
Finding Regions of Interest from Trajectory Data

Md Reaz Uddin, Chinya Ravishankar, Vassilis J. Tsotras

University of California, Riverside, CA, USA
{uddinm,ravi,tsotras}@cs.ucr.edu

Abstract—We show how to find regions of interest (ROIs) in
trajectory databases. ROIs are regions where a large number of
moving objects remain for at least a given time interval. Previous
techniques use somewhat restrictive definitions for ROIs, and are
parameter-dependent. They require sequential scanning of the
entire dataset to find ROIs when the ROI parameters change. Our
approach is parameter independent, so that the user can quickly
identify ROIs under different parametric definitions without
rescanning the whole database. We also generalize ROIs to be
regions of arbitrary shape of some predefined density. We have
tested our methods with large real and synthetic datasets to test
the scalability and verify the output of our methods. Our methods
give meaningful output and scale very well.

I. INTRODUCTION

The widespread use of GPS-enabled devices has enabled

many applications that generate and maintain data in the form

of trajectories (e.g., [1], [2], [3], [4]). Novel applications [5],
[6], [7], [8] allow users to manage, store, and share trajectories

in the form of GPS logs, and find travel routes, interesting

places, or other people interested in similar activities.

Other research efforts have been geared towards understand-

ing and extracting people’s activities from trajectory databases.

Examples include querying for a certain sequence of activities

during traveling [9], mining similarity between travelers based

on their activity sequence [10], inferring popular locations

from GPS traces [11], etc. Typically, these queries assume

that information about the locations of specific activities is

provided as a set of Regions of Interest.

There is recent work on discovering Regions of Interest

(ROIs) from trajectory databases [10], [11], [12]. However,

these methods are aimed at using ROIs to identify user travel

similarity, top-k interesting locations, etc. They identify “stay
points” (equivalent to ROIs), where a stay point is an (x, y)
average of the points of a subtrajectory in which the object

moves less than a prespecified distance threshold δ and takes
longer than a prespecified time threshold τ . If either δ or τ
changes, the entire trajectory database must be re-scanned. In

contrast, our work removes this important limitation.

It is more intuitive to define ROIs in terms of speed. If an

object takes at least time τ to travel at most distance δ, it
maintains an average speed no more than δ

τ for at least time

τ . In our framework, we actually use a speed range to define
ROIs, as this leads to a more generic definition. Further, we

introduce the notion of trajectory density to define ROIs. A

region is dense if the number of objects per unit area is no less
than a pre-specified threshold. In summary, our ROI definition

uses (1) a range of speed that an object maintains while in an

Trajectory
Database

Inverted
(speed)
Index

Verify
Temporal
Condition

Find
Dense

Regions

Query

ROIs

Fig. 1. Framework for Discovering ROIs

ROI (2) a minimum duration of staying in an ROI area and

(3) the density of objects in that area.

We build an index on object speeds to avoid scanning the

whole database. Given a range or a particular speed, we first

retrieve trajectory segments with that speed using this index.

We then verify the minimum stay duration condition. Objects

that fulfill the speed and duration condition are candidate
objects. Finally, we identify dense regions of candidate objects.
For this we extend the pointwise density method [13]. Figure 1

shows our proposed framework to discover ROIs.

Our contributions are summarized as follows. We provide:

• a generalized ROI definition for trajectories,

• a framework and several approaches to find ROIs effi-

ciently, and

• an extensive experimental evaluation of the proposed

methods using one synthetic and three real datasets.

The remainder of the paper is organized as follows: Sec-

tion II presents the basic definitions and formal description

of the regions of interest while Section III provides an

overview of related works. Section IV describes the framework

for storing trajectories in order to efficiently find ROIs; the

proposed methods to find regions of interest are described in

Section V. Section VI presents the experimental evaluation

and Section VII concludes the paper.

II. BACKGROUND

We begin with some definitions.

Definition 1: A trajectory is a finite sequence of (xi, yi, ti)
triples. The xi, yi ∈ R2 are spatial coordinates, and the ti ∈
R
+, are timestamps, with ti < ti+1 for i = 0, 1, . . . , n− 1.

2011 12th International Conference on Mobile Data Management

978-0-7695-4436-6 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/MDM.2011.12

33

2011 12th International Conference on Mobile Data Management

978-0-7695-4436-6 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/MDM.2011.12

39

2011 12th IEEE International Conference on Mobile Data Management

978-0-7695-4436-6 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/MDM.2011.12

39



Each (xi, yi) pair represents the position recorded of a moving
object at time ti (typically from a GPS enabled device). Each

trajectory has a unique trajectory ID (TID).
Definition 2: A trajectory segment is a straight line be-

tween two consecutive tuples (xi, yi, ti), (xi+1, yi+1, ti+1) of
the same trajectory, where i ∈ N0.
Definition 3: A subtrajectory of length m of a trajectory

T = (x0, y0, t0), . . . , (xn, yn, tn), is a subsequence T ′ =
(xi, yi, ti), . . . , (xm+i−1, ym+i−1, tm+i−1), of m contiguous

trajectory segments, where i ≥ 0,m ≤ n.
A single trajectory segment is a subtrajectory of length one.

In the rest of the paper we use trajectory segment, line segment
or line interchangeably.

A. Defining Regions of Interest
Conceptually, an ROI is intended to be a region where

moving objects pause or wait in order to complete activities

that are difficult or impossible to carry out while in motion.

