corresponding z;.
During decoding, the codeword j is simply replaced
by the output vector y;, approximately reconstruct-
ing the original input vector z;. The coding/decoding
process is illustrated in Figure 2.1. A brief formaliza-
tion is given below:

A vector quantizer Q : R® — Y is a mapping of
n-dimensional Euclidean space R" into a finite subset
Y of R”?, where n > 1, Y = {y,,¥5,-..,Um}- Each
y; € R™ is an output vector.

Y induces a partition of R?: R, Rs, ..., Ry, where
R; Q (y;) = {z € R" | Q(=) = y;}. Thus,
U Ri =R"and RiNR; = ¢ for all i # j. The
quantizer is uniquely defined by the output set Y and
the corresponding partition {R;}.

The quantizer can also be seen as a combination
of two functions: a coder and a decoder. The coder
C is a mapping of R” into the index or codeword set
J ={1,2,...,m} and the decoder D is a mapping of
J into the output set Y.

A distortion measure d(x, Z) represents the penalty
associated with reproducing vectors # by 2 = Q(=).
A commonly used measure is the square error between
 and & defined as follows:

d(z,2) = Z(z.- —&;)?

(2.1)

The optimal quantizer @ is the one that minimizes
d(z, &) for all input vectors z [3].

541

The set Y of output vectors is also called the code-
book. Given a set of input vectors, the design of opti-
mal codebooks has been extensively studied by Linde,
Buzo and Gray [9]. They have proposed an algorithm
that determines the optimal codebook via iterative re-
finements. This method is inefficient as it requires a
non-deterministic number of iterations. As we shall
see, our adaptation of VQ (AVQ) has a definite advan-
tage over their algorithm: It computes the codebook
in constant time.

Another issue that determines the performance of
VQ is the structure of the codebook. During decod-
ing, the codebook should be structured as to permit
efficient searching of codewords. For large codebooks,
this search process can become computationally inten-
sive. Many structures have been proposed to reduce
the search time [5]. In this respect, AVQ has another
advantage: No searching is required.

2.2 Database compression

A relational database is a natural candidate for the
application of VQ. A relation is a table of n-tuples,
each of which is a vector, or a point in n-dimensional
space. We will use the terms tuple and vector inter-
changeably. A direct application of VQ to encode a
relation would be to find a set of representative tuples,
and replace each tuple in the relation with a codeword
or index that indicates the representative tuple that
is closest to it. Unfortunately, this method of coding
is lossy; the original tuples are no longer completely
recoverable. Thus, a new design is needed.

We propose Augmented Vector Quantization
(AVQ), a lossless database compression technique
based on VQ. Instead of replacing each tuple in a rela-
tion only by its codeword as VQ does, we also include
the difference between the tuple and its representa-
tive tuple. The method is formally defined below. But
first, we need some preliminaries in relational database
terminology.

A relation scheme R = ((A;,Az,...,An)) is the
cartesian product of the set of attributes A;, i.e.,
R = A; x A2 x -+ x A,. It corresponds to the n-
dimensional space R™ as defined in the previous sec-
tion except that the size of each dimension |A4;|, may
not be the same, and the value a € A; within each
dimension or domain is non-negative. A relation R is
a subset of R and corresponds to the set of input vec-
tors to be coded. A tuple ¢ € R is an n-dimensional
vector.

All points in R may be totally ordered via an order-
ing rule. Let Ng = {0,1,...,||R||—1} be a set of inte-
gers that correspond to R, where ||R|| = []i=, |4i] is



the size of the R space. Define a function ¢ : R — A
as follows:

<p(al)a2) oo )an)

(ﬂi H IA:'I) (2.2)
j=i+1

for all {(ay,as,...,a,)! € R. The inverse of ¢ is de-

fined as:
1) = (ah, .., ah) (23)
foraleeNg andi=1,2,...,n—1,
a’
a = — i1 24
) ll‘l?:m |Aj|J ( )
n
af = a_,—d [ I4 (2.5)

=i+l

where a = e and a), = a],_;.

 is a n-dimensional to 1-dimensional mapping that
maps a tuple ¢ € R uniquely into its ordinal position
in the R space. Given two tuples #;,¢; € R, we may
define a total order based on ¢, denoted by ¢; < t;,
such that ¢; precedes t; if and only if ¢(¢;) < ©(t;).

With these preliminaries, the difference between
any two tuple t;,¢; may be defined as:

o(t;) —pt:) ift; <tj

p(t;) — @(tj) otherwise (2.6)

d(t,‘,tj) = {
AVQ is defined by the quantizer @ as follows:

Definition 2.1 (AVQ) . Given a veclor guantizer
Q:R = Z*%* Qr : R — Zt x Ng is a loss-
less mapping that encodes a tuple t € R by the pair
(C(@),d(t,Q(t))), where C is the coder that produces
the codeword (or indezx into the codebook) denoting

Q).

