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Abstract 
Data compression is  one way t o  alleviate the 1/0 bot- 
tleneck problem faced by I/O-intensive applications 
such as databases. However, this approach is  not 
widely used because of the lack of suitable database 
compression techniques. In this paper, we design 
and implement a novel database compression technique 
based on vector quantization (VQ). VQ is  a data com- 
pression technique with wide applicability in speech 
and image coding [3, 51, but it i s  not directly suit- 
able for databases because i t  i s  lossy. We show how 
one may use a lossless version of vector quantization 
to  reduce database space storage requirements and im- 
prove disk I /O bandwidth. 

1 Introduction 

Processor speed, memory 
have grown exponentially 

speed, and memory size 
over the past few years. 

However, disk speeds have improved at a far slower 
rate. As a result, many applications such as database 
systems are now limited by the speed of their disks 
rather than the power of their CPUs [l]. As improve- 
ments in processor and memory speeds continue to 
outpace improvements in disk speeds, the severity of 
the 1/0 limitation will only increase. 

One way to alleviate this problem is through 
database compression [2, lo], which will not only re- 
duce the space requirements, but also increase the ef- 
fective 1/0 bandwidth since more data is transferred 
in compressed form. However, this approach has not 
been widely adopted. One reason is the lack of suitable 
database compression techniques. Database compres- 
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sion differs from data compression in general. Conven- 
tional data compression is usually performed at the 
granularity of entire data objects. Access to random 
portions of the compressed data objects is impossible 
without decompressing the entire object. Clearly, this 
is not practical for database systems. What is required 
is a technique that not only compresses data well, but 
also supports standard database operations. 

In this paper, we design a novel database compres- 
sion technique that has the following characteristics: 
(1) it is lossless, (2) it compresses/decompresses lo- 
cally, thus permitting localized access to compressed 
data, and (3) it supports standard database operations 
as described above. The technique is based on the 
concept of Vector Quantization (VQ). Conventional 
VQ is a lossy data compression technique with wide 
applicability in speech and image coding [3, 51. We 
propose a lossless version called Augmented Vector 
Quantization (AVQ) that is appropriate for database 
compression. We have also restricted our attention to 
relational databases as they are very widely used. 

This paper is organized as follows. Section 2 pro- 
vides background material for conventional lossy vec- 
tor quantization. We also discuss how VQ may be 
adapted for database compression. In Section 3, 
we describe issues in the practical implementation of 
AVQ. Section 4 illustrates how AVQ supports stan- 
dard database operations. We evaluate the perfor- 
mance of AVQ in Section 5 .  Finally, the last section 
concludes the paper. 

2 Augmented Vector Quantiza- 
tion 

2.1 Conventional vector quantization 
Multidimensional vector quantization (or VQ) is a 
technique for lossy encoding of n-dimensional vectors. 
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Figure 2.1: Block diagram of a vector quantizer. 

Conventional VQ operates as follows. Let X be an 
(possibly infinite) input set of n-dimensional vectors. 
First, a fixed and finite set Y of n-dimensional out- 
put vectors is selected, with 1x1 > IYI. Each zi E X 
is mapped into a gj E Y which approximates it ac- 
cording to some suitable criterion, and yj is output 
in place of zi. Since the set Y of output vectors is 
finite, a codeword j can be used to identify each out- 
put vector gj representing an original input vector zi. 
Compression is achieved because the size of each code- 
word j is smaller than that of the corresponding zi. 
During decoding, the codeword j is simply replaced 
by the output vector yj , approximately reconstruct- 
ing the original input vector zi. The coding/decoding 
process is illustrated in Figure 2.1. A brief formaliza- 
tion is given below: 

A vector quantizer Q : W" -+ Y is a mapping of 
n-dimensional Euclidean space W" into a finite subset 
Y of W", where n > 1, Y = {y1,y2,. . .,y,}. Each 
yi E W" is an output vector. 
Y induces a partition of W": RI , Rz, . . . , R,,, where 

R, = Q-'(yj) = {z E W" I Q(z) = vi}. Thus, 
Uzl R, = W" and R, n R, = q5 for all i # j .  The 
quantizer is uniquely defined by the output set Y and 
the corresponding partition {R,}. 

The quantizer can also be seen as a combination 
of two functions: a coder and a decoder. The coder 
C is a mapping of W" into the index or codeword set 
J = { 1 , 2 ,  . . . , m} and the decoder D is a mapping of 
J into the output set Y. 

A distortion measure d ( z ,  12) represents the penalty 
associated with reproducing vectors z by 12 = Q(z). 
A commonly used measure is the square error between 
z and z defined as follows: 

n 

d ( z ,  i) = - i i ) '  (2.1) 
i=l 

The optimal quantizer Q is the one that minimizes 
d ( z ,  5 )  for all input vectors z (31. 

The set Y of output vectors is also called the code- 
book. Given a set of input vectors, the design of opti- 
mal codebooks has been extensively studied by Linde, 
Buzo and Gray [9]. They have proposed an algorithm 
that determines the optimal codebook via iterative re- 
finements. This method is inefficient as it  requires a 
non-deterministic number of iterations. As we shall 
see, our adaptation of VQ (AVQ) has a definite advan- 
tage over their algorithm: It computes the codebook 
in constant time. 