Examples of ROIs are restaurants, museums, parks, places

of work, and so on. Generally, individual trajectories display

idiosyncrasies, so ROIs are best defined in terms of collective

behaviors of a collection of trajectories. That is, a collection

of trajectories is needed to identify a location as an ROI.
One simplistic approach to define ROIs is to consider places

where many trajectories intersect. However, not all intersec-

tions may be ROIs. For example, it may not be appropriate

to declare a busy road intersection as an ROI. The duration

of an object’s stay in a location is important in filtering out

spurious ROIs, so we will require a minimum stay duration
for objects at ROIs. Nevertheless, if an object spends a long

time in a large spatial region, a city, say, then that large region

should not be considered as an ROI either. Hence, we must

also consider the geographic extent of the object’s movement,

that is, the maximum area within which an object remains

(or the maximum distance traveled by an object) during the

minimum stay duration.
Since the number of objects visiting a potential ROI is also

important, we consider the density of candidate objects in such

a region. The problem of finding ROIs can then be viewed as

that of finding dense regions of candidate objects.

B. Identifying Point-Wise Dense Regions
We identify dense regions adapting the point-wise dense

region approach of [13]. In this approach, a region R ⊂ R2 is

dense if every point in R has a neighborhood which contains

a sufficient number of objects. This density approach removes

various anomalies (e.g., answer loss, lack of local density

guarantee, etc.) that other density computation methods, [14],

[15], have. We thus adapt the following definitions from [13]:
Definition 4: The l-square neighborhood of a point p ∈ R2

is a square with edge length l centered at p, including top and
right edges, but excluding bottom and left edges. Figure 2(a)

shows the l-square neighborhood of a point p. We assume

l ≥ lmin, where lmin is predefined.
Since we must find the density around trajectory segments,

we extend this definition by defining l-neighborhoods around
line segments and rectangles.

l/2 l/2

l/2

l/2
p

r

l/2

l/2

l + lc

c

(a) l-square neighborhood
of a point p.

(b) l-square neighborhood of

the rectangle c.

Fig. 2.

(a) (b)

l/2

l/2
l/2

Fig. 3. l-neighbor regions.

Definition 5: The l-rectangle neighborhood r of a rectan-
gle c with lower-left and upper-right corners at (xl, yb) and
(xr, yt) is the rectangle (Figure 2(b)) with left-bottom corner

(xl − l
2 , yb − l

2 ) and right-top corner (xr +
l
2 , yt +

l
2 ). If c is

a square, r is the l-square neighborhood of c.

Definition 6: The l-rectangle neighborhood of a line seg-
ment is the rectangle with edge lengths l and l + |L|. The
edges parallel with the line L are l/2 apart L and have length

l+ |L| while the other edges are l/2 apart from the end points

of L having length l.

Figure 3(a) illustrates this idea. Figure 3(b) shows a variant

of this definition that is useful in simplifying the evaluation

of certain integrals while computing dense regions. Here, two

rectangle boundaries are parallel to the coordinate axes.

Definition 7: A point p in a region is dense if at least N
different trajectories pass through the l-square neighborhood
of p. The thresholds l and N are specified by the ROI query.

Given thresholds l, N, τ , we consider R to be an ROI if at

least N objects remain for time τ in the l-square neighborhood
of every point p ∈ R.
We note that the behavior of an object within a region of

interest can be described in terms of its speed and duration of

stay. If the object remains within the l-square neighborhood
of a point for time at least τ , the net speed of the object (in
terms of its net displacement) can not exceed

√
2l/τ during

the time interval τ . In this paper, therefore, we define a region
of interest in terms of speed.

Definition 8: A region R is a region of interest if every
point p ∈ R has an l-square neighborhood containing segments
from at least N distinct trajectories with object speeds in the

range [s1, s2], and each such object remains in R for at least

time τ before leaving R. The parameters l, N, τ, s1, s2 are

user-defined.

Our definition also supports timestamps, i.e. weekends or

weekdays, lunch or dinner time, etc. This allows the user

344040



to distinguish between ROIs with different semantics. ROIs

found with long stay duration on the weekends have different

semantics than those found on weekdays with short stay

duration.

III. RELATED WORK

Retrieving semantic information from trajectory databases

has attracted much research attention. In [9], [16] ROI in-

formation is given in a relational database and a join oper-

ation between trajectory and ROI relations is performed to

evaluate activity sequence queries. [16] and [9] assume that

the querying application will specify a finite set of pairs (Δ,
τ ) of interesting geographic regions Δ and durations τ . If a
trajectory spends at least τ duration in a specified region Δ,
then the portion of the trajectory inside region Δ is considered

as a stop area in that trajectory. These stops are similar to

ROIs. Nevertheless, these approaches do not discover new

ROIs as they consider only the application specified regions.

Recently, various works on discovering ROIs have appeared,

[10], [11], [12], [17], [18], and are discussed below.

In [10], [11] the notion of “stay point” is presented using a

maximum distance threshold Dthreh and a minimum duration

threshold Tthreh. In particular subtrajectories are identified

that take at least Tthreh duration to travel no more than

Dthreh distance. A fixed pair of values (e.g., Dthreh =
200m and Tthreh = 30min) is considered for finding these

subtrajectories. The (x, y) points of these subtrajectories are
then averaged to identify stay points (one stay point for each

subtrajectory). Note that, these stay points might not be on

a trajectory (Figure 4). Density based clustering methods are

then applied to group spatially collocated stay points. Each

cluster is called a “stay region”. These stay regions are then

used to find similar travel sequences [10], top n interesting

locations [11], [12]. However, reducing a subtrajectory into

a particular point (possibly not on the trajectory) leads to

possible loss of information. For example, if density based

methods are applied on stay points to identify stay regions

they might generate false negatives. Stay points (solid circles)

shown in Figure 4 are obtained by taking the average of points

in the low speed part of each trajectory. These stay points are

too far from each other to form a cluster although there is a

dense region (the grey region) of slow moving objects.