Let Blz] denote the minimum number of bits in
the binary representation of number z. If S[C(t;)] +
Bld(t:, Q(t:)] < Blt:), then compression is achieved.
The compression efficiency of AVQ depends on the
choice of the codebook. If the codebook is properly
designed, the average difference between a tuple and
its representative tuple will be small enough that it
takes fewer bits to encode than the original tuple.

We have so far claimed that AVQ is lossless. This
is shown in the following theorem:

1A tuple is generally enclosed in angle brackets. When used
as an argument of a function, the angle brackets are omitted
when no confusion arises.

542

Theorem 2.1 (Lossless property) AVQ is loss-
less.

Proof: During the coding process, a tuple ¢ is quan-
tized into a codeword C(#) and a difference d(, Q(t)).
By definition of the difference measure (Equation 2.6),

d(t,Q(t)) P(Q(1) — »(1)
() P(Q()) — d(t,Q(1)

assuming t < Q(t). During decoding, C(t) indicates
that Q(t) is the output vector. By subtracting the
difference from ¢(Q(t)), one obtains ¢(t). From the
definition of ¢ (Equations 2.2 and 2.3), ¢ is a bijec-
tion. Thus, ¢(t) is uniquely mapped back to the tuple
t which is then completely recovered. The same argu-
ment holds when Q(¢) < t. 1

il

il

3 Implementation of AVQ

We now see how AV(Q may be adapted for database
compression. In particular, we are interested in how
a relation is encoded and allocated physically to disk
blocks. Sections 3.1-3.4 illustrate the steps in the pro-
cess of transforming a relation into a set of losslessly
quantized tuples. Throughout this section and the rest
of the paper, we use the relation described in Exam-
ple 3.1 to illustrate the concepts involved.

Example 3.1 Table (a) in Figure 2.2 shows a rela-
tion R with five attribute domains A,, Az, A3, A4, A5
denoting the department, job title, years in company,
hours worked per week, and employee number respec-
tively. The size of each domain, i.e., the number of
attribute values, is 8,16,64, 64,64 respectively. Ta-
ble (b) shows the same relation, except that the at-
tribute values have all been encoded to numbers. At-
tribute encoding is discussed briefly below. The re-
lation in the figure has been partitioned into blocks.
Each block is coded/decoded individually. | |

3.1 Attribute encoding

A variety of attribute domain types are encountered
in practice. Attributes such as social security numbers
or zip codes are numeric, while those such as names
and addresses are alphanumeric, occurring in the form
of ASCII characters. The first preprocessing step in
AVQ encodes each attribute value to a number. For
discrete finite domains where all the attribute values
are known in advance, each attribute value is mapped
to its ordinal position in the domain. For other do-
main types, more work is needed. For alphanumeric