Another issue that determines the performance of 
VQ is the structure of the codebook. During decod- 
ing, the codebook should be structured as to permit 
efficient searching of codewords. For large codebooks, 
this search process can become computationally inten- 
sive. Many structures have been proposed to reduce 
the search time [5].  In this respect, AV& has another 
advantage: No searching is required. 

2.2 Database compression 
A relational database is a natural candidate for the 
application of VQ. A relation is a table of n-tuples, 
each of which is a vector, or a point in n-dimensional 
space. We will use the terms iuple and vector inter- 
changeably. A direct application of VQ to encode a 
relation would be to find a set of representative tuples, 
and replace each tuple in the relation with a codeword 
or index that indicates the representative tuple that 
is closest to it. Unfortunately, this method of coding 
is lossy; the original tuples are no longer completely 
recoverable. Thus, a new design is needed. 

We propose Augmented Vector Quantization 
(AVQ), a lossless database compression technique 
based on VQ. Instead of replacing each tuple in a rela- 
tion only by its codeword as VQ does, we also include 
the difference between the tuple and its representa- 
tive tuple. The method is formally defined below. But 
first, we need some preliminaries in relational database 
terminology. 

A relation scheme 'R = ((AI, Az, . . . ,An)) is the 
Cartesian product of the set of attributes Ai, i.e., 
72 = A1 x A2 x . . . x A,, . It corresponds to the n- 
dimensional space W" as defined in the previous sec- 
tion except that the size of each dimension IAjl, may 
not be the same, and the value a E Ai within each 
dimension or domain is non-negative. A relation R is 
a subset of 'R and corresponds to the set of input vec- 
tors to be coded. A tuple t E R is an n-dimensional 
vector. 

All points in 'R may be totally ordered via an order- 
ingrule. Let NR = { 0 , 1 , .  . ., 117211-1) be aset  of inte- 
gers that correspond to 'R, where ll'Rll = E:='=, lAil is 
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the size of the 'R space. Define a function 'p : 72 -+ JVR 
as follows: 

for all (al, 0 2 , .  . . , a,)l E 'R. The inverse of 'p is de- 
fined as: 

'p-'(e) = (a i ,ak ,  ..., a;) (2.3) 
for all e ENx and i = 1 , 2  ,..., n- 1, 

n 

where a; = e and a; = 
'p is a n-dimensional to 1-dimensional mapping that 

maps a tuple t E 'R uniquely into its ordinal position 
in the 'R space. Given two tuples t i , t j  E R, we may 
define a total order based on 'p, denoted by ti 4 t j ,  
such that t i  precedes t j  if and only if V ( t i )  < ' p ( t j ) .  

With these preliminaries, the difference between 
any two tuple t i ,  t j  may be defined as: 

(2.6) ' p ( t j )  - 'p ( t i )  if ti 4 t j  
'p ( t i )  - ' p ( t j )  otherwise d ( t i ,  t j )  = 

AVQ is defined by the quantizer QL as follows: 

Definition 2.1 (AVQ) . Given a vector quantizer 
Q : 'R + Z+, QL : 'R + Z+ x n/7P is a loss- 
less mapping that encodes a tuple t E R by the pair 
(C( t ) ,  d ( t ,  Q ( t ) ) ) ,  where C is  the coder that produces 
the codeword (or index into the codebook) denoting 
Q( t ) -  

Let p[z] denote the minimum number of bits in 
the binary representation of number z. If p[C(ti)] + 
P[d( t i ,  &(t i ) ]  < p [ t i ] ,  then compression is achieved. 
The compression efficiency of AVQ depends on the 
choice of the codebook. If the codebook is properly 
designed, the average difference between a tuple and 
its representative tuple will be small enough that it 
takes fewer bits to encode than the original tuple. 

We have so far claimed that AVQ is lossless. This 
is shown in the following theorem: 

'A tuple is generally enclosed in angle brackets. When used 
as an argument of a function, the angle brackets are omitted 
when no confusion arises. 

Theorem 2.1 (Lossless property) AVQ is loss- 
less. 

Proof: During the coding process, a tuple t is quan- 
tized into a codeword C( t )  and a difference d ( t ,  Q( t ) ) .  
By definition of the difference measure (Equation 2.6), 

d ( t ,  Q( t ) )  = d Q ( t ) )  - ~ ( t )  
d t )  = d Q ( t ) )  - d ( t ,  U t ) )  

assuming t 4 Q ( t ) .  During decoding, C(t )  indicates 
that Q(t )  is the output vector. By subtracting the 
difference from 'p(Q(t)), one obtains 'p(t). From the 
definition of 'p (Equations 2.2 and 2.3), 'p is a bijec- 
tion. Thus, 'p(t) is uniquely mapped back to the tuple 
t which is then completely recovered. The same argu- 

I ment holds when Q(t )  4 t .  