[12] takes the first of the two contiguous trajectory points

that are logged more than Tthreh time apart (the empty circles
in Figure 4). These stay points are always on the trajectory but

still subtrajectories are reduced to a single point and thus this

approach also suffers the above problem. In addition, [12] does

not consider the situation when an object is moving slowly or

stopped but the GPS is frequently recording its positions.

In our approach we find dense regions considering the whole

low speed subtrajectories instead of particular points and thus

overcome the above problems. We achieve this by identifying

as dense points, those points which have a certain number of

trajectories in their predefined neighborhood.

In [17] ROIs are discovered for each individual trajectory in-

stead of considering all trajectories and identifying commonly

Stay Point (x,y average)

Low speed part
High speed part

Stay Point (first point)

Fig. 4. Problem of density based clustering methods for trajectories.

interesting places. The DBSCAN method [19] is modified so

that parts of a particular trajectory within a small region and

with sufficient stay duration in that region will be considered

as clusters (ROIs).

The above methods do not index the data and so they

need to rescan the whole database for every different set of

values of parameters. If these approaches wanted to index

the data to retrieve subtrajectories with arbitrary combination

of maximum distance traveled and minimum stay duration

then they would have needed an index with all possible

combinations of values of Dthreh and Tthreh, which is not

practical. We instead define stay points in terms of the speed of

the object and index the trajectory database for speed values.

With the speed index, we do not need to access the whole

database for every different query: only the low speed (as

specified by the query) trajectory segments are accessed.

[18] presents an approach to mine common sequence of lo-

cations, ROIs, visited with similar travel times between them.

An example of such a sequence is ’Railway Station −→15min

Book Store −→30min University’, which says Railway Station

to Book Store to University is a common travel sequence with

travel time between them 15min and 30min respectively. In

this work ROI implies dense regions which are visited by a

certain fraction (i.e. 10%) of all trajectories. Dense regions

are identified by discretization of the space into grids, which

can also introduce false negatives [13] i.e., when a dense

region spans over multiple cells but none of those cells are

individually dense. Moreover, considering all segments of all

trajectories will identify places which are not ROIs, i.e. road

intersections. Other than density, this method is different from

ours because it does not identify ROIs with query specified

parameter values.

To summarize, our approach has the following characteris-

tics: 1) it does not assume any a priori knowledge about ROIs,

2) it can identify ROIs for arbitrary values of parameters with-

out rescanning the whole database 3) it identifies commonly

interesting places by also considering the number of objects

that visited the place.

IV. INDEXING TRAJECTORY SEGMENTS BY SPEED

Typically, objects in an ROI will maintain very low (or zero)

speed. Hence, if we can quickly retrieve and analyze low speed

trajectory segments, we can reduce query costs significantly.

354141



Algorithm 1 BuildIndex(T :Dataset, R:Ranges)
1: for each trajectory T ∈ T do
2: ρprev = −1
3: start = 1
4:

5: for each segment (pi, pi+1 ∈ T ) do
6: σ =Speed(pi, pi+1)

7: ρ =Range(σ, R)
8: if ρ �= ρprev then
9: length = i− start
10: ptr =MakePtr()
11: e =indexEntry(T.ID, start, length, ptr)
12: insertIntoBucket(ρ, e)
13:

14: start = i
15: end if
16: ρprev = ρ
17: end for
18: end for

Let smax and smin be the maximum and minimum speeds

specifiable in an ROI query. We partition the speed values into

index ranges R = [smin, s1), [s1, s2), . . . , [sn−1, smax). These
ranges can be of arbitrary length. We maintain one bucket for

each index range, with bucket Bi holding trajectory segments
with speed range [si, si+1).
We consider the segments for trajectory sequentially, and

compute speeds assuming linear motion between two succes-

sive timestamps. If a series of consecutive segments fall within

the same speed range, we combine them into one subtrajectory,

and insert it into the index as one entry. Thus each entry in an

index bucket points to a subtrajectory all of whose segments

fall into within the speed range of the bucket. Figure 5

illustrates how subtrajectories are assigned to different buckets.

The dotted and dashed lines show the subtrajectories which are

contiguous parts of the same trajectory. The pseudo code for

building the speed index appears in algorithm 1. Lines 6 and
7 calculate the speed of a segment and decide which of the
index ranges contains it. If the speed range is same as that of

the previous segment then we proceed to the next segment and

so on. Otherwise, a new entry, e, is created which points to
the last subtrajectory with same speed range; e is then inserted
into the appropriate bucket (lines 8 to 15).
We assume trajectories are sorted according to TID, so that

subtrajectories in the buckets are also sorted according to TID.

Having TID sorted entries in the buckets allows to perform

a merge join to reconstruct trajectories from these buckets.

When new trajectories are added to the database the index

can easily be updated using the above algorithm.

Finding trajectory segments having speed within range

[s1, s2) is straightforward. Every bucket whose speed range

overlaps with the range [s1, s2) is accessed. If the speed range
of a bucket Bi is completely contained within the query speed
range then all subtrajectories of Bi are considered. If there
is partial overlap, the subtrajectories of Bi are checked for

speed:     10.3  10.0  10.9    5.6    5.8      5.0      16.0    16.9    16.8    16.5

[5, 6) [10, 11) [16, 17)

… …… …

…

Fig. 5. Index Structure.

containment of speed within the query range.