Ay Az Az Ay As||A1 Az A3 Aq As||A; A2 A3 Ay As| Nr A1 Az A3 Ay As| Nr
production  part-time 24 32 00|{ 3 09 24 32 00|[ 2 06 26 20 3610069284/ 0 00 03 00 30| 12318
marketing director 12 31 01}j4 12 12 31 O1|| 2 06 29 21 02]|10081602|| 0 03 62 06 02| 1040770
management worker! 29 21 02| 2 06 29 21 02| 2 10 27 27 04|11122372|| 2 10 27 27 0411122372
marketing  worker2 30 42 03|| 4 07 30 42 03(| 3 04 31 25 09(13760073|{ O 10 03 62 05| 2637701
management supervisor 27 27 04| 2 10 27 27 04|| 3 05 23 25 05(13989445({ 0 00 55 63 60| 229372
production  secretary 23 25 05| 3 05 23 25 05!{[ 3 05 28 22 11[14009739}]/ 0 00 06 05 59| 24955
production  secretary 34 28 06|| 3 05 34 28 06{| 3 05 34 28 06(14034694]| 0 00 62 09 01| 254529
production  worker! 32 37 07(| 3 06 32 37 07| 3 06 32 37 07|14289223|| 3 06 32 37 0714289223
marketing  worker2 39 37 08|| 4 07 39 37 08| 3 06 34 26 24|14296728|] 0 00 01 53 17| 7505
production  executive 31 25 09{{ 3 04 31 25 09(| 3 07 30 32 48}{14542896|| 0 00 60 06 24| 246168
marketing  part-time 19 21 10{| 4 09 19 21 10|[3 07 35 28 40|14563112|]{ 0 00 02 03 06| 8390
production  secretary 28 22 11|| 3 05 28 22 11{| 3 07 37 31 46(14571502{{ 0 00 02 05 44| 8556
production  manager 32 34 12|| 3 08 32 34 12}{ 3 07 39 37 26(14580058]| 3 07 39 37 2614580058
marketing manager 38 34 13(| 4 08 38 34 13|| 3 08 24 30 29(14780317]| 0 00 48 57 03| 200259
marketing worker?2 26 32 14|| 4 07 26 32 14|| 3 08 31 33 22(14809174]| 0 00 07 02 57| 28857
personnel supervisor 33 22 15|| 5 10 33 22 15| 3 08 32 25 19[14812755|]| 0 00 00 08 57 569
production  part-time 34 28 16(| 3 09 34 28 16(| 3 08 32 34 1214813324/ 0 00 04 05 23| 16727
marketing  part-time 25 27 17{{ 4 09 25 27 17(| 3 08 36 39 35/14830051|| 3 08 36 39 3514830051
marketing manager 41 28 181} 4 08 41 28 18|| 3 09 24 32 00]15042560|| 0 00 51 56 29| 212509
production  manager 32 25 19| 3 08 32 25 19|| 3 09 26 27 37]|15050469|| 0 00 01 59 37! 7909
marketing secretary 39 29 20([ 4 05 39 29 20| 3 09 27 26 33[15054497|| 0 00 07 01 47| 28783
marketing  manager 50 26 21|| 4 08 50 26 21{{ 3 09 34 28 16|15083280{] 0 00 62 02 18| 254098
production  manager 31 33 22(( 3 08 31 33 22||3 10 32 30 34|15337378{| 3 10 32 30 34|15337378
personnel  manager 26 32 23|[ 5 08 26 32 23|13 10 35 25 38/15349350{| 0 00 02 59 04| 11972
production  worker] 34 26 24({ 3 06 34 26 24|| 4 04 55 23 44{18052588|| 0 10 19 62 06| 2703238
personnel  worker2 45 16 25|| 5 07 45 16 25| 4 05 39 29 2018249556/ 0 01 00 62 07| 266119
production  worker2 39 37 26|| 3 07 39 37 26|| 4 06 40 27 27}18515675|| 0 00 50 04 51| 205107
marketing worker! 40 27 27({ 4 06 40 27 27|| 4 07 26 32 14|18720782|| 4 07 26 32 14|18720782
marketing  supervisor 30 44 28(| 4 10 30 44 28| 4 07 30 42 03|18737795|| 0 00 04 09 53| 17013
production manager 24 30 29)] 3 08 24 30 29| 4 07 33 32 30|18749470(| 0 00 02 54 27| 11675
marketing  worker2 33 32 30|( 4 07 33 32 30|{ 4 07 39 31 49[18774001|| O 00 00 05 23| 343
marketing  part-time 32 42 31|| 4 09 32 42 31{| 4 07 39 37 08(18774344/| 0 00 55 51 34| 228578
personnel supervisor 19 31 32| 5 10 19 31 32{| 4 08 31 24 42|19002922|| 4 08 31 24 4219002922
production  part-lime 27 26 33| 3 09 27 26 33| 4 08 32 24 41|19007017|{| 0 00 00 63 63| 4095
production  supervisor 32 30 34(| 3 10 32 30 34j| 4 08 32 27 45(19007213|| 0 00 00 03 04 196
production manager 36 39 35(( 3 08 36 39 35| 4 08 38 34 13[19032205|| 0 00 02 58 05| 11909
management worker! 26 20 36|{ 2 06 26 20 36|| 4 08 41 28 18{19044114|| O 00 08 62 03| 36739
production  part-time 26 27 37{| 3 09 26 27 37| 4 08 50 26 21|19080853|] 4 08 50 26 2119080853
production  supervisor 35 25 38|| 3 10 35 25 38|| 4 09 19 21 10{19215690|| O 00 32 58 53| 134837
marketing supervisor 39 33 39| 4 10 39 33 39|| 4 09 25 27 17|19240657[] 0 00 06 06 07| 24967
production  worker2 35 28 40| 3 07 35 28 40|[ 4 09 32 42 31[19270303{( O 00 62 O1 61| 254077
marketing  manager 32 24 41| 4 08 32 24 41}|{ 4 10 30 44 28)|19524380{| O 00 04 39 15| 18895
marketing  manager 31 24 42| 4 08 31 24 42} 4 10 35 19 43|19543275(| 4 10 35 19 4319543275
marketing supervisor 35 19 43(| 4 10 35 19 43|| 4 10 39 33 39|19560551|| 0 00 04 13 60| 17276
marketing  ezecutive 55 23 44|{ 4 04 55 23 44| 4 12 12 31 01]|19974081|| 0 01 36 61 26| 413530
marketing manager 32 27 45| 4 08 32 27 45|[ 5 05 24 26 47[22382255|[ 0 02 20 53 42| 609642
production  worker2 37 31 46| 3 07 37 31 46|| 5 07 45 16 25|22991897|| 0 00 45 15 62| 185342
personnel  secretary 24 26 47{1 5 05 24 26 47| 5 08 26 32 23[{23177239|| 5 08 26 32 2323177239
production  worker2 30 32 48|| 3 07 30 32 48|| 5 10 19 31 32{23672800|| 0 01 56 63 09{ 495561
marketing  worker2 39 31 49| 4 07 39 31 49|{ 5 10 33 22 1523729551/ 0 00 13 54 47| 56751
Table (a) Table (b) Table (c) Table (d)

Figure 2.2: A relation R and its transformation after domain mapping. Table (a) is the original relation and Table (b)
is the resulting table after mapping every attribute value to an integer. Table (¢) shows the relation after tuple
re-ordering. Table (d) shows the LLVQ coding within blocks.