3 Implementation of AVQ 
We now see how AVQ may be adapted for database 
compression. In particular, we are interested in how 
a relation is encoded and allocated physically to disk 
blocks. Sections 3.1-3.4 illustrate the steps in the pro- 
cess of transforming a relation into a set of losslessly 
quantized tuples. Throughout this section and the rest 
of the paper, we use the relation described in Exam- 
ple 3.1 to illustrate the concepts involved. 

Example 3.1 Table (a) in Figure 2.2 shows a rela- 
tion R with five attribute domains A I ,  Az, As, Aq, A5 
denoting the department, j o b  W e ,  years in company, 
hours worked per week, and employee number respec- 
tively. The size of each domain, i.e., the number of 
attribute values, is 8,16,64,64,64 respectively. Ta- 
ble (b) shows the same relation, except that the at- 
tribute values have all been encoded to numbers. At- 
tribute encoding is discussed briefly below. The re- 
lation in the figure has been partitioned into blocks. 

I Each block is coded/decoded individually. 

3.1 Attribute encoding 
A variety of attribute domain types are encountered 
in practice. Attributes such as social security numbers 
or zip codes are numeric, while those such as names 
and addresses are alphanumeric, occurring in the form 
of ASCII characters. The first preprocessing step in 
AVQ encodes each attribute value to a number. For 
discrete finite domains where all the attribute values 
are known in advance, each attribute value is mapped 
to its ordinal position in the domain. For other do- 
main types, more work is needed. For alphanumeric 
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vroduction part-time 24 32 00 
marketing director 12 31 01 
management workerl 29 21 02 
marketing worker2 30 42 03 
management supervisor 27 27 04 
vroduction secretary 23 25 05 
vwduction secretary 34 28 06 
vroduction workerl 32 37 07 
marketing worker2 39 37 08 
vroduction ezecutive 31 25 09 
marketing part-time 19 21 10 
production secretary 28 22 11 
production manager 32 34 12 
marketing manager 38 34 13 

Ai A2 A3 A4 A5 NR 
0 00 03 00 30 12318 
0 03 62 06 02 1040770 
2 10 27 27 04 11122372 
0 10 03 62 05 2637701 
0 00 55 63 60 229372 
0 00 06 05 59 24955 
0 00 62 09 01 254529 
3 06 32 37 07 14289223 
0 00 01 53 17 7505 
0 00 60 06 24 246168 
0 00 02 03 06 8390 
0 00 02 05 44 8556 
3 07 39 37 26 14580058 
0 00 48 57 03 200259 
0 00 07 02 57 28857 
0 00 00 08 57 569 
0 00 04 05 23 16727 
3 08 36 39 35 14830051 
0 00 51 56 29 212509 
0 00 01 59 37 7909 
0 00 07 01 47 28783 
0 00 62 02 18 254098 
3 10 32 30 34 15337378 
0 00 02 59 04 11972 
0 10 19 62 06 2703238 
0 01 00 62 07 266119 
0 00 50 04 51 205107 
4 07 26 32 14 18720782 
0 00 04 09 53 17013 
0 00 02 54 27 11675 
0 00 00 05 23 343 
0 00 55 51 34 228578 
4 08 31 24 42 19002922 
0 0 0 0 0 6 3 6 3  4095 
0 00 00 03 04 196 
0 00 02 58 05 11909 
0 00 08 62 03 36739 
4 08 50 26 21 19080853 
0 00 32 58 53 134837 
0 00 06 06 07 24967 
0 00 62 01 61 254077 
0 00 04 39 15 18895 
4 10 35 19 43 19543275 
0 00 04 13 60 17276 
0 01 36 61 26 413530 

3 09 24 32 00 
4 12 12 31 01 
2 06 29 21 02 
4 07 30 42 03 
2 10 27 27 04 
3 05 23 25 05 
3 05 34 28 06 
3 06 32 37 07 
4 07 39 37 08 
3 04 31 25 09 
4 09 19 21 10 
3 05 28 22 11 
3 08 32 34 12 
4 08 38 34 13 

marketing worker2 26 32 14 
personnel supewisor 33 22 15 I 4 07 26 32 

141 5 10 33 22 15 
production part-time 34 28 16 
marketing part-time 25 27 17 
marketing manager 41 28 18 
production manager 32 25 19 
marketing secretary 39 29 20 
marketing manager 50 26 21 
production manager 31 33 22 
personnel manager 26 32 23 
production workerl 34 26 24 
personnel worker2 45 16 25 
production worker2 39 37 26 
marketing workerl 40 27 27 
marketing supervinor 30 44 28 
production manager 24 30 29 
marketing worker2 33 32 30 
marketing part-time 32 42 31 
personnel supervisor 19 31 32 
production part-time 27 26 33 
production superviaor 32 30 34 
production manager 36 39 35 
management workerl 26 20 36 
production part-time 26 27 37 
production supervisor 35 25 38 
marketing supervisor 39 33 39 
production worker2 35 28 40 
marketing manager 32 24 41 
marketing manager 31 24 42 
marketing supervisor 35 19 43 
marketing ezecutive 55 23 44 
marketing manager 32 27 45 
production worker2 37 31 46 
personnel secretarq 24 26 47 
production worker2 30 32 48 
marketing worker2 39 31 49 