V. FINDING REGIONS OF INTEREST

We find ROIs in three steps. First, we retrieve the appropri-

ate buckets from the index. In the second step, we collect

subtrajectories spanning multiple buckets by performing a

merge-join, and check the stay durations. In the third step,

we find regions with line segment density N/l2, where each
of N segments has to be from different trajectories.

It is straightforward to retrieve the segments falling into a

given speed range [s1, s2) using the speed index. No further
discussion is needed.

A. Step 2: Verifying the Duration Condition

In this step, we consider only the buckets obtained from

the previous step. To verify the duration condition for each

trajectory we must join subtrajectories with same TID from

different buckets. Let the query speed range include buckets

Bi and Bj , and let Si ∈ Bi and Sj ∈ Bj be subtrajectories.
Let the start and end timestamps for Si and Sj be [ti1, ti2]
and [tj1, tj2] respectively. If Si and Sj have the same TID
and ti2 = tj1 or ti1 = tj2, then Si and Sj should be

merged into a single subtrajectory. The object’s stay duration

is the interval between the first and the last timestamps of the

merged subtrajectory. We discard all subtrajectories with stay

duration less than τ after merge, since they do not fulfil the
stay duration condition. Since we have a TID-sorted list in

each bucket we need one pass over every bucket entry. The

segments that belong to a subtrajectory with stay duration τ
or more are input to the next step.

In addition to minimum stay duration, our implementation

also supports other temporal conditions, such as time inter-

vals and weekdays/weekends. For example, ROIs during any

weekday with τ = 15 to 30 minutes, carry different semantics
than those found in the afternoon or evening of any weekend,

with a few hours of stay duration.

B. Step 3: Finding Dense Regions

This step involves finding points p whose l2-neighborhood
contains at least N distinct trajectories. For our purpose we

extend the Pointwise Dense Region (PDR) method [13] which

was originally presented for point objects. We extend those

techniques here for line segments. The work in [13] describes

two variations: (1) an exact, and (2) an approximate method.

364242



Ci,j

Expansive�Conservative

r

l/2

l/2

l + lc

c

(a) Conservative and Ex-

pansive neighborhood of a

cell ci,j .

(b) MBRs in the l-square
neighborhood of the cell c.

Fig. 6.

1) Exact PDR Method: The spatial region is assumed to be
a L×L square area. This space is partitioned into m×m grid,

with cell width lc =
L
m . Here, m must be such that lc ≤ lmin

2
where lmin ≤ l. For each cell, ci,j where 1 ≤ i, j ≤ m,
we maintain a histogram. Initially all histogram values are

set to zero. The histogram value for each cell is increased

by one, for each distinct overlapping trajectory. We index the

trajectory segments obtained from the previous step using an

R∗-tree [20]. The cost for building such an R∗-tree is included
in the query cost, which is, according to our experimental

evaluations, quite small. For each cell we perform an R∗-tree
search to determine the number of overlapping trajectories.

Histogram values for all the cells form an m × m matrix,

which we call a histogram matrix.
PDR [13] is designed for moving objects, and evaluates

predictive queries about dense regions at a future timestamp.

Hence, the numbers and positions of objects could be different

for different queries. As a result, histogram values must be

computed for every different query. However, we evaluate

the query on historical data (GPS traces), and can calculate

histogram values once, and use to evaluate queries. That is,

to speed up queries, we pre-compute a histogram matrix for

every index range and then use these to answer queries with

any arbitrary speed range. As new trajectories are added to the

database, the histogram values and the speed index are both

updated. We assume that the data is always up-to-date.

Calculating the histogram matrix for a query speed range

requires adding histogram matrices whose speed ranges over-

lap with the query range. If the upper and lower limits of

the query range exactly match the limits of index ranges then

no histogram values are calculated. Otherwise we have to

calculate one or two histogram matrices for a very small size

of data. The following example illustrates the idea.

Let the query range be [sq1, sq2), and the index ranges be
[s0, s1), . . . , [si, si+1), . . . , [sj , sj+1), . . . , [sn−1, sn). If sq1 =
si and sq2 = sj where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n,
and i < j, then we add up the histograms for the ranges

[si, si+1), . . . , [sj−1, sj). However, if si−1 < sq1 < si, sj <
sq2 < sj+1, where 1 ≤ i ≤ n− 2, 2 ≤ j ≤ n− 1, and i < j,
then we have to calculate histogram values for the ranges

[sq1, si) and [sj , sq2) in addition to adding up histogram

matrices for the speed ranges [si, si+1), . . . , [sj−1, sj).
a) The Filtering Step: Let ηl = 	 l

2lc

, ηh = � l

2lc
�. We

use the following definitions from [13]:

Definition 9: The conservative neighborhood of a cell ci,j
is the union of grid cells cu,v such that i − ηl < u < i + ηl
and j − ηl < v < j + ηl.
The l-square neighborhood of any point inside ci,j fully

contains its conservative neighborhood, Ci,j .
Definition 10: The expansive neighborhood of a cell ci,j

is the union of grid cells cu,v such that i− ηh ≤ u ≤ i+ ηh
and j − ηh ≤ v ≤ j + ηh.
The l-square neighborhood of any point inside ci,j is fully

contained in its expansive neighborhood, Ei,j . Figure 6(a)

shows the conservative and expansive neighborhood for a cell

ci,j , with ηl = 2 and ηh = 3.
If the conservative neighborhood of any cell overlaps with