543



strings, we may construct a table containing the set
of these strings and replace each attribute by an in-
dex into the table [6]. Other schemes may be used
[7, 13]. Observe that this step by itelf achieves com-
pression because an attribute value that consists of a
long string of ASCII characters is mapped to a short
number.

3.2 Tuple re-ordering

The next preprocessing step is to re-order the tuples
by an ordering rule, such as that defined by ¢ (Equa-
tion 2.2). Table (c) in Figure 2.2 shows the tuples or-
dered lexicographically by . The importance of this
step will soon be clear.

3.3 Block partitioning

A problem with conventional data compression tech-
niques is that coding and decoding is performed at
the granularity of data objects. In order to re-
strict the scope of coding/decoding, we partition the
re-ordered relation into p disjoint subsets of tuples,
By, By, ..., B,. We have chosen the size of a memory
page or disk sector as the partition size as it is the
unit of I/O transfer. That is, the number of bytes oc-
cupied by the set of tuples in a partition is no more
than the size of a disk block. When a tuple is required,
the block where it resides is transferred from disk to
main memory. If tuples in the block are coded, then
decoding need only be performed on the block. Hence,
coding and decoding is localized.

3.4 Block coding

A block B now consists of a set of tuples ordered
lexicographically, i.e., Bx = {t&,1,%,3,.. ., k,u), tk,i €
R, with t; ; < t; ; for i < j. The middle tuple in each
block B is chosen as the representative tuple £ of the
block. Thus, every tuple ti; € By is mapped to fy.

Why is the middle tuple representative? After tuple
re-ordering and block partitioning, tuples in a block
form a cluster. The median of this cluster is a tuple
such that the total distortion Y ;_, [¢(tr.:) — ¢(f)| is
minimized.

With the representative tuple known, all the other
tuples are AVQ coded into pairs as per Definition 2.1.
However, the index component is redundant since the
representative tuple is known and unique for all tuples
in the block. Hence, we need only replace each tuple
by its difference from #.

544

Ay Az Az Ay As| Nm As Az As Ay As| Nm
3 08 32 25 19(14812755|| 0 00 04 14 16| 17296
3 08 32 34 12114813324|]| 0 00 04 05 23| 16727
3 08 36 39 35[14830051j] 3 08 36 39 35]14830051
3 09 24 32 00(15042560|| 0 00 51 56 29| 212509
3 09 26 27 37]15050469|| O 00 53 52 02| 220418
Table (a) Table (b)
A1 A A3 Ay As| Ng 3 08 57
0 00 00 08 57 569 2 04 05 23
0 00 04 05 23| 16727 3 08 36 39 35
3 08 36 39 3514830051 2 51 56 29
0 00 51 56 29| 212509 2 01 59 37
0 00 01 59 37 7909
Table (c) Table (d)

Figure 3.3: Stages in coding a block of tuples. Table (a)
shows a block of tuples and Table (b) shows the block
after LLVQ coding. Table (c) shows the block after sub-
traction and Table (d) shows the block after run-length
coding.

Example 3.2 Consider the fourth block of Ta-
ble (c) in Figure 2.2 as shown in Table (a) of Fig-
ure 3.3. Column Nz shows the result of map-
ping each tuple in column 1 into a number by
o. Taking (3,08, 36,39,35) as the representative tu-
ple, the other tuples are replaced by their differ-
ences. For instance, (3,08,32,34,12), which is lex-
icographically before the representative tuple, is re-
placed by (0,00, 04, 05,23) since ¢(0, 00,04, 05,23) =
»(3,08,36,39,35) — »(3,08,32,34,12) = 14830051 —
14813324 = 16727. |

The differences may be reduced further by making
additional subtractions. For a tuple that is lexico-
graphically after the representative tuple, additional
difference may be obtained by subtracting the preced-
ing tuple from itself. For a tuple that is lexicograph-
ically before the representative tuple, additional dif-
ference is obtained by subtracting itself from the suc-
ceeding tuple. The following example from Table (c)
illustrates:

Example 3.3 Consider tuple (0, 00,04, 14, 16) in Ta-
ble (b). It is replaced by (0,00,00,08,57) obtained
as follows: ¢(0,00,00,08,57) = ¢(0,00,04, 14, 16) —
#(0,00, 04, 05,23) = 17296 — 16727 = 569. This opti-
mization produces Table (c). |

Notice the run of leading zeros in each tuple of Ta-
ble (c). These zeros arise because the differences we
are storing require fewer bits than do the original tu-
ples. By coding these runs using run-length coding



(4], we obtain Table (d). The runs are replaced by
a count of the number of zeros. Coding is complete
when these tuples are concatenated as a single stream
of data, with the representative tuple being placed in
the front. The stream for the block in the example is:

30836393530857204052325156292015937

In AVQ, each block is coded using the above se-
quence of steps into a stream of bytes. If m is the size
of a tuple, the stream may be parsed as follows: The
first m bytes give the representative tuple. The next
byte is a count field, and gives the number of leading
zeros in bytes for the next tuple in the block. If this
value is r, then the next m — r bytes are read to get
the second tuple. The next byte that follows is again a
count field, and the process repeats until all the differ-
ences are read. Note that the first and second halves
of these differences represent tuples which are lexico-
graphically smaller and larger than the representative
tuples respectively.