3 09 34 28 16 
4 09 25 27 17 
4 08 41 28 18 
3 08 32 25 19 
4 05 39 29 20 
4 08 50 26 21 
3 08 31 33 22 
5 08 26 32 23 
3 06 34 26 24 
5 07 45 16 25 
3 07 39 37 26 
4 06 40 27 27 
4 10 30 44 28 

3 10 32 30 34 
3 08 36 39 35 
2 06 26 20 36 
3 09 26 27 37 
3 10 35 25 38 
4 10 39 33 39 
3 07 35 28 40 
4 08 32 24 41 
4 08 31 24 42 
4 10 35 19 43 
4 04 55 23 44 
4 08 32 27 45 
3 07 37 31 46 
5 05 24 26 47 
3 07 30 32 48 
4 07 39 31 49 

11 A2 A3 A4 A5 

2 06 26 20 36 
2 06 29 21 02 
2 10 27 27 04 
3 04 31 25 09 
3 05 23 25 05 
3 05 28 22 11 
3 05 34 28 06 
3 06 32 37 07 
3 06 34 26 24 
3 07 30 32 48 
3 07 35 28 40 
3 07 37 31 46 
3 07 39 37 26 
3 08 24 30 29 
3 08 31 33 22 
3 08 32 25 19 
3 08 32 34 12 
3 08 36 39 35 
3 09 24 32 00 
3 09 26 27 37 
3 09 27 26 33 
3 09 34 28 16 
3 10 32 30 34 
3 10 35 25 38 
4 04 55 23 44 
4 05 39 29 20 
4 06 40 27 27 
4 07 26 32 14 
4 07 30 42 03 
4 07 33 32 30 
4 07 39 31 49 
4 07 39 37 08 
4 08 31 24 42 
4 08 32 24 41 
4 08 32 27 45 
4 08 38 34 13 
4 08 41 28 18 
4 08 50 26 21 
4 09 19 21 10 
4 09 25 27 17 
4 09 32 42 31 
4 10 30 44 28 
4 10 35 19 43 
4 10 39 33 39 
4 12 12 31 01 
5 05 24 26 47 
5 07 45 16 25 
5 08 26 32 23 
5 10 19 31 32 
5 10 33 22 15 

Table (c' 

NR 
10069284 
10081602 
11 122372 
13760073 
13989445 
14009739 
14034694 
14289223 
14296728 
14542896 
14563112 
14571502 
14580058 
1478031 7 
14809174 
14812755 
14813324 
14830051 
15042560 
15050469 
15054497 
15083280 
15337378 
15349350 
18052588 
18249556 
18515675 
18720782 
18737795 
18749470 
18774001 
18774344 
19002922 
19007017 
19007213 
19032205 
190441 14 
19080853 
19215690 
19240657 
19270303 
19524380 
19543275 
19560551 
19974081 
22382255 
22991897 
23177239 
23672800 
23729551 

Figure 2.2: A relation R and its transformation after domain mapping. Table (a) is the original relation and Table (b) 
is the resulting table after mapping every attribute value t o  an integer. Table (c) shows the relation after tuple 
reordering. Table (d) shows the LLVQ coding within blocks. 
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strings, we may construct a table containing the set 
of these strings and replace each attribute by an in- 
dex into the table [SI. Other schemes may be used 
[7, 131. Observe that this step by itelf achieves com- 
pression because an attribute value that consists of a 
long string of ASCII characters is mapped to a short 
number. 

3.2 Tuple re-ordering 
The next preprocessing step is to re-order the tuples 
by an ordering rule, such as that defined by 'p (Equa- 
tion 2.2). Table (c) in Figure 2.2 shows the tuples or- 
dered lexicographically by 'p. The importance of this 
step will soon be clear. 

3.3 Block partitioning 
A problem with conventional data compression tech- 
niques is that coding and decoding is performed at  
the granularity of data objects. In order to re- 
strict the scope of coding/decoding, we partition the 
re-ordered relation into p disjoint subsets of tuples, 
B1, B2,. . . , Bp. We have chosen the size of a memory 
page or disk sector as the partition size as it is the 
unit of 1/0 transfer. That is, the number of bytes oc- 
cupied by the set of tuples in a partition is no more 
than the size,of a disk block. When a tuple is required, 
the block where it resides is transferred from disk to 
main memory. If tuples in the block are coded, then 
decoding need only be performed on the block. Hence, 
coding and decoding is localized. 

3.4 Block coding 
A block Bk now consists of a set of tuples ordered 
lexicographically, i.e., & = ( t t , l , t t , f , .  . . , t k , " ) ,  t k , i  E 
R, with t k , i  < t k , j  for i < j .  The middle tuple in each 
block & is chosen as the representative tuple i k  of the 
block. Thus, every tuple t t , j  E Bt is mapped to i t .  

Why is the middle tuple representative? After tuple 
reordering and block partitioning, tuples in a block 
form a cluster. The median of this cluster is a tuple i 
such that the total distortion cy='=, ( ' p ( t k , i )  - 'p(9l is 
minimized. 