N trajectories, then all points inside cell ci,j are guaranteed
to be dense, and ci,j is accepted as a dense cell. On the other
hand, if the expansive neighborhood of any cell overlaps less

than N line segments, then no point in cell ci,j is dense, and
ci,j is rejected. Cells that are neither accepted nor rejected are
candidate cells. We use the FilterQuery algorithm from [13]

to identify accepted, rejected and candidate cells. In our case

ρl2 = N and there is no query timestamp, qt. Candidate cells
are further analyzed to identify dense points inside them.

b) Refinement Step: To identify dense points in a candi-
date cell ci,j first, we will find all segments that overlap with
the l-square neighborhood, r, of the cell ci,j .
We do an R∗-tree search to retrieve segments overlapping

with r. We retrieve only the portion of a line that overlaps

with r. Each segment is represented by its MBR. Figure 6(b)
shows the region r and the MBRs of the overlapping line

segments. We sort the MBRs of line segments according to

the x coordinate of their left-bottom corner.

In the refinement step, an l-band is swept along the X axis

for each candidate cell ci,j . An l-band is a rectangle with

width l and height l + yt − yb. The position of the l-band is
identified by the position of its vertical median. The plane

sweep algorithm along the X-axis starts with the l-band’s
vertical median at the left edge of ci,j and stops when it

touches the right edge of ci,j . Let L be the sorted list of

MBRs that overlap the l-band at the beginning. As the l-band
is swept, when the right edge of the l-band touches the left

edge of an MBR we insert it into the list L. When the left edge

of the l-band touches the right edge of an MBR we delete it

from L. The x coordinates of the vertical center line when any
edge of l-band touches any edge of an MBR are the stopping

points. Instead of sweeping through all the x coordinates it is
sufficient to consider only the stopping points.

Algorithm 2 describes the plane sweep along the X-axis.
In this algorithm the l-band is placed at each stopping point
and the left and right edges of the candidate cell . If the l-
band overlaps at least N objects then SweepY is called to

identify dense regions, where l-square neighborhood of each
point overlaps N lines. Plane sweep along Y axis proceeds in

the same way. An l-square is swept instead of an l-band.

374343



Algorithm 2 RefineQuery(N , ci,j)
1: S = MBRs in l-square neighborhood of ci,j
2: sort S according to the left x-coordinate, x′

l, of MBRs

3: stopX = xl, xr
4: for each MBR(x′

l, y
′
b, x

′
r, y

′
t) in S do

5: insert x′
l − l

2 if x′
l − l

2 ∈ [xl,xr]
6: insert x′

r − l
2 if x′

r − l
2 ∈ [xl,xr]

7: insert x′
l +

l
2 if x′

l +
l
2 ∈ [xl,xr]

8: insert x′
r +

l
2 if x′

r +
l
2 ∈ [xl,xr]

9: end for
10:

11: L = MBRs inside l-band at the initial position
12: n = #elements in L.
13: for i = 1 to n do
14: xi = L[i]
15: delete MBR whose x′

r is xi − l
2 from L

16: insert MBR whose x′
l is xi +

l
2 into L

17: if |L| ≥ N then
18: SweepY(L, N )
19: for each dense segment [yj , yj+1) do
20: [xi, xi+1)× [yj , yj+1) is a dense region.
21: end for
22: end if
23: end for

2) Approximate PDR Method: The exact PDR method

requires to run the plane sweep algorithm for all candidate

cells, which can be a costly operation. The number of plane

sweeps required depends on the number of candidate cells.

If most of the cells cannot be accepted or rejected during

the filtering step then a large number of plane sweeps is

needed. This will significantly increase the query execution

time. However in practice the querying application or the user

can accept some loss of accuracy and identifying dense regions

exactly is not necessary.

The work in [13] therefore presents an alternate method

using Chebyshev polynomials of the first kind to approximate

the density function D(x, y) of the two dimensional space.

l is assumed to be fixed. We adapt this method we adapt

to our case. Our experimental results mirror that of [13],

and show that the approximation method is very fast, so that

approximations for different l can be computed on the fly.
a) Chebyshev Polynomials: The Chebyshev polynomial

Tk(x) of the first kind is a polynomial in x of degree k and
defined by the relationship Tk(cos θ) = cos(kθ). When x ∈
[−1, 1], then θ ∈ [0, π]. These polynomials obey the recurrence

Tk(x) = 2xTk−1(x)− Tk−2(x), k ≥ 1
T0(x) = 1, T1(x) = x.

The approximation f̂(x, y) of a function f(x, y) with Cheby-
shev polynomials of degree k is given by:

f̂(x, y) =

i+j≤k∑
i=0,j=0

ai,jTi(x)Tj(y)

The Chebyshev coefficients ai,j are computed using the fol-
lowing formula:

ai,j =
c

π2

∫ 1

−1

∫ 1

−1

f(x, y)Ti(x)Tj(y)√
1− x2

√
1− y2

dxdy

where,

c =

⎧⎨
⎩
4 when i �= 0, j �= 0
2 when i = 0, j �= 0 or i �= 0, j = 0
1 when i = 0, j = 0

The x and y coordinates are normalized to between +1
and −1, with the bottom-left corner at (−1,−1) and top-right
corner at (1, 1). In [13], Chebyshev coefficients are updated
for the l-square neighborhood of each point as objects are

added, so that that the density of the l-square neighborhood
of a point is increased by 1/l2 for this point.