We end with a note regarding the amount of unused
space left in the block after coding the tuples: The
number of tuples allocated to a block before coding
must be suitably fixed so as to minimize this space.
The entire relation R after AVQ is shown in Table (d)
of Figure 2.2.

4 DB Structure and Operations

In this section, we consider how access mechanisms
may be constructed on the coded tuples, and how the
tuples may be retrieved and modified.

4.1 Access method

Figure 4.4 shows an order-3 primary B* tree index
constructed using the data blocks of Table (d) in Fig-
ure 2.2. Each block begins with the representative
tuple followed by tuple differences. Notice that the
search key in the index is an entire tuple. In conven-
tional primary indices, the search key is usually only
an attribute value (primary key).

Operations on the tree-index are performed as
usual. Suppose a query wishes to locate the tuple
{4,07,39,37,08). Starting with the key in the root
index node, index node 2 is searched next since it is
lexicographically smaller than the root key. There are
two search keys in node 2. Following the link corre-
sponding to the smaller of the differences between the
tuple and each of the keys, index node 6 is searched.
We find again that the second search key is closer to
the tuple than the first. This leads us to data block 6,

1

545

blockl

27 I0,27,27,085
< 2,03,00,30>
<1,03,62,06,02>
<1,10, 03, 62, 05>
< 2,55,63,60>

<3,06,32,37,07>
<3,07,39,37,26>

block2

X3,08,32,37, 075
< 2,06,05,59>
< 2,62,09,01>
< 2,01,53,17>
< 2,60,06,24>
block3
2 5 33,07,39,37,26>
< 2,02,03,06>
<3,08,36,39,35> | [ <3,08,36,39,35>] [ < 2,02,05,44>
< 2,48,57,03>
<4,07,26,32,14> <3,10,32,30,34> < 2,07,02,57>

block5

33, 10,32,30,315
< 2,07,01,47>
<4,07,26,32,14> < 2,62,02,18>

< 2,02,59,04>
<4,08,31,24,42> <1,10,19, 62,06>

6

Nt

block6

T, UT,7%,32, 18>
<1,01,00,62,07>
< 2,50,04,51>
< 2,04,09,53>
< 2,02,54,27>

<5,08,26,32,23>

p

block?

%4, 08,31,28,925

7 < 3,05,23>

2,55,51,34>
3,63,63>
3,03,04>

<
<4,08,50,26,21> <
<

<4,10,35,19,43>

\ block8
3 ,58,05>

<5,08,26,32,23>

8

<5, 08,26,32,23>

block10

<5,08,72%,37,735
<1,02,20,53,42>
< 2,45,15,62>
<1,01,56,63,09>
< 2,13,54,47>

Level 2 Level 1 Level 0 Data blocks

Figure 4.4: Primary index. The search key is an entire
tuple. Each block begins with a representative tuple. All
tuples following the representative tuple are difference
tuples, in which the first value is the count of leading
zeros.




33

Ay Az A3 Ay As| Nz A1 Az Az Ay As| Nw
3 08 32 25 19(14812755|| 0 00 00 08 57 569
3 08 32 34 12|14813324|| 0 00 04 05 23| 16727
m 25| 33 31 3 08 36 39 35|14830051]| 3 08 36 39 35|14830051
3 09 24 32 00{15042560{| 0 00 51 56 29| 212509
3 09 26 27 37|15050469/{ 0 00 01 59 37| 7909
Unquantized block Quantized block
peer | et Memdd B Bues ] Bn A Ay Ay Ay as| Ne |[A) 4s As A As| N
g;gg 09:01 };323 gg:g: 34:05 :g:gz 3 08 32 25 19]14812755|( 0 00 00 00 45 45
03:06 19:08 19:04 28:09 301 44:05 3 08 32 25 64]14812800| 0 00 00 08 12| 524
ggfgi g;g; gg:g: gg:g:é g;:gg :2:8; 3 08 32 34 12}14813324|| 0 00 04 05 23| 16727
06:02 11:06 22:03 31:09 39:09 47:10 3 08 36 39 35/14830051|| 3 08 36 39 3514830051
07:02 15:10 23:10 32:10 40:03 48:02 3 09 24 32 00|15042560|| O 00 51 56 29 212509
24:02 49:07 3 09 26 27 37]|15050469({ O 00 O1 59 37| 7909
Unguantized block Quantized block

Figure 4.5: Secondary index for A5. The buckets provide
a level of indirection between attributes of A5 and the
tuples of R. Each bucket contains a set of pair (a : b)
where a is the attribute value and b indicates the data
block where the tuple whose A5 = a resides.