With the representative tuple known, all the other 
tuples are AVQ coded into pairs as per Definition 2.1. 
However, the index component is redundant since the 
representative tuple is known and unique for all tuples 
in the block. Hence, we need only replace each tuple 
by its difference from i k .  

[I A2 A;Ie::I Na A2 -4;.&=51 NR 1 3 08 32 25 19 14812755 0 00 04 14 16 17296 
3 08 32 34 12 14813324 0 00 04 05 23 16727 
3 08 36 39 35 14830051 3 08 36 39 35 14830051 
3 09 24 32 00 15042560 0 00 51 56 29 212509 
3 09 26 27 37 15050469 0 00 53 52 02 220418 

2 51 56 29 
2 01 59 37 

Table ( c )  Table (d) 

Figure 3.3: Stages in coding a block o f  tuples. Table (a) 
shows a block o f  tuples and Table (b) shows the block 
after LLVQ coding. Table (c) shows the block after sub- 
traction and Table (d) shows the block after run-length 
coding. 

Example 3.2 Consider the fourth block of Ta- 
ble (c) in Figure 2.2 as shown in Table (a) of Fig- 
ure 3.3. Column NR shows the result of map- 
ping each tuple in column 1 into a number by 
'p. Taking (3,08,36,39,35) as the representative tu- 
ple, the other tuples are replaced by their differ- 
ences. For instance, (3,08,32,34,12),  which is lex- 
icographically before the representative tuple, is re- 
placed by ( O , O O ,  04,05,23) since 'p(O,OO, 04,05,23) = 
~ ( 3 , 0 8 , 3 6 , 3 9 , 3 5 )  - 9(3,08,32,34,12) = 14830051 - 
14813324 = 16727. I 

The differences may be reduced further by making 
additional subtractions. For a tuple that is lexico- 
graphically after the representative tuple, additional 
difference may be obtained by subtracting the preced- 
ing tuple~from itself. For a tuple that is lexicograph- 
ically before the representative tuple, additional dif- 
ference is obtained by subtracting itself from the suc- 
ceeding tuple. The following example from Table (c) 
illustrates: 

Example 3.3 Consider tuple (0, 00,04,14,16) in Ta- 
ble (b). It is replaced by (0,00,00,08,57) obtained 

'p(0, 00,04,05,23) = 17296 - 16727 = 569. This opti- 
as fOllOWS: ~p(0,00,00,08,57) = p(O,OO,  04,14,16) - 

mization produces Table (c). I 

Notice the run of leading zeros in each tuple of Ta- 
ble (c). These zeros arise because the differences we 
are storing require fewer bits than do the original tu- 
ples. By coding these runs using run-length coding 
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[4], we obtain Table (d). The runs are replaced by 
a count of the number of zeros. Coding is complete 
when these tuples are concatenated as a single stream 
of data, with the representative tuple being placed in 
the front. The stream for the block in the example is: 

30836393530857204052325156292015937 

In AVQ, each block is coded using the above se- 
quence of steps into a stream of bytes. If m is the size 
of a tuple, the stream may be parsed as follows: The 
first m bytes give the representative tuple. The next 
byte is a count field, and gives the number of leading 
zeros in bytes for the next tuple in the block. If this 
value is r, then the next m - r bytes are read to get 
the second tuple. The next byte that follows is again a 
count field, and the process repeats until all the differ- 
ences are read. Note that the first and second halves 
of these differences represent tuples which are lexico- 
graphically smaller and larger than the representative 
tuples respectively. 

We end with a note regarding the amount of unused 
space left in the block after coding the tuples: The 
number of tuples allocated to a block before coding 
must be suitably k e d  so as to minimize this space. 
The entire relation R after AVQ is shown in Table (d) 
of Figure 2.2. 

4 DB Structure and Operations 
In this section, we consider how access mechanisms 
may be constructed on the coded tuples, and how the 
tuples may be retrieved and modified. 

4.1 Access method 
Figure 4.4 shows an order-3 primary B+ tree index 
constructed using the data blocks of Table (d) in Fig- 
ure 2.2. Each block begins with the representative 
tuple followed by tuple differences. Notice that the 
search key in the index is an entire tuple. In conven- 
tional primary indices, the search key is usually only 
an attribute value (primary key). 