We will use a similar approach, considering the line seg-

ments obtained from step 2 one by one, and updating the

coefficients. We first describe how to update coefficients for a

l-square neighborhood of a point and then focus on updating
coefficients for a line segment.

For each point p we need to update each coefficient ai,j ,
for i = 0, j = 0 to i + j ≤ k, so that the density of l-square
neighborhood of p is increased by 1/l2. It has been shown in
[13] that for each point if we can calculate the increment aδi,j
of coefficient ai,j , then the updated coefficient a

′
i,j is:

a′
i,j = ai,j + a

δ
i,j .

aδi,j is calculated as follows.

aδi,j =
c

π2

∫ xr

xl

∫ yt

yb

1
l2Ti(x)Tj(y)√
1− x2

√
1− y2

dxdy

=
c

π2l2

∫ xr

xl

Ti(x)√
1− x2

dx

∫ yt

yb

Tj(y)√
1− y2

dy

=
c

π2l2

∫ xr

xl

cos(i arccos(x))√
1− x2

dx

∫ yt

yb

cos(j arccos(y))√
1− y2

dy

[using the trigonometric representation of Ti(x)] (1)

yb, yt, xl, xr, are bottom, top, left, and right boundaries re-

spectively of the l-square.

However, computing the above integrals for the l-rectangle
region of a line segment is complicated, since the boundaries

of a line segment’s l-rectangle are not fixed values. This causes
the y-limits to become functions of x. We will simplify the
integrals by assuming that two boundaries of the l-rectangle
neighborhood are parallel to y axis, as in Figure 3(b). Now

x-limits are fixed values and y-limits are linear functions

f1(x, xl, xr) and f2(x, xl, xr). The integrals now assume the

384444



Location Time of collection Number of
trajectories

Number of spatial
points

Sampling
frequency

Description

Beijing, China Apr 2007 to Aug 2009 165 24778552 2-5 sec GeoLife Data:
San Francisco, USA 2008-05-17 to 2008-06-10 536 11219955 10 sec TaxiCab Data:
Starkey, Oregon, USA April to August of 1993-1996 253 >287,000 1hr DeerElk Data:

TABLE I

DESCRIPTION OF REAL DATA SET.

form

aδi,j =
c

π2l2

∫ xl

xr

cos(i arccos(x))√
1− x2

dx

×
∫ yt=f2(x,xl,xr)

yb=f1(x,xl,xr)

cos(j arccos(y))√
1− y2

dy (2)

=
c

π2l2

∫ xl

xr

cos(i arccos(x))√
1− x2

× sin(jf1(x, xl, xr))− sin(jf2(x, xl, xr))
j

dx

=
c

π2l2j
[I1 − I2]

where

Ik =

∫
cos(i arccos(x)) sin(jfk(x, xl, xr))√

1− x2
, k = 1, 2 (3)

Unfortunately, using linear f1() and f2() in (2) results in

an elliptical integral, which has no closed form. Numerical

integration is expensive, and will not allow us to achieve our

goal of quickly approximating the density function.

Since updating the Chebyshev coefficients for the l-
rectangle neighborhood of a line segment will not be efficient,

we proceed using a simpler region around line segments. Our

final goal is to approximate the dense regions quickly. We

take the middle point pm of each segment, and update the

coefficient for the l-square neighborhood of pm. This makes
the approximation method simple and quick, although it might

harm the goodness of the approximation. Usually trajectory

segments are much smaller than grid cells, and fully contained

within a cell. If a line segment is bigger than grid cell width,

lc, then we segment the line into multiple lines of length lc,
except the last segment, which might be smaller.

VI. EXPERIMENTAL EVALUATION

In our experiments we used three real and one synthetic

datasets. All the experiments were run in an Intel Xeon

3.0GHz processor running Linux 2.6.18 with 8GB of main

memory. We used the disk manager and R∗-tree implementa-
tion of the spatial index library [21] with page size 16KB.

Table I provides the description of the real datasets. The Ge-

oLife dataset [22] contains public activity data (i.e. shopping,

dining, sightseeing, hiking, cycling etc.) in Beijing, China. The

TaxiCab dataset was collected from GPS equipped taxi cabs

in San Francisco, USA [23]. The DeerElk data contains the

trajectories of deer, elk and cattle in the Starkey Experimental

Forest and Range in Oregon, USA [24]. The synthetic dataset

contains two hundred thousand trajectories, each of length 250

(a) (b)

Fig. 7. ROIs identified Beijing with long stay duration in weekends.

recordings, generated for the Chicago metropolitan area road

network.

We first consider identifying ROIs in the real datasets.

For experiments we used the exact PDR method. Table II

shows the temporal conditions used for the experiments on

the GeoLife data. The results of our algorithms were then

validated using Google Maps. Note that GeoLife data comes

from Microsoft Asia employees, visitors, etc. Using a short

stay duration (15 to 30 min) we found bus stops, railway

and subway stations, the Tsinghua University canteen, etc. We

then considered weekends and a longer stay duration (1.5 to

4 hr). This resulted in ROIs in (1) the Sanlitun area which

houses many malls, bars and is a very popular place, (2) the

Wenhua square which contains churches, theaters, and other

entertainment places, and (3) Zhongguancun, referred to as

‘China’s Silicon Valley’, having a lot of IT and electronics

markets. Figure 7(a) and (b) shows Sanlitun and Zhongguan-

cun area respectively in Beijing. When considered lunch and

dinner time we found places that contain many restaurants.