Figure 4.6: Tuple insertion in a LLVQ coded block. The
two tables above are before insertion, while the two tables
below are after insertion. The new tuple is shown in
italic.

where the tuple resides. This block is now transferred
to main memory and decompressed. Thus, traversing
the index is the same except that key comparison re-
quires measuring the difference between the key and
the target tuple.

When tuples are to be retrieved given certain at-
tribute values only, secondary indices are needed. Fig-
ure 4.5 shows an order-3 Bt tree index where As is the
search key. Since the relation is physically clustered
via p, the index is non-clustering and secondary. This
explains the extra level of indirection provided by the
buckets in the figure. Each bucket contains a pair
(a : b) where b indicates the data block whose tuples
have A5 = a. Suppose we wish to execute 0 4,-34(R).
Traversing the index points to bucket 5, where the
tuple resides.

4.2 Tuple insertion and deletion

How are tuple insertions and deletions supported in a
compressed database? Suppose we wish to insert tuple
(3,08,32,25,64). Using the primary index, we iden-
tify data block 4 as the set of insertion. The tuple is
found to lie lexicographically between the first and sec-
ond tuple in the block. Thus, the differences from the
representative tuple must be recomputed. Figure 4.6
shows the resuit of tuple insertion.

Notice that differences are re-computed only for
tuples before the representative tuple, and that the
changes are confined to the affected block. For tuple
deletion, the primary index is similarly used to locate

546

the data block, and changes made within the block.
Tuple modification may simply be defined as a com-
bination of tuple insertion and deletion.

In summary, standard database operations remain
the same even when the database is AVQ coded. The
only difference is that the search key of the primary
index of a AVQ coded relation is an entire tuple. All
other indices are non-clustering and secondary, as in
standard databases. A further advantage of an AVQ-
coded database is that the storage requirements for
the indices will be reduced because the number of data
blocks for storing the database has been reduced by
compression. Although we have illustrated the use
of tree indices as the access mechanisms, we do not
preclude the use of other methods, such as hashing.

5 Performance Evaluation

The goals of database compression are both to reduce
space requirements as well as to improve the response
time of I/O intensive queries. In this section, we look
into the compression ratio (Section 5.1), average com-
pression/decompression time (Section 5.2) and the ef-
fects of database compression on query response time
(Section 5.3). We shall see how both the reduction
of I/O and the improvement in I/O bandwidth con-
tribute to the improvement in query response time.



Test number 1 2 3 4
Data skew Yes | Yes | No No
Domain variance | Small | Large | Small | Large
Table (a) Test characteristics

Test 1
73.0%

Test 3
73.0%

Test 4
65.6%

Test 2
65.6%
10% 70.6% | 66.7% | 70.6% | 66.7%
108 71.4% | 65.5% | 71.4% | 65.5%
Table (b) Percentage reduction in size

No. of tuples
10°

Figure 5.7: Compression efficiency. The figures in Ta-
ble (b) are obtained via the formula: 100(1 — a/b)%
where b and a are the size of the database before and
after coding respectively.

5.1 Compression efficiency

In order to compare the compression performance of
each of the variants, we only have to compare the size
of a relation before and after compression. However,
what constitutes a typical relation?

In order to ensure a fair evaluation, we generated
relations of various sizes and characteristics. They dif-
fered in: (1) relation size (i.e., the number of tuples),
(2) variance in attribute domain size, and (3) attribute
value skew. When the differences in domain sizes were
no more than 10% of the average domain size, we took
the domain size variance to be low. When the differ-
ences were more than 100%, we took the variance to
be high. The distribution of values within a domain
was taken to be skewed when 60% of the values were
drawn from 40% of the domain. When no skew ex-
isted, values were drawn uniformly from the domain.
The number of attribute domains of all relations were
fixed at 15. We measured the number of disk blocks
required by a relation under these variants.

With these parameter variations, four sets of sim-
ulations were performed. The domain variance and
attribute value skew parameters give a total of four
combinations of relation characteristics: small vari-
ance and no data skew, large variance and no data
skew, small variance and data skew, large variance
and data skew. The relation size are varied in each
of these combinations. These combinations are tab-
ulated in Table (a) in Figure 5.7. The results of the
simulations are shown in Figure 5.7. The following
observations may be made:

o The data size is greatly reduced for a compressed
relation. This is clear from the high compression
efficiencies shown in Table (b). Recall that the
relation being compressed is a table of numerical

547

tuples. Considering the domain mapping already
performed, the actual efficiency is higher.

o Homogeneity in domain sizes affects the compres-
sion efficiency. More homogeneity increases effi-
ciency, as the figures in Tests 1 and 3 are relatively
higher than the figures in Tests 2 and 4. There-
fore, a relation whose range of actual attribute
values in each domain does not differ much yields
better compressibility.

o Data skew does not seem to affect compression
efficiency as the figures in Tests 1 and 2 are the
same as the figures in Tests 3 and 4.