Operations on the tree-index are performed as 
usual. Suppose a query wishes to locate the tuple 
(4,07,39,37,08). Starting with the key in the root 
index node, index node 2 is searched next since it is 
lexicographically smaller than the root key. There are 
two search keys in node 2. Following the link corre- 
sponding to the smaller of the differences between the 
tuple and each of the keys, index node 6 is searched. 
We find again that the second search key is closer to 
the tuple than the first. This leads us to data block 6, 

block1 
a. 1U.L I .L I .  u4> 

< 2,03 ,00 ,30> 
<1,03,62,06,02> 

< 2.06.05.59> 
< 2,62,09,01> 
< 2,01,53,11> 
< 2,60,06,24> 

I I 

< 2,02,03,06> 

2,04,05,23> 
< 2,51 ,56 ,29> 

2,01,59,37> 
I \ I 

<5,08,26,32.23> T block6 

2,04,09,53> 
2 ,02 ,54 ,27> 

block7 
(4  I un. 31, L4,4 
< 3,05,23> 
c 2,55 .51 ,34> 

block8 
< 4 ,  U B . S J , L b ,  
< 2,02,58,05> 
< 2,08,62,03> 

<5.08.26.32.23> < 2.32.58.53> 

\ I 
block9 

< 2,62,01,61> 
< 2,04,39,15> 
< 2,04,13,60> 

\ 
block10 
-,U , I I j> 
<1,02 ,20 ,53 ,42> 
c 2,45,15,62> 
<1,01,56,63,09> 
< 2,13 ,54 ,47> 

Level 2 Level 1 Level 0 Data blocks 

Figure 4.4: Primary index. T h e  search key is an entire 
tuple. Each block begins with a representative tuple. All 
tuples following the representative tuple are difference 
tuples, in which the first value is the count of leading 
zeros. 
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I 

02: 01 
03:OK 
04: 01 
05:Ol 

buc 3 m 
17:08 
18:08 
19:04 
20:06 
21 : 08 
22:03 
23:lO 
24:02 - 

27:06 
28:09 
29:03 
30:06 
31: 09 
32:lO 

36:Ol 

40:03 

44: 05 
45: 0 1  
46: 03 
47: 10 

Figure 4.5: Secondary index for As. The  buckets provide 
a level of indirection between attributes of A5 and the 
tuples of R. Each bucket contains a set o f  pair ( a  : b)  
where a is the attribute value and b indicates the data 
block where the tuple whose A5 = a resides. 

where the tuple resides. This block is now transferred 
to main memory and decompressed. Thus, traversing 
the index is the same except that key comparison re- 
quires measuring the difference between the key and 
the target tuple. 

When tuples are to be retrieved given certain at- 
tribute values only, secondary indices are needed. Fig- 
ure 4.5 shows an order-3 B+ tree index where A5 is the 
search key. Since the relation is physically clustered 
via cp, the index is non-clustering and secondary. This 
explains the extra level of indirection provided by the 
buckets in the figure. Each bucket contains a pair 
(a  : b) where b indicates the data block whose tuples 
have A5 = a. Suppose we wish to execute U A ~ = ~ ~ ( R ) .  
Traversing the index points to  bucket 5, where the 
tuple resides. 

4.2 Tuple insertion and deletion 

How are tuple insertions and deletions supported in a 
compressed database? Suppose we wish to insert tuple 
(3,08,32,25,64). Using the primary index, we iden- 
tify data block 4 as the set of insertion. The tuple is 
found to lie lexicographically between the first and sec- 
ond tuple in the block. Thus, the differences from the 
representative tuple must be recomputed. Figure 4.6 
shows the result of tuple insertion. 

Notice that differences are re-computed only for 
tuples before the representative tuple, and that the 
changes are confined to the affected block. For tuple 
deletion, the primary index is similarly used to locate 

1-41 Aa A3 A4 A51 Nx / / A I  Aa A3 A4 As/  zg I 
3 08 32 25 19 14812755 0 00 00 08 57 
3 08 32 34 12 14813324 0 00 04 05 23 16727 

Unquantized block Quantized block 

[I A2 A3 A4 -451 Na I[[I A2 A3 A4 -451 2 1 
3 08 32 25 19 14812755 0 00 00 00 45 
3 08 32 25 64 14812800 0 00 00 08 12 
3 08 32 34 12 14813324 0 00 04 05 23 16727 
3 08 36 39 35 14830051 3 08 36 39 35 14830051 
3 09 24 32 00 15042560 0 00 51 56 29 212509 
3 09 26 27 37 15050469 0 00 01 59 37 7909 

Unquantized block Quantized block 

Figure 4.6: Tuple insertion in a LLVQ coded block. The 
two tables above are before insertion, while the two tables 
below are after insertion. T h e  new tuple is shown in 
italic. 

the data block, and changes made within the block. 
Tuple modification may simply be defined as a com- 
bination of tuple insertion and deletion. 

In summary, standard database operations remain 
the same even when the database is AVQ coded. The 
only difference is that the search key of the primary 
index of a AVQ coded relation is an entire tuple. All 
other indices are non-clustering and secondary, as in 
standard databases. A further advantage of an AVQ- 
coded database is that the storage requirements for 
the indices will be reduced because the number of data 
blocks for storing the database has been reduced by 
compression. Although we have illustrated the use 
of tree indices as the access mechanisms, we do not 
preclude the use of other methods, such as hashing. 