Interestingly ROIs found at lunch time contain regions near the

Microsoft China head quarters which are absent in dinner time

ROIs. Finally we identified ROIs on each individual day from

April 2007 to August 2009. These resulted in (1) the Olympic

media village, the Olympic sports center stadium during the

Olympics 2008, (2) Peking University when the ‘Regional

Windows Core Workshop 2009 - Microsoft Research’ was

taking place in the PKU campus, (3) areas near the Great

Wall in a weekend, (4) the Beijing botanical gardens, (5) the

Celebrity International Grand Hotel, Beijing, etc.

Figure 8(a) shows all the ROIs found using the TaxiCab

dataset. We further zoom in to ROIs and these are shown

in figure 8(b) The San Francisco international airport, (c) a

car rental, (d)the main downtown, union square (e) hotels:

Star Wood, Westin, Mariott, (f) hotel Radisson (g) Ramada

Plaza hotel (h) Embarcadero, Regency hotel, (i) San Francisco

Caltrain station (j) the yellow cab access road. These were

found for short stay duration of 10 minutes. When the stay

394545



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. ROIs identified for the TaxiCab data.

0�1 0�3 0�5
0

50

100

150

a) Query speed range (GeoLife)

T
im

e 
re

qu
ire

d(
se

c)

0�1 0�3 0�5
0

500

1000

1500

b) Query speed range (TaxiCab)

T
im

e 
re

qu
ire

d(
se

c)

10 100 500 10005000
0

50

100

150

c) Num Temp Cond. (GeoLife)

T
im

e 
re

qu
ire

d(
se

c)

10 100 500 10005000
0

100

200

300

400

d) Num Temp Cond. (TaxiCab)

T
im

e 
re

qu
ire

d(
se

c)

Fig. 9. Query parameters vs Time.

duration was increased to 12 hours we found only yellow cab

access road, while for 2 − 3 hours of stay duration we also
found the airport.

Time Period Duration
1 Any day 15-30 min
2 Weekends 1.5-4 hr
3 Lunch time 0.5-1.5 hr
4 Dinner time 0.5-1.5 hr
5 Any day 1-4 hr

TABLE II

TEMPORAL ATTRIBUTES FOR THE GEOLIFE DATA EXPERIMENTS.

Finally, when using the DeerElk dataset, the ROIs found

tend to be near a valley, with the largest ROI being close to a

big water body (0.56 miles in length).

Figure 9 shows the query evaluation time for different

values of parameters on real data. We do not consider the

DeerElk data because there is not much variation of speed

0�1 to 0�3 0�3 to 0�50

20

40

60

80

100

Increase of speed range

P
er

ce
nt

ag
e 

in
cr

ea
se

 o
f s

el
ec

te
d 

da
ta

. TaxiCab Data
GeoLife Data

Fig. 10. Increase in fraction of selected data vs speed range.

in this dataset. As we increase the speed range the query

evaluation time increases very slowly for the GeoLife data.

However, for the TaxiCab data the evaluation time increases

sharply (the reason behind which is explained in the next

paragraph). On the other hand, the effect of the number of the

temporal conditions on query evaluation time is very small.

This is because evaluating the temporal condition requires a

sort merge join which is very fast. While varying the number

of temporal conditions the amount of selected data from the

index was kept the same, which ensures that the subsequent

parts of the algorithm after verifying the temporal condition

processed the same data.

Figure 10 shows the percentage increase in the selected data

from the speed index as the query speed range increases from

0 − 1mph to 0 − 3mph and from 0 − 3mph to 0 − 5mph.
Increasing the query speed range results in much higher

increase of selected data in case of the TaxiCab data than

that in the GeoLife data. This explains why the performance

of query evaluation in the TaxiCab data is more affected by

the query speed range than that in the GeoLife Data.

We also ran experiments on the synthetic dataset to de-

termine the algorithm’s behavior over large datasets. Figure

11(a) shows the time required to build the speed index. Here

we report index construction times for indexing subtrajectories

with speeds between 0 and 100, (although we need only low

speed segments, i.e. 0 to 5, to answer typical ROI queries).

Our index ranges are [0, 1), [1, 2), . . . , [99, 100). The cost of

404646



0 50 100 150 2000

100

200

300

400

500

600

700

#Trajectory (103)

T
im

e 
(s

ec
)

cpu
elapsed

0 50 100 150 2002

2.5

3

3.5

4

4.5

5

5.5

#Trajectory (103)

T
im

e 
(s

ec
)

cpu
elapsed

0 50 100 150 2000

20

40

60

80

#Trajectory (103)

A
ve

ra
ge

 n
um

be
r 

of
 IO

(a) (b) (c)

Fig. 11. (a) Index building cost vs Database size. (b) Histogram computation time vs Database size. (c) Histogram computation IO vs Database size.

building the index is linear with the data size. The difference

between CPU time and elapsed time is slowly increasing

which is due to the increasing number of disk IO as the data

size increases.
Figure 11(b) shows the time required for the histogram

computation for each index range as a preprocessing step.

Computing histogram matrices requires accessing the speed

index and building an R∗-tree with the selected data. Note that
the elapsed time is very close to CPU time. This is because the

histogram matrices are typically small and can fit into main

memory. Moreover, the data indexed by the R∗-tree is also
small. Figure 11(c) shows the average number of IOs required

for computing each histogram matrix.
For comparison purposes we also implemented the CB-

SMOT approach [17]. CBSMOT estimates the eps parameter
using a quantile function where the user has to specify the

fraction of trajectory points that is expected to be in an ROI.