5.2 Coding/decoding time overhead

We measure the average time taken to encode a set of
tuples such that the size of the coded tuples can be
allocated to a disk block with minimal unused space
left in the block. We also measure the time to decode
the block.

The relation characteristics are as follows: We use
a relation with 16 attributes of varying domain sizes.
After domain mapping, each tuple is 38 bytes and
there are 10° tuples in the relation. The block size
is taken to be 8192 bytes.

The measurements are made for each of the three
techniques. For each of them, we perform the cod-
ing 100 times, and then the decoding 100 times. The
average times for each operation are then computed.
Before coding, the required number of tuples is first
loaded into main memory so as to offset any I/O time.
The measurements are taken when the coding routine
is the only user-level process executing in the system.
The results are shown in rows 1 and 2 in Figure 5.9.

It is to be noted that the block after decoding is a
collection of tuples whose attribute values are integers.
Another level of decoding is needed to map the values
back to their alphanumeric values originally. We have
omitted the measurement of this because the decoding
overhead is approzimately the same for all techniques.

5.3 Response time

In order to perform any measurement, we need the
notion of a typical query. This is difficult because as
there are many possibilities. Each query is specified
by (1) the number of attributes involved, (2) the log-
ical operators on these attributes, (3) the arithmetic
operations to be performed, etc. To simplify things,
we make the following assumptions:



o Queries are I/O-intensive, so that they are di-
rectly affected by the I/O bottleneck problem.

o All queries reduce to a set of tuple access opera-
tions.

e The time for these operations form the bulk of
the overall query response time. Thus, it directly
affects query performance.

We consider query of the form g,<4,<s(R), where
Ay is any non-primary key attribute and a,b € A;. By
varying a and b suitably, the number of tuples accessed
can be made larger, and thus more I/O-intensive. The
tuple access operation is the only one in the query and
directly determines the cost of the query.

C1, the total time taken to bring in the relevant disk
blocks into main memory for further processing in the
above query is given by the following expression:

Ci=1+ N(tl + t2) (5.7)

where I is the index search time, N is the number of
disk blocks accessed, t; is the time to read a block,
and ¢ is the decompression time per block. When the
database is not compressed, the corresponding cost
Cy, is:

Co=1+ N(t; +13) (5.8)

where 3 is the time to read and extract a block into
a set of tuples. This time is included in t,, since the
decompression yields a set of tuples.

5.3.1 Estimating

I, the time required to search the access mechanisms
(indices) to locate the block where the desired tuples
reside, is likely to be a relatively small component in
comparison with ¢;. It is dominated by the I/O needed
to bring in the small number of index blocks. Assum-
ing the number of secondary index blocks to be 5% of
the total number of data blocks, which is 189 and 64
respectively for the uncoded and coded relation. The
value of I is shown in rows 5 and 6 in Figure 5.9.

5.3.2 Estimatingt,, t;, i3

t1, the average I/O time per disk block is estimated
as follows: The components of an average disk 1/0O
read/write are: seek time, rotational delay, data trans-
fer time and controller overhead. Seek time, rota-
tional delay and controller overhead are usually in
the range of 10-20 ms, 8 ms, and 2 ms respectively
[8]. Assuming a data transfer rate of 3 Mb/sec, the
average I/O time for a block size of 8192 bytes is:

Attribute No. 67

No coding ]33[189{189/189(184|105/183
AVQ 1]/64|64]64|64]55]|64

-
~
w
'y
oy

Attribute No.] 8 | 9 [10][11]12]13]14 15
No coding {151|189(189[161[189[11]189] 1
AVQ 64|/64[64|64]|64]|11/64]1

Figure 5.8: Estimating N, the number of blocks ac-
cessed.

20 ms + 8 ms + (8192 b/3 Mb) ms + 2 ms ~ 30 ms
As the relation characteristics are the same as that of
Section 5.2, the average time for single block decom-
pression, t2, is already measured in that section. The
estimations for t3 are given in row 4 in Figure 5.9.

5.3.3 Estimating N

We measure N via simulations. The relation R used
has the same characteristics as that of Section 5.2.
The selection query o4< 4, <5(R) has three parameters:
k,a,b. Figure 5.8 gives the number of blocks accessed
when executing the query for each of the attributes of
a tuple,i.e.,, k=1,2,...,15, and where a = 0.5 x | A|.

Observe that only one block is accessed when
k = 15 because A5 is the primary key. The num-
ber of blocks accessed on average is computed from
these figures and shown in rows 7 and 8 in Fig-
ure 5.9. AVQ reduces the number of blocks accessed
by 100(1 — 55/153.6) = 64.2%.