5 Performance Evaluation 

The goals of database compression are both to reduce 
space requirements as well as to improve the response 
time of 1/0 intensive queries. In this section, we look 
into the compression ratio (Section 5.1), average com- 
pression/decompression time (Section 5.2) and the ef- 
fects of database compression on query response time 
(Section 5.3). We shall see how both the reduction 
of 1/0 and the improvement in 1/0 bandwidth con- 
tribute to the improvement in query response time. 
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Testnumber 1 2 

Domainvariance Small Large 
Dataskew Yes Yes 

No. of tuples I Test 1 I Test 2 I Test 3 I Test 4 
I 73.0% 165.6% I 73.0% I 65.6% 1 0 4  

3 4 
No No 
Small Large 

105 
lo6 

Figure 5.7: Compression efficiency. The  figures in Ta- 
ble (b) are obtained via the formula: lOO(1 - a/b)% 
where b and a are the size of the database before and 
after coding respectively. 

70.6% 66.7% 70.6% 66.7% 
71.4% 65.5% 71.4% 65.5% 

5.1 Compression efficiency 
In order to compare the compression performance of 
each of the variants, we only have to compare the size 
of a relation before and after compression. However, 
what constitutes a typical relation? 

In order to ensure a fair evaluation, we generated 
relations of various sizes and characteristics. They dif- 
fered in: (1) relation size (i.e., the number of tuples), 
(2) variance in attribute domain size, and (3) attribute 
value skew. When the differences in domain sizes were 
no more than 10% of the average domain size, we took 
the domain size variance to be low. When the differ- 
ences were more than loo%, we took the variance to 
be high. The distribution of values within a domain 
was taken to be skewed when 60% of the values were 
drawn from 40% of the domain. When no skew ex- 
isted, values were drawn uniformly from the domain. 
The number of attribute domains of all relations were 
fixed at 15. We measured the number of disk blocks 
required by a relation under these variants. 

With these parameter variations, four sets of sim- 
ulations were performed. The domain variance and 
attribute value skew parameters give a total of four 
combinations of relation characteristics: small vari- 
ance and no data skew, large variance and no data 
skew, small variance and data skew, large variance 
and data skew. The relation size are varied in each 
of these combinations. These combinations are tab- 
ulated in Table (a) in Figure 5.7. The results of the 
simulations are shown in Figure 5.7. The following 
observations may be made: 

0 The data size is greatly reduced for a compressed 
relation. This is clear from the high compression 
efficiencies shown in Table (b). Recall that the 
relation being compressed is a table of numerical 

tuples. Considering the domain mapping already 
performed, the actual efficiency is higher. 

0 Homogeneity in domain sizes affects the compres- 
sion efficiency. More homogeneity increases effi- 
ciency, as the figures in Tests 1 and 3 are relatively 
higher than the figures in Tests 2 and 4. There- 
fore, a relation whose range of actual attribute 
values in each domain does not differ much yields 
better compressibility. 

0 Data skew does not Seem to affect compression 
efficiency as the figures in Tests 1 and 2 are the 
same as the figures in Tests 3 and 4. 

5.2 Coding/decoding time overhead 

We measure the average time taken to encode a set of 
tuples such that the size of the coded tuples can be 
allocated to a disk block with minimal unused space 
left in the block. We also measure the time to decode 
the block. 

The relation characteristics are as follows: We use 
a relation with 16 attributes of varying domain sizes. 
After domain mapping, each tuple is 38 bytes and 
there are lo5 tuples in the relation. The block size 
is taken to be 8192 bytes. 

The measurements are made for each of the three 
techniques. For each of them, we perform the cod- 
ing 100 times, and then the decoding 100 times. The 
average times for each operation are then computed. 
Before coding, the required number of tuples is first 
loaded into main memory so as to offset any 1/0 time. 
The measurements are taken when the coding routine 
is the only user-level process executing in the system. 
The results are shown in rows 1 and 2 in Figure 5.9. 

It is to be noted that the block after decoding is a 
collection of tuples whose attribute values are integers. 
Another level of decoding is needed to map the values 
back to their alphanumeric values originally. We have 
omitted the measurement of this because the decoding 
overhead is approximately the same for all techniques. 

5.3 Response time 

In order to perform any measurement, we need the 
notion of a typical query. This is difficult because as 
there are many possibilities. Each query is specified 
by (1) the number of attributes involved, (2) the log- 
ical operators on these attributes, (3) the arithmetic 
operations to be performed, etc. To simplify things, 
we make the following assumptions: 
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Queries are I/O-intensive, so that they are di- 
rectly affected by the 1/0 bottleneck problem. 

All queries reduce to a set of tuple access opera- 
tions. 

The time €or these operations form the bulk of 
the overall query response time. Thus, it directly 
affects query performance. 

We consider query of the form U a s A r < b ( R ) ,  where 
Ak is any non-primary key attribute and a, b E A I . .  By 
varying a and b suitably, the number of tuples accessed 
can be made larger, and thus more I/O-intensive. The 
tuple access operation is the only one in the query and 
directly determines the cost of the query. 

C1, the total time taken to bring in the relevant disk 
blocks into main memory for further processing in the 
above query is given by the following expression: 

Cl = I + N ( t 1  + t z )  (5.7) 

where I is the index search time, N is the number of 
disk blocks accessed, t l  is the time to read a block, 
and t2 is the decompression time per block. When the 
database is not compressed, the corresponding cost 
Cz, is: 

c2 = I + N ( t 1  + t 3 )  (5.8) 
where t3 is the time to read and extract a block into 
a set of tuples. This time is included in t2 ,  since the 
decompression yields a set of tuples. 