Since in our approach we assume that the user will specify

speed and distance, we can equivalently assume that the eps-
distance is specified by the user. To compare CBSMOT with

our method we ran it for a certain value of eps and minimum
stay duration τ . Then we ran our method with speed range

[0, epsτ ) and minimum stay duration τ . Note that, CBSMOT
finds ROIs for each individual trajectory but our method

considers all trajectories of the dataset and identifies regions

that are commonly interesting. Thus, CBSMOT identifies more

ROIs than those identified by our method. To make the

results of CBSMOT comparable with ours we extend it (E-

CBSMOT) by applying the pointwise density method on its

output. Note that, E-CBSMOT, similarly to CBSMOT, cannot

evaluate temporal conditions as our approach.
Figure 12 shows the regions of interest found in the

synthetic data using the exact, approximate and E-CBSMOT

methods. ROIs identified by the Chebyshev approximation

have more area than those by the exact method. This is

due to the fact that the density coefficients are being over

estimated because of considering the l-square neighborhood
around the center of a line segment. The subtle difference

between the result of E-CBSMOT and our method is because

of the different definitions of ROIs.
Figure 13 shows the query evaluation time. As expected,

the time for the approximation method is quite less than

that of the exact method. Recall that the approximate method

0 50 100 150 2000

10

20

30

40

50

60

70

80

#Trajectory (103)

T
im

e 
(s

ec
)

Exact (pre)
Exact (on the fly)
Approximate
E�CBSMOT

Fig. 13. Query time vs Database size.

computes Chebyshev coefficients and finds dense regions for

every different value of l. From the experimental results we

argue that the whole approximation process is so fast that it is

feasible to run the approximation for every different value of

l. For the exact PDR method we experimented with two cases,

when we (1) only add precomputed histogram matrices and (2)

need to compute the histogram values after retrieving required

subtrajectories from the speed index. In the later case we need

to (i) access the speed index to retrieve the required trajectory

segments (ii) build the R-Tree on them and (iii) compute

the histogram values. This experiment shows the benefit of

precomputing the histogram matrices and thus avoid accessing

the speed index. Finally, E-CBSMOT takes much longer than

our method since it has to scan the whole dataset.

VII. CONCLUSIONS

In this paper we address the problem of discovering regions

of interest from trajectory databases. We give formal definition

of ROIs in a more generic way than previous approaches and

propose a framework to discover ROIs efficiently. We allow

users to specify any arbitrary values for attributes defining

ROI. Unlike previous approaches we do not scan the whole

database to identify ROIs for a certain set of attribute values

defining ROIs, neither assume any spatial information given

about these regions.

We also consider a minimum number of objects must

stay in an ROI for a minimum duration, which is absent in

previous methods. We extend the Pointwise Density method to

identify these regions with a minimum density of trajectories.

Experimental results show that our proposed methods discover

414747



0 500 1000
0

200

400

600

800

1000

x

y

(a) Exact

0 500 1000
0

200

400

600

800

1000

x

y

(b) Approximate

0 500 1000
0

200

400

600

800

1000

x

y

(c) E�CBSMOT

Fig. 12. ROIs identified by different methods.

ROIs efficiently and correctly. As a future work we want to

address the issue of dealing with data with uncertainty e.g.,

noisy, low resolution data.

VIII. ACKNOWLEDGEMENT

This work was supported in part by contract number

N00014-07-C-0311 with the Office of Naval Research and

NSF grant: NSF IIS 0803410.

REFERENCES

[1] www.accutracking.com.
[2] tracNet24, www.isecuretrac.com.
[3] Footpath, www.pathintelligence.com.
[4] GeoChat, instedd.org/geochat.
[5] www.bikely.com.
[6] www.gpsxchange.com.
[7] www.everytrail.com.
[8] www.sports-tracker.com.
[9] K. Xie, K. Deng, and X. Zhou, “From trajectories to activities: A spatio-

temporal join approach,” in LBSN’09: Proc. of the Int’l Workshop on
Location Based Social Networks, 2009, pp. 25–32.

[10] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining user
similarity based on location history,” in ACM GIS, 2008, pp. 1–10.

[11] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in WWW, 2009, pp. 791–
800.

[12] X. Cao, G. Cong, and C. S. Jensen, “Mining significant semantic
locations from gps trajectory,” in VLDB, 2010, pp. 1009–1020.

[13] J. Ni and C. V. Ravishankar, “Pointwise-dense region queries in spatio-
temporal databases,” in IEEE ICDE, 2007, pp. 1066–1075.

[14] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J. Tsotras, “On-
line discovery of dense areas in spatio-temporal databases,” in SSTD,
2003.

[15] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang, “Effective density queries
on continuously moving objects,” in ICDE, 2006.

[16] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans,
and A. Vaisman, “A model for enriching trajectories with semantic
geographical information,” in ACM GIS, 2007, pp. 1–8.

[17] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares, “A clustering-
based approach for discovering interesting places in trajectories,” in
ACM SAC, 2008, pp. 863–868.

[18] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern
mining,” in ACM KDD, 2007, pp. 330–339.

[19] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in ACM
SIGKDD, 1996, pp. 226–231.

[20] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R∗-
tree: An efficient and robust access method for points and rectangles,”
in ACM SIGMOD, 1990, pp. 322–331.

[21] “Spatial Index Library,” http://dblab.cs.ucr.edu/spatialindexlib.html.
[22] http://research.microsoft.com/en-us/projects/geolife/.
[23] crawdad.cs.dartmouth.edu.
[24] http://www.fs.fed.us/pnw/starkey/.

424848