5.3.4 Results

Given the relation (Section 5.2) and query (Sec-
tion 5.3), Figure 5.9 shows the results of combining all
the components of the total time taken to bring in the
relevant disk blocks into main memory for the cases
when the relation is compressed (C}) and when the re-
lation is uncompressed (C3). For instance, the query
I/O time of an uncoded relation on the HP 9000/735
is 153.6(30 + 1.34) = 4.81 secs, and that of a coded
relation is 55(30 + 13.85) = 2.41 secs.

AVQ shows improvements which are likely to in-
crease with processor technology, as the faster ma-
chines show higher ratios. Processor technology pro-
gresses at a faster rate than disk technology. Thus,
the t2 component is likely to decrease, with ¢, staying
about the same.



No. | Description HP 9000/735 | Sun 4/50 | Dec 5000/120
1 | Block coding time (msec) 13.91 40.29 69.92
2 | Block decoding time (msec), i 13.85 40.45 61.33
3 | Single block I/O time (msec), &3 30.00 30.00 30.00
4 | Time to extract tuples (msec), t3 1.34 3.70 9.77
5 | Index search time (uncoded) (sec), I 0.283 0.283 0.283
6 | Index search time (AVQ-coded) (sec), I 0.096 0.096 0.096
7 | No. of blocks accessed (uncoded), N 153.6 153.6 153.6
8 | No. of blocks accessed (AVQ-coded), N 55.0 55.0 55.0
9 | Total 1/O time (uncoded) (sec), C 5.093 6.013 6.403
10 | Total I/O time (AVQ-coded) (sec), Cy 2.506 3.966 5.116
11 | Improvement 50.8% 34.0% 20.1%

Figure 5.9: Response time improvements. The figures in the table are determined in the previous sections. The
percentage response time savings in row 11 are computed using the formula: 100(1 — C/C3)%.

6 Conclusions

The motivation for this work is the I/O bottleneck
problem caused by the ever-increasing disparity be-
tween cpu/memory and disk speeds. Adopting the
data compression approach, we have presented a com-
pression technique tailored specifically for relational
databases. AVQ is based on vector quantization and is
a lossless version that also supports standard database
operations.

AVQ does not incur some of the computational
overheads of conventional VQ. The output vectors are
computed without resorting to any codebook compu-
tation algorithms. There is no need for codewords as
the each vector is associated with a disk block, and
no searching of the codebook is necessary. These fea-
tures make AVQ more computationally efficient than
conventional VQ in terms of coding and decoding.

References

[1] R. AGrawaL, D. J. DEWrITT. Whither Hundreds of
Processors in a Database Machine? Proceedings of the
International Workshop on High-Level Architectures,
1984.

[2] M. A. Bassiounl. Data Compression in Scientifc and
Statistical Databases. IEEE Transactions on Software
Engineering, Vol. 11, No. 10, pp. 1047-1058, October
1985.

{3] A. GersHO, V. CUPERMAN. Vector Quantization:
A Pattern-Matching Technique for Speech Coding.
IEEE Communications Magazine, Vol. 21, pp. 15-21,
December 1983.

549

[4] S. W. GoLoMB. Run-Length Encodings. JEEE Trans-
actions on Information Theory, Vol. 12, pp. 399401,
Jul. 1966.

[5] R. M. GRAY. Vector Quantization. IEEE ASSP Mag-
azine, Vol. 1, pp. 4-29, April 1984.

[6] G. Graere, L. D. SHAPIRO. Data Compres-
sion and Database Performance. Proceedings of the
ACM/IEEE-Computer Society Symposium on Ap-
plied Computing, Kansas City, Montana, April 1991.

[7] B. HAEN. A New Technique for Compression and
Storage of Data. Communications of the ACM, Vol.
17, No. 8, pp. 434-436, August 1974.

[8] R. H. KATz, G. A. GiBsoN, D. A. PATTERSON. Disk
System Architectures for High Performance Comput-
ing. Proceedings of the IEEE, Vol. 77, No. 12, pp.
1842-1858, December 1989.

[9] Y. LinpE, A. Buzo, R. M. GRAY. An Algorithm
for Vector Quantizer Design. IEEE Transactions on
Communications, Vol. 28, No. 1, pp. 84-95, January
1980.

[10] W. K. NG, C. V. RAVISHANKAR. A Physical Storage
Model for Efficient Statistical Query Processing. Pro-
ceedings of the 7th International Working Conference
on Statistical and Scientific Databases, pp. 97-106,
Charlottesville, Virginia, September 1994.

[11] W. K. Ng, C. V. RavisHANKAR. Tuple Differential
Coding. U.S. Patent pending, 1994.

[12] W. K. Ng, C. V. RAVISHANKAR. A Tuple Model for
Summary Data Management. Proceedings of the 6th
International Conference on Management of Data,
Bangalore, India, December 1994.

[13] H. K. T. Wong, H. F. Liv, F. OLKEN, D. ROTEM,
L. WoNG. Bit Transposed Files. Proceedings of the
International Conference on Very Large Data Bases,
pp. 448-457, 1985,