5.3.1 Estimating I 

I, the time required to search the access mechanisms 
(indices) to locate the block where the desired tuples 
reside, is likely to  be a relatively small component in 
comparison with t l .  It is dominated by the 1/0 needed 
to bring in the small number of index blocks. Assum- 
ing the number of secondary index blocks to be 5% of 
the total number of data blocks, which is 189 and 64 
respectively for the uncoded and coded relation. The 
value of I is shown in rows 5 and 6 in Figure 5.9. 

5.3.2 Estimating t l ,  t2,  t3 

t l ,  the average 1/0 time per disk block is estimated 
as follows: The components of an average disk 1/0 
read/write are: seek t ime,  rotational de lay ,  data trans- 
fer tame and controller overhead. Seek time, rota- 
tional delay and controller overhead are usually in 
the range of 10-20 ms, 8 ms, and 2 ms respectively 
[8]. Assuming a data transfer rate of 3 Mb/sec, the 
average 1/0 time for a block size of 8192 bytes is: 

Attribute No.1 1 I 2 I 3 I 4 I 5 I 6 I 7 
No codinn I331 1891 1891 1891 1841 105 1183 

Figure 5.8: Estimating N ,  the number of blocks ac- 
cessed. 

20 ms + 8 ms + (8192 b/3 Mb) ms + 2 ms M 30 ms 
As the relation characteristics are the same as that of 
Section 5.2, the average time for single block decom- 
pression, t z ,  is already measured in that section. The 
estimations for t 3  are given in row 4 in Figure 5.9. 

5.3.3 Estimating N 

We measure N via simulations. The relation R used 
has the same characteristics as that of Section 5.2. 
The selection query u a s A h s b ( R )  has three parameters: 
k, a, 6. Figure 5.8 gives the number of blocks accessed 
when executing the query for each of the attributes of 
a tuple, i.e., k = 1 , 2 , .  . ., 15, and where a = 0.5 x IAkI. 

Observe that only one block is accessed when 
k = 15 because A15 is the primary key. The num- 
ber of blocks accessed on average is computed from 
these figures and shown in rows 7 and 8 in Fig- 
ure 5.9. AVQ reduces the number of blocks accessed 
by lOO(1 - 55/153.6) = 64.2%. 

5.3.4 Results 

Given the relation (Section 5.2) and query (Sec- 
tion 5.3), Figure 5.9 shows the results of combining all 
the components of the total time taken to bring in the 
relevant disk blocks into main memory for the cases 
when the relation is compressed (Cl) and when the re- 
lation is uncompressed (C2). For instance, the query 
1/0 time of an uncoded relation on the HP 9000/735 
is 153.6(30 + 1.34) = 4.81 secs, and that of a coded 
relation is 55(30 + 13.85) = 2.41 secs. 

AVQ shows improvements which are likely to in- 
crease with processor technology, as the faster ma- 
chines show higher ratios. Processor technology pro- 
gresses at a faster rate than disk technology. Thus, 
the t2 component is likely to decrease, with t l  staying 
about the same. 
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No. I Description I HP 9000/735 I Sun 4/50 I Dec 5000/120 
1 I Block coding time (msec) I 13.91 I 40.29 1 69.92 
2 
3 
4 
5 
6 
7 

- . I  

Block decoding time (msec), t2 13.85 40.45 61.33 
Single block 1/0 time (msec), tl  30.00 30.00 30.00 

Index search time (uncoded) (sec), Z 0.283 0.283 0.283 
Index search time (AVQ-coded) (sec), Z 0.096 0.096 0.096 
No. of blocks accessed (uncoded), N 153.6 153.6 153.6 

Time to extract tuples (msec), t3 1.34 3.70 9.77 

8 
9 
10 
11 

Figure 5.9: Response t ime improvements. T h e  figures in the table are determined in the previous sections. T h e  
percentage response t ime savings in row 11 are computed using the formula: lOO(1- Cl/C2)%. 

No. of blocks accessed (AVQ-coded), N 55.0 55.0 55.0 
Total 1/0 time (uncoded) (sec), C2 5.093 6.013 6.403 
Total 1/0 time (AVQ-coded) (sec), CI 2.506 3.966 5.116 
Improvement 50.8% 34.0% 20.1% 

6 Conclusions 

The motivation for this work is the 1/0 bottleneck 
problem caused by the ever-increasing disparity be- 
tween cpu/memory and disk speeds. Adopting the 
data compression approach, we have presented a com- 
pression technique tailored specifically for relational 
databases. AVQ is based on vector quantization and is 
a lossless version that also supports standard database 
operations. 

AV& does not incur some of the computational 
overheads of conventional VQ. The output vectors are 
computed without resorting to any codebook compu- 
tation algorithms. There is no need for codewords as 
the each vector is associated with a disk block, and 
no searching of the codebook is necessary. These fea- 
tures make AVQ more computationally efficient than 
conventional VQ in terms of coding and decoding. 
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